{
"cells": [
{
"cell_type": "markdown",
"id": "777ee8d3-6725-43e0-a45f-5e7ead0aa26f",
"metadata": {},
"source": [
"# Social Vulnerability Logroño - Calculate Vulnerability"
]
},
{
"cell_type": "markdown",
"id": "45124731-302e-4184-9a4d-e57e2048a172",
"metadata": {},
"source": [
"## Environment"
]
},
{
"cell_type": "markdown",
"id": "8b82a2d0-2ab4-4452-ae11-0cfb7ed631d5",
"metadata": {},
"source": [
"### R Libraries\n",
"The relvant R libraries are imported in to the kernal:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6093e58a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading required package: pacman\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1] \"Loaded Packages:\"\n"
]
},
{
"data": {
"text/html": [
"\n",
"
- 'lubridate'
- 'forcats'
- 'stringr'
- 'dplyr'
- 'purrr'
- 'readr'
- 'tidyr'
- 'tibble'
- 'ggplot2'
- 'tidyverse'
- 'sf'
- 'pacman'
\n"
],
"text/latex": [
"\\begin{enumerate*}\n",
"\\item 'lubridate'\n",
"\\item 'forcats'\n",
"\\item 'stringr'\n",
"\\item 'dplyr'\n",
"\\item 'purrr'\n",
"\\item 'readr'\n",
"\\item 'tidyr'\n",
"\\item 'tibble'\n",
"\\item 'ggplot2'\n",
"\\item 'tidyverse'\n",
"\\item 'sf'\n",
"\\item 'pacman'\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
"1. 'lubridate'\n",
"2. 'forcats'\n",
"3. 'stringr'\n",
"4. 'dplyr'\n",
"5. 'purrr'\n",
"6. 'readr'\n",
"7. 'tidyr'\n",
"8. 'tibble'\n",
"9. 'ggplot2'\n",
"10. 'tidyverse'\n",
"11. 'sf'\n",
"12. 'pacman'\n",
"\n",
"\n"
],
"text/plain": [
" [1] \"lubridate\" \"forcats\" \"stringr\" \"dplyr\" \"purrr\" \"readr\" \n",
" [7] \"tidyr\" \"tibble\" \"ggplot2\" \"tidyverse\" \"sf\" \"pacman\" "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Load R libraries\n",
"if(!require(\"pacman\"))\n",
" install.packages(\"pacman\")\n",
"\n",
"p_load(\"sf\", \"tidyverse\")\n",
"\n",
"print(\"Loaded Packages:\")\n",
"p_loaded()"
]
},
{
"cell_type": "markdown",
"id": "5e566f14-5f10-4d08-a5ee-8c4dea1661d0",
"metadata": {},
"source": [
"### Output directory"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "463b1703-15a6-4d3d-aa21-7096505d2ec4",
"metadata": {},
"outputs": [],
"source": [
"# create the output directory if it does not exist\n",
"output_dir <- file.path(\"../..\",\"3_outputs\",\"Spain\",\"Logrono\",\"2021\")\n",
"if(!dir.exists(output_dir)){\n",
" dir.create(output_dir, recursive = TRUE)\n",
" print(paste0(output_dir, \" created\"))\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "65901706-93e1-4751-9b51-ea78fac0c315",
"metadata": {},
"source": [
"### Set the GUID"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "417fd52a-4662-4d2d-9c69-32785c35d49c",
"metadata": {},
"outputs": [],
"source": [
"GUID <- c(\"CCA\", \"CPRO\", \"CMUN\", \"CDIS\", \"CSEC\")\n",
"GUID_census_indicator_data <- c(\"ccaa\", \"CPRO\", \"CMUN\", \"dist\", \"secc\")\n",
"GUID_length = 5"
]
},
{
"cell_type": "markdown",
"id": "4919bacb-e14d-455f-8550-aefaa84572fe",
"metadata": {},
"source": [
"## Load Data"
]
},
{
"cell_type": "markdown",
"id": "799416fe-aeea-43a2-9ea5-d7a39695d913",
"metadata": {},
"source": [
"### Import the data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "38e1c16d",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 20\n",
"\n",
"\t | CCA | CPRO | CMUN | CDIS | CSEC | early_childhood_boy | early_childhood_girl | age_middle_to_oldest_old_male | age_middle_to_oldest_old_female | disability | one_parent_households | dependants | unemployment | attending_university | no_higher_education | foreign_nationals | rented | primary_school_age | one_person_households | year_built |
\n",
"\t | <int> | <int> | <int> | <int> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
\n",
"\n",
"\n",
"\t1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.4818082 | -0.10021618 | 1.2753218 | -1.459709836 | -0.0938240 | -1.00214549 | 1.2303104 | 0.07143877 | 0.1446865 | -0.5073936 | 0.30936208 | 1.0319635 | -0.94812767 |
\n",
"\t2 | 17 | 26 | 2 | 1 | 1 | 0.23745377 | 0.3146154 | -0.2611307 | -0.31519260 | 0.3880289 | -0.007254482 | 0.1987363 | 0.87022439 | 0.2231589 | 0.27339067 | 0.7793089 | -0.5005024 | 0.16550926 | 0.4903007 | 0.24638629 |
\n",
"\t3 | 17 | 26 | 3 | 1 | 1 | -0.96122760 | -0.1140934 | 0.3255496 | 0.83585043 | -0.4992639 | -1.459709836 | -0.0938240 | -0.37802220 | 0.7267347 | 0.20607337 | 0.3985355 | -1.0793008 | 0.26195604 | 0.7214991 | 2.13797352 |
\n",
"\t4 | 17 | 26 | 4 | 1 | 1 | 0.01083739 | -1.4002199 | 0.5976241 | -1.28188374 | -1.3865567 | NA | -1.5566254 | -1.62626879 | -1.2875683 | 1.61973671 | -1.2514828 | NA | -1.57053273 | NA | NA |
\n",
"\t5 | 17 | 26 | 5 | 1 | 1 | -0.10396496 | 0.1640514 | -0.1893316 | 0.06098884 | 1.2753218 | -0.118741371 | 0.3450164 | 1.18228604 | -0.2804168 | 0.27339067 | 0.6523844 | -0.6041755 | 0.05555571 | -0.1104731 | -0.08916627 |
\n",
"\t6 | 17 | 26 | 5 | 2 | 1 | 2.13595981 | 1.4136596 | -0.7006675 | -0.72507994 | 0.3880289 | 1.157623344 | 1.5152575 | -0.06596055 | 0.2231589 | -0.06319583 | 0.1446865 | -0.3682738 | 1.19901504 | -0.4718037 | -0.42805727 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 20\n",
"\\begin{tabular}{r|llllllllllllllllllll}\n",
" & CCA & CPRO & CMUN & CDIS & CSEC & early\\_childhood\\_boy & early\\_childhood\\_girl & age\\_middle\\_to\\_oldest\\_old\\_male & age\\_middle\\_to\\_oldest\\_old\\_female & disability & one\\_parent\\_households & dependants & unemployment & attending\\_university & no\\_higher\\_education & foreign\\_nationals & rented & primary\\_school\\_age & one\\_person\\_households & year\\_built\\\\\n",
" & & & & & & & & & & & & & & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & 17 & 26 & 1 & 1 & 1 & -0.19258164 & -0.1467916 & 0.4818082 & -0.10021618 & 1.2753218 & -1.459709836 & -0.0938240 & -1.00214549 & 1.2303104 & 0.07143877 & 0.1446865 & -0.5073936 & 0.30936208 & 1.0319635 & -0.94812767\\\\\n",
"\t2 & 17 & 26 & 2 & 1 & 1 & 0.23745377 & 0.3146154 & -0.2611307 & -0.31519260 & 0.3880289 & -0.007254482 & 0.1987363 & 0.87022439 & 0.2231589 & 0.27339067 & 0.7793089 & -0.5005024 & 0.16550926 & 0.4903007 & 0.24638629\\\\\n",
"\t3 & 17 & 26 & 3 & 1 & 1 & -0.96122760 & -0.1140934 & 0.3255496 & 0.83585043 & -0.4992639 & -1.459709836 & -0.0938240 & -0.37802220 & 0.7267347 & 0.20607337 & 0.3985355 & -1.0793008 & 0.26195604 & 0.7214991 & 2.13797352\\\\\n",
"\t4 & 17 & 26 & 4 & 1 & 1 & 0.01083739 & -1.4002199 & 0.5976241 & -1.28188374 & -1.3865567 & NA & -1.5566254 & -1.62626879 & -1.2875683 & 1.61973671 & -1.2514828 & NA & -1.57053273 & NA & NA\\\\\n",
"\t5 & 17 & 26 & 5 & 1 & 1 & -0.10396496 & 0.1640514 & -0.1893316 & 0.06098884 & 1.2753218 & -0.118741371 & 0.3450164 & 1.18228604 & -0.2804168 & 0.27339067 & 0.6523844 & -0.6041755 & 0.05555571 & -0.1104731 & -0.08916627\\\\\n",
"\t6 & 17 & 26 & 5 & 2 & 1 & 2.13595981 & 1.4136596 & -0.7006675 & -0.72507994 & 0.3880289 & 1.157623344 & 1.5152575 & -0.06596055 & 0.2231589 & -0.06319583 & 0.1446865 & -0.3682738 & 1.19901504 & -0.4718037 & -0.42805727\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 20\n",
"\n",
"| | CCA <int> | CPRO <int> | CMUN <int> | CDIS <int> | CSEC <int> | early_childhood_boy <dbl> | early_childhood_girl <dbl> | age_middle_to_oldest_old_male <dbl> | age_middle_to_oldest_old_female <dbl> | disability <dbl> | one_parent_households <dbl> | dependants <dbl> | unemployment <dbl> | attending_university <dbl> | no_higher_education <dbl> | foreign_nationals <dbl> | rented <dbl> | primary_school_age <dbl> | one_person_households <dbl> | year_built <dbl> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.4818082 | -0.10021618 | 1.2753218 | -1.459709836 | -0.0938240 | -1.00214549 | 1.2303104 | 0.07143877 | 0.1446865 | -0.5073936 | 0.30936208 | 1.0319635 | -0.94812767 |\n",
"| 2 | 17 | 26 | 2 | 1 | 1 | 0.23745377 | 0.3146154 | -0.2611307 | -0.31519260 | 0.3880289 | -0.007254482 | 0.1987363 | 0.87022439 | 0.2231589 | 0.27339067 | 0.7793089 | -0.5005024 | 0.16550926 | 0.4903007 | 0.24638629 |\n",
"| 3 | 17 | 26 | 3 | 1 | 1 | -0.96122760 | -0.1140934 | 0.3255496 | 0.83585043 | -0.4992639 | -1.459709836 | -0.0938240 | -0.37802220 | 0.7267347 | 0.20607337 | 0.3985355 | -1.0793008 | 0.26195604 | 0.7214991 | 2.13797352 |\n",
"| 4 | 17 | 26 | 4 | 1 | 1 | 0.01083739 | -1.4002199 | 0.5976241 | -1.28188374 | -1.3865567 | NA | -1.5566254 | -1.62626879 | -1.2875683 | 1.61973671 | -1.2514828 | NA | -1.57053273 | NA | NA |\n",
"| 5 | 17 | 26 | 5 | 1 | 1 | -0.10396496 | 0.1640514 | -0.1893316 | 0.06098884 | 1.2753218 | -0.118741371 | 0.3450164 | 1.18228604 | -0.2804168 | 0.27339067 | 0.6523844 | -0.6041755 | 0.05555571 | -0.1104731 | -0.08916627 |\n",
"| 6 | 17 | 26 | 5 | 2 | 1 | 2.13595981 | 1.4136596 | -0.7006675 | -0.72507994 | 0.3880289 | 1.157623344 | 1.5152575 | -0.06596055 | 0.2231589 | -0.06319583 | 0.1446865 | -0.3682738 | 1.19901504 | -0.4718037 | -0.42805727 |\n",
"\n"
],
"text/plain": [
" CCA CPRO CMUN CDIS CSEC early_childhood_boy early_childhood_girl\n",
"1 17 26 1 1 1 -0.19258164 -0.1467916 \n",
"2 17 26 2 1 1 0.23745377 0.3146154 \n",
"3 17 26 3 1 1 -0.96122760 -0.1140934 \n",
"4 17 26 4 1 1 0.01083739 -1.4002199 \n",
"5 17 26 5 1 1 -0.10396496 0.1640514 \n",
"6 17 26 5 2 1 2.13595981 1.4136596 \n",
" age_middle_to_oldest_old_male age_middle_to_oldest_old_female disability\n",
"1 0.4818082 -0.10021618 1.2753218\n",
"2 -0.2611307 -0.31519260 0.3880289\n",
"3 0.3255496 0.83585043 -0.4992639\n",
"4 0.5976241 -1.28188374 -1.3865567\n",
"5 -0.1893316 0.06098884 1.2753218\n",
"6 -0.7006675 -0.72507994 0.3880289\n",
" one_parent_households dependants unemployment attending_university\n",
"1 -1.459709836 -0.0938240 -1.00214549 1.2303104 \n",
"2 -0.007254482 0.1987363 0.87022439 0.2231589 \n",
"3 -1.459709836 -0.0938240 -0.37802220 0.7267347 \n",
"4 NA -1.5566254 -1.62626879 -1.2875683 \n",
"5 -0.118741371 0.3450164 1.18228604 -0.2804168 \n",
"6 1.157623344 1.5152575 -0.06596055 0.2231589 \n",
" no_higher_education foreign_nationals rented primary_school_age\n",
"1 0.07143877 0.1446865 -0.5073936 0.30936208 \n",
"2 0.27339067 0.7793089 -0.5005024 0.16550926 \n",
"3 0.20607337 0.3985355 -1.0793008 0.26195604 \n",
"4 1.61973671 -1.2514828 NA -1.57053273 \n",
"5 0.27339067 0.6523844 -0.6041755 0.05555571 \n",
"6 -0.06319583 0.1446865 -0.3682738 1.19901504 \n",
" one_person_households year_built \n",
"1 1.0319635 -0.94812767\n",
"2 0.4903007 0.24638629\n",
"3 0.7214991 2.13797352\n",
"4 NA NA\n",
"5 -0.1104731 -0.08916627\n",
"6 -0.4718037 -0.42805727"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading layer `census_areas_TCD' from data source \n",
" `/Cities/2_pipeline/Spain/1b_Copernicus/2021/census_areas_TCD.geojson' \n",
" using driver `GeoJSON'\n",
"Simple feature collection with 36333 features and 22 fields\n",
"Geometry type: MULTIPOLYGON\n",
"Dimension: XY\n",
"Bounding box: xmin: -1004502 ymin: 3132130 xmax: 1126932 ymax: 4859240\n",
"Projected CRS: ETRS89 / UTM zone 30N\n",
"Reading layer `census_areas_IMD' from data source \n",
" `/Cities/2_pipeline/Spain/1b_Copernicus/2021/census_areas_IMD.geojson' \n",
" using driver `GeoJSON'\n",
"Simple feature collection with 36333 features and 22 fields\n",
"Geometry type: MULTIPOLYGON\n",
"Dimension: XY\n",
"Bounding box: xmin: -1004502 ymin: 3132130 xmax: 1126932 ymax: 4859240\n",
"Projected CRS: ETRS89 / UTM zone 30N\n"
]
},
{
"data": {
"text/html": [
"\n",
"A data.frame: 17 × 9\n",
"\n",
"\t | domain | indicator | sensitivity | prepare | respond | recover | adaptive_capacity | enhanced_exposure | weight |
\n",
"\t | <chr> | <chr> | <int> | <int> | <int> | <int> | <int> | <int> | <int> |
\n",
"\n",
"\n",
"\t1 | age | early_childhood_boy | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
\n",
"\t2 | age | early_childhood_girl | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
\n",
"\t3 | age | age_middle_to_oldest_old_male | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
\n",
"\t4 | age | age_middle_to_oldest_old_female | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
\n",
"\t5 | health | disability | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
\n",
"\t6 | income | one_parent_households | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
\n",
"\t7 | income | dependants | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
\n",
"\t8 | income | unemployment | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
\n",
"\t9 | income | attending_university | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
\n",
"\t10 | info_access_use | no_higher_education | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
\n",
"\t11 | local_knowledge | foreign_nationals | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
\n",
"\t12 | tenure | rented | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
\n",
"\t13 | social_network | primary_school_age | 0 | 0 | 1 | 1 | 1 | 0 | -1 |
\n",
"\t14 | social_network | one_person_households | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
\n",
"\t15 | housing_characteristics | year_built | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
\n",
"\t16 | physical_environment | impervious | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
\n",
"\t17 | physical_environment | tree_cover_density | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 17 × 9\n",
"\\begin{tabular}{r|lllllllll}\n",
" & domain & indicator & sensitivity & prepare & respond & recover & adaptive\\_capacity & enhanced\\_exposure & weight\\\\\n",
" & & & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & age & early\\_childhood\\_boy & 1 & 0 & 0 & 0 & 0 & 0 & 1\\\\\n",
"\t2 & age & early\\_childhood\\_girl & 1 & 0 & 0 & 0 & 0 & 0 & 1\\\\\n",
"\t3 & age & age\\_middle\\_to\\_oldest\\_old\\_male & 1 & 0 & 0 & 0 & 0 & 0 & 1\\\\\n",
"\t4 & age & age\\_middle\\_to\\_oldest\\_old\\_female & 1 & 0 & 0 & 0 & 0 & 0 & 1\\\\\n",
"\t5 & health & disability & 1 & 0 & 0 & 0 & 0 & 0 & 1\\\\\n",
"\t6 & income & one\\_parent\\_households & 0 & 1 & 1 & 1 & 1 & 0 & 1\\\\\n",
"\t7 & income & dependants & 0 & 1 & 1 & 1 & 1 & 0 & 1\\\\\n",
"\t8 & income & unemployment & 0 & 1 & 1 & 1 & 1 & 0 & 1\\\\\n",
"\t9 & income & attending\\_university & 0 & 1 & 1 & 1 & 1 & 0 & 1\\\\\n",
"\t10 & info\\_access\\_use & no\\_higher\\_education & 0 & 1 & 1 & 1 & 1 & 0 & 1\\\\\n",
"\t11 & local\\_knowledge & foreign\\_nationals & 0 & 1 & 1 & 0 & 1 & 0 & 1\\\\\n",
"\t12 & tenure & rented & 0 & 1 & 0 & 0 & 1 & 0 & 1\\\\\n",
"\t13 & social\\_network & primary\\_school\\_age & 0 & 0 & 1 & 1 & 1 & 0 & -1\\\\\n",
"\t14 & social\\_network & one\\_person\\_households & 0 & 0 & 1 & 1 & 1 & 0 & 1\\\\\n",
"\t15 & housing\\_characteristics & year\\_built & 0 & 0 & 0 & 0 & 0 & 1 & 1\\\\\n",
"\t16 & physical\\_environment & impervious & 0 & 0 & 0 & 0 & 0 & 1 & 1\\\\\n",
"\t17 & physical\\_environment & tree\\_cover\\_density & 0 & 0 & 0 & 0 & 0 & 1 & 1\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 17 × 9\n",
"\n",
"| | domain <chr> | indicator <chr> | sensitivity <int> | prepare <int> | respond <int> | recover <int> | adaptive_capacity <int> | enhanced_exposure <int> | weight <int> |\n",
"|---|---|---|---|---|---|---|---|---|---|\n",
"| 1 | age | early_childhood_boy | 1 | 0 | 0 | 0 | 0 | 0 | 1 |\n",
"| 2 | age | early_childhood_girl | 1 | 0 | 0 | 0 | 0 | 0 | 1 |\n",
"| 3 | age | age_middle_to_oldest_old_male | 1 | 0 | 0 | 0 | 0 | 0 | 1 |\n",
"| 4 | age | age_middle_to_oldest_old_female | 1 | 0 | 0 | 0 | 0 | 0 | 1 |\n",
"| 5 | health | disability | 1 | 0 | 0 | 0 | 0 | 0 | 1 |\n",
"| 6 | income | one_parent_households | 0 | 1 | 1 | 1 | 1 | 0 | 1 |\n",
"| 7 | income | dependants | 0 | 1 | 1 | 1 | 1 | 0 | 1 |\n",
"| 8 | income | unemployment | 0 | 1 | 1 | 1 | 1 | 0 | 1 |\n",
"| 9 | income | attending_university | 0 | 1 | 1 | 1 | 1 | 0 | 1 |\n",
"| 10 | info_access_use | no_higher_education | 0 | 1 | 1 | 1 | 1 | 0 | 1 |\n",
"| 11 | local_knowledge | foreign_nationals | 0 | 1 | 1 | 0 | 1 | 0 | 1 |\n",
"| 12 | tenure | rented | 0 | 1 | 0 | 0 | 1 | 0 | 1 |\n",
"| 13 | social_network | primary_school_age | 0 | 0 | 1 | 1 | 1 | 0 | -1 |\n",
"| 14 | social_network | one_person_households | 0 | 0 | 1 | 1 | 1 | 0 | 1 |\n",
"| 15 | housing_characteristics | year_built | 0 | 0 | 0 | 0 | 0 | 1 | 1 |\n",
"| 16 | physical_environment | impervious | 0 | 0 | 0 | 0 | 0 | 1 | 1 |\n",
"| 17 | physical_environment | tree_cover_density | 0 | 0 | 0 | 0 | 0 | 1 | 1 |\n",
"\n"
],
"text/plain": [
" domain indicator sensitivity prepare\n",
"1 age early_childhood_boy 1 0 \n",
"2 age early_childhood_girl 1 0 \n",
"3 age age_middle_to_oldest_old_male 1 0 \n",
"4 age age_middle_to_oldest_old_female 1 0 \n",
"5 health disability 1 0 \n",
"6 income one_parent_households 0 1 \n",
"7 income dependants 0 1 \n",
"8 income unemployment 0 1 \n",
"9 income attending_university 0 1 \n",
"10 info_access_use no_higher_education 0 1 \n",
"11 local_knowledge foreign_nationals 0 1 \n",
"12 tenure rented 0 1 \n",
"13 social_network primary_school_age 0 0 \n",
"14 social_network one_person_households 0 0 \n",
"15 housing_characteristics year_built 0 0 \n",
"16 physical_environment impervious 0 0 \n",
"17 physical_environment tree_cover_density 0 0 \n",
" respond recover adaptive_capacity enhanced_exposure weight\n",
"1 0 0 0 0 1 \n",
"2 0 0 0 0 1 \n",
"3 0 0 0 0 1 \n",
"4 0 0 0 0 1 \n",
"5 0 0 0 0 1 \n",
"6 1 1 1 0 1 \n",
"7 1 1 1 0 1 \n",
"8 1 1 1 0 1 \n",
"9 1 1 1 0 1 \n",
"10 1 1 1 0 1 \n",
"11 1 0 1 0 1 \n",
"12 0 0 1 0 1 \n",
"13 1 1 1 0 -1 \n",
"14 1 1 1 0 1 \n",
"15 0 0 0 1 1 \n",
"16 0 0 0 1 1 \n",
"17 0 0 0 1 1 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Load census data\n",
"census_indicator_data <- read.csv(\"../../2_pipeline/Spain/Logrono/1a_CensusData/2021/censusDataZ.csv\")\n",
"# Update the census indicator data ID to the common GUID\n",
"colnames(census_indicator_data)[colnames(census_indicator_data) %in% GUID_census_indicator_data] = GUID\n",
"# Change all the GUID column data type to integer, this helps to merge datasets later in the code\n",
"census_indicator_data[GUID] <- lapply(census_indicator_data[GUID], as.integer)\n",
"# Print head of census indicator data\n",
"head(census_indicator_data)\n",
"\n",
"# Load Coperncius data: tree cover density (TCD) and imperviousness density (IMP)\n",
"# Both these datasets already uses the GUID\n",
"# Both these datasets contain the census area geometry, so we extract from one of the datasets for use later in the code\n",
"tcd_indicator_data <- st_read(\"../../2_pipeline/Spain/1b_Copernicus/2021/census_areas_TCD.geojson\")\n",
"imd_indicator_data <- st_read(\"../../2_pipeline/Spain/1b_Copernicus/2021/census_areas_IMD.geojson\")\n",
"# Get the geospatial data from the TCD data (the IMD data also has same spatial data)\n",
"oa <- subset(tcd_indicator_data, select = c(GUID, 'geometry'))\n",
"# Remove the geospatial geometry from the TCS and IMD datasets\n",
"tcd_indicator_data <- st_drop_geometry(tcd_indicator_data)\n",
"imd_indicator_data <- st_drop_geometry(imd_indicator_data)\n",
"# Change all the GUID column data type to integer, this helps to merge datasets later in the code\n",
"imd_indicator_data[GUID] <- lapply(imd_indicator_data[GUID], as.integer)\n",
"tcd_indicator_data[GUID] <- lapply(tcd_indicator_data[GUID], as.integer)\n",
"oa[GUID] <- lapply(st_drop_geometry(oa[GUID]), as.integer)\n",
"\n",
"# Load vulnerability mapping information from the config file\n",
"## This mapping information is used to help guide the amalgamation of the data.\n",
"## Weighting can be changed in this file, depending on the scenario.\n",
"## Scenario 1 (best case scenario): Weighting values 1 or -1:\n",
"## where 1 means no change\n",
"## or -1 means all the indicator values are multiplied by -1, resulting in an inverse indicator.\n",
"## Scenario 2: Weighting values 0.5 or -0.5:\n",
"## For domains with just a single indicators or where there is a lack of information related to missing indicators. \n",
"## For these domains the weights are halved using a weight of 0.5, or -0.5 for an inverse indicator.\n",
"## Therefore the influence of these indicators are reduced in half.\n",
"## Other scenarios are supported by using other decimal numbers if decided for a particular dataset.\n",
"indicator_mapping <- read.csv(\"config/vulnerabilityIndicatorMappings.csv\", header=TRUE, sep=\",\", stringsAsFactors = FALSE, fileEncoding=\"UTF-8-BOM\")\n",
"\n",
"# Print up to 100 rows of vulnerabiltiy mapping config file\n",
"head(indicator_mapping,100)"
]
},
{
"cell_type": "markdown",
"id": "733d3bae-f91b-4a66-b073-e1bdf149fde3",
"metadata": {},
"source": [
"## Prepare Data"
]
},
{
"cell_type": "markdown",
"id": "5cd692d7-9901-4c30-b8a2-825e0fdfc143",
"metadata": {},
"source": [
"### Combine data into a single indicator dataset"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0c750b2c-34c9-4a77-88bb-8dd9c6c9bc5f",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 22\n",
"\n",
"\t | CCA | CPRO | CMUN | CDIS | CSEC | early_childhood_boy | early_childhood_girl | age_middle_to_oldest_old_male | age_middle_to_oldest_old_female | disability | ⋯ | unemployment | attending_university | no_higher_education | foreign_nationals | rented | primary_school_age | one_person_households | year_built | tree_cover_density | impervious |
\n",
"\t | <int> | <int> | <int> | <int> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
\n",
"\n",
"\n",
"\t1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.48180824 | -0.10021618 | 1.2753218 | ⋯ | -1.0021455 | 1.2303104 | 0.071438769 | 0.1446865 | -0.5073936 | 0.3093621 | 1.0319635 | -0.9481277 | -0.4793341 | -1.232806 |
\n",
"\t2 | 17 | 26 | 10 | 1 | 1 | -0.36188692 | -0.3284478 | 1.32081073 | 0.44848018 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -0.6060650 | 0.0000000 | 0.0000000 | 0.6403542 | -1.105968 |
\n",
"\t3 | 17 | 26 | 100 | 1 | 1 | 0.01083739 | -1.4002199 | 0.23798535 | -0.52201032 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -0.9083608 | 0.0000000 | 0.0000000 | 0.5002384 | -1.264703 |
\n",
"\t4 | 17 | 26 | 101 | 1 | 1 | -1.36078806 | -1.4002199 | -0.22155305 | 0.07955613 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -1.5705327 | 0.0000000 | 0.0000000 | -1.7574746 | -1.265740 |
\n",
"\t5 | 17 | 26 | 102 | 1 | 1 | 0.10257030 | -0.4581527 | 0.05129390 | 0.59299501 | 0.3880289 | ⋯ | 1.0262552 | 0.2231589 | 0.138756071 | -0.1091625 | -0.7479582 | -0.4402011 | 0.3954425 | 1.2637707 | 0.4972984 | -1.255886 |
\n",
"\t6 | 17 | 26 | 102 | 1 | 2 | 0.64987009 | 0.6302157 | -0.04065368 | 0.64469364 | 0.3880289 | ⋯ | 0.7141936 | -0.7839926 | 0.004121467 | 0.1446865 | -0.9688721 | 0.7134064 | 0.8394153 | 0.7211874 | 0.4394261 | -1.178694 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 22\n",
"\\begin{tabular}{r|lllllllllllllllllllll}\n",
" & CCA & CPRO & CMUN & CDIS & CSEC & early\\_childhood\\_boy & early\\_childhood\\_girl & age\\_middle\\_to\\_oldest\\_old\\_male & age\\_middle\\_to\\_oldest\\_old\\_female & disability & ⋯ & unemployment & attending\\_university & no\\_higher\\_education & foreign\\_nationals & rented & primary\\_school\\_age & one\\_person\\_households & year\\_built & tree\\_cover\\_density & impervious\\\\\n",
" & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & 17 & 26 & 1 & 1 & 1 & -0.19258164 & -0.1467916 & 0.48180824 & -0.10021618 & 1.2753218 & ⋯ & -1.0021455 & 1.2303104 & 0.071438769 & 0.1446865 & -0.5073936 & 0.3093621 & 1.0319635 & -0.9481277 & -0.4793341 & -1.232806\\\\\n",
"\t2 & 17 & 26 & 10 & 1 & 1 & -0.36188692 & -0.3284478 & 1.32081073 & 0.44848018 & -1.3865567 & ⋯ & -1.6262688 & -1.2875683 & 1.619736710 & -1.2514828 & 0.0000000 & -0.6060650 & 0.0000000 & 0.0000000 & 0.6403542 & -1.105968\\\\\n",
"\t3 & 17 & 26 & 100 & 1 & 1 & 0.01083739 & -1.4002199 & 0.23798535 & -0.52201032 & -1.3865567 & ⋯ & -1.6262688 & -1.2875683 & 1.619736710 & -1.2514828 & 0.0000000 & -0.9083608 & 0.0000000 & 0.0000000 & 0.5002384 & -1.264703\\\\\n",
"\t4 & 17 & 26 & 101 & 1 & 1 & -1.36078806 & -1.4002199 & -0.22155305 & 0.07955613 & -1.3865567 & ⋯ & -1.6262688 & -1.2875683 & 1.619736710 & -1.2514828 & 0.0000000 & -1.5705327 & 0.0000000 & 0.0000000 & -1.7574746 & -1.265740\\\\\n",
"\t5 & 17 & 26 & 102 & 1 & 1 & 0.10257030 & -0.4581527 & 0.05129390 & 0.59299501 & 0.3880289 & ⋯ & 1.0262552 & 0.2231589 & 0.138756071 & -0.1091625 & -0.7479582 & -0.4402011 & 0.3954425 & 1.2637707 & 0.4972984 & -1.255886\\\\\n",
"\t6 & 17 & 26 & 102 & 1 & 2 & 0.64987009 & 0.6302157 & -0.04065368 & 0.64469364 & 0.3880289 & ⋯ & 0.7141936 & -0.7839926 & 0.004121467 & 0.1446865 & -0.9688721 & 0.7134064 & 0.8394153 & 0.7211874 & 0.4394261 & -1.178694\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 22\n",
"\n",
"| | CCA <int> | CPRO <int> | CMUN <int> | CDIS <int> | CSEC <int> | early_childhood_boy <dbl> | early_childhood_girl <dbl> | age_middle_to_oldest_old_male <dbl> | age_middle_to_oldest_old_female <dbl> | disability <dbl> | ⋯ ⋯ | unemployment <dbl> | attending_university <dbl> | no_higher_education <dbl> | foreign_nationals <dbl> | rented <dbl> | primary_school_age <dbl> | one_person_households <dbl> | year_built <dbl> | tree_cover_density <dbl> | impervious <dbl> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.48180824 | -0.10021618 | 1.2753218 | ⋯ | -1.0021455 | 1.2303104 | 0.071438769 | 0.1446865 | -0.5073936 | 0.3093621 | 1.0319635 | -0.9481277 | -0.4793341 | -1.232806 |\n",
"| 2 | 17 | 26 | 10 | 1 | 1 | -0.36188692 | -0.3284478 | 1.32081073 | 0.44848018 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -0.6060650 | 0.0000000 | 0.0000000 | 0.6403542 | -1.105968 |\n",
"| 3 | 17 | 26 | 100 | 1 | 1 | 0.01083739 | -1.4002199 | 0.23798535 | -0.52201032 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -0.9083608 | 0.0000000 | 0.0000000 | 0.5002384 | -1.264703 |\n",
"| 4 | 17 | 26 | 101 | 1 | 1 | -1.36078806 | -1.4002199 | -0.22155305 | 0.07955613 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -1.5705327 | 0.0000000 | 0.0000000 | -1.7574746 | -1.265740 |\n",
"| 5 | 17 | 26 | 102 | 1 | 1 | 0.10257030 | -0.4581527 | 0.05129390 | 0.59299501 | 0.3880289 | ⋯ | 1.0262552 | 0.2231589 | 0.138756071 | -0.1091625 | -0.7479582 | -0.4402011 | 0.3954425 | 1.2637707 | 0.4972984 | -1.255886 |\n",
"| 6 | 17 | 26 | 102 | 1 | 2 | 0.64987009 | 0.6302157 | -0.04065368 | 0.64469364 | 0.3880289 | ⋯ | 0.7141936 | -0.7839926 | 0.004121467 | 0.1446865 | -0.9688721 | 0.7134064 | 0.8394153 | 0.7211874 | 0.4394261 | -1.178694 |\n",
"\n"
],
"text/plain": [
" CCA CPRO CMUN CDIS CSEC early_childhood_boy early_childhood_girl\n",
"1 17 26 1 1 1 -0.19258164 -0.1467916 \n",
"2 17 26 10 1 1 -0.36188692 -0.3284478 \n",
"3 17 26 100 1 1 0.01083739 -1.4002199 \n",
"4 17 26 101 1 1 -1.36078806 -1.4002199 \n",
"5 17 26 102 1 1 0.10257030 -0.4581527 \n",
"6 17 26 102 1 2 0.64987009 0.6302157 \n",
" age_middle_to_oldest_old_male age_middle_to_oldest_old_female disability ⋯\n",
"1 0.48180824 -0.10021618 1.2753218 ⋯\n",
"2 1.32081073 0.44848018 -1.3865567 ⋯\n",
"3 0.23798535 -0.52201032 -1.3865567 ⋯\n",
"4 -0.22155305 0.07955613 -1.3865567 ⋯\n",
"5 0.05129390 0.59299501 0.3880289 ⋯\n",
"6 -0.04065368 0.64469364 0.3880289 ⋯\n",
" unemployment attending_university no_higher_education foreign_nationals\n",
"1 -1.0021455 1.2303104 0.071438769 0.1446865 \n",
"2 -1.6262688 -1.2875683 1.619736710 -1.2514828 \n",
"3 -1.6262688 -1.2875683 1.619736710 -1.2514828 \n",
"4 -1.6262688 -1.2875683 1.619736710 -1.2514828 \n",
"5 1.0262552 0.2231589 0.138756071 -0.1091625 \n",
"6 0.7141936 -0.7839926 0.004121467 0.1446865 \n",
" rented primary_school_age one_person_households year_built\n",
"1 -0.5073936 0.3093621 1.0319635 -0.9481277\n",
"2 0.0000000 -0.6060650 0.0000000 0.0000000\n",
"3 0.0000000 -0.9083608 0.0000000 0.0000000\n",
"4 0.0000000 -1.5705327 0.0000000 0.0000000\n",
"5 -0.7479582 -0.4402011 0.3954425 1.2637707\n",
"6 -0.9688721 0.7134064 0.8394153 0.7211874\n",
" tree_cover_density impervious\n",
"1 -0.4793341 -1.232806 \n",
"2 0.6403542 -1.105968 \n",
"3 0.5002384 -1.264703 \n",
"4 -1.7574746 -1.265740 \n",
"5 0.4972984 -1.255886 \n",
"6 0.4394261 -1.178694 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# combine census data with copernicus TCD and IMD data (without geospatial data to avoid duplication)\n",
"indicator_data <- merge(census_indicator_data, tcd_indicator_data, by=GUID, all.x=TRUE)\n",
"indicator_data <- merge(indicator_data, imd_indicator_data, by=GUID, all.x=TRUE)\n",
"\n",
"# trim the columns\n",
"indicator_data <- subset(indicator_data, select=c(names(census_indicator_data), 'tree_cover_density', 'impervious'))\n",
"\n",
"# Set missing data fields to zero (0)\n",
"indicator_data[is.na(indicator_data)] <- 0\n",
"\n",
"# Print the first part of the indicators, which are now collated into one table\n",
"head(indicator_data)"
]
},
{
"cell_type": "markdown",
"id": "8c8b119a-3fe2-4c3c-8ecb-07a061bcf66c",
"metadata": {},
"source": [
"### Weight the indicator datas "
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "300e4b16-0c6d-4094-afca-88f6b747eb1a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 22\n",
"\n",
"\t | CCA | CPRO | CMUN | CDIS | CSEC | early_childhood_boy | early_childhood_girl | age_middle_to_oldest_old_male | age_middle_to_oldest_old_female | disability | ⋯ | unemployment | attending_university | no_higher_education | foreign_nationals | rented | primary_school_age | one_person_households | year_built | tree_cover_density | impervious |
\n",
"\t | <int> | <int> | <int> | <int> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
\n",
"\n",
"\n",
"\t1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.48180824 | -0.10021618 | 1.2753218 | ⋯ | -1.0021455 | 1.2303104 | 0.071438769 | 0.1446865 | -0.5073936 | 0.3093621 | 1.0319635 | -0.9481277 | -0.4793341 | -1.232806 |
\n",
"\t2 | 17 | 26 | 10 | 1 | 1 | -0.36188692 | -0.3284478 | 1.32081073 | 0.44848018 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -0.6060650 | 0.0000000 | 0.0000000 | 0.6403542 | -1.105968 |
\n",
"\t3 | 17 | 26 | 100 | 1 | 1 | 0.01083739 | -1.4002199 | 0.23798535 | -0.52201032 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -0.9083608 | 0.0000000 | 0.0000000 | 0.5002384 | -1.264703 |
\n",
"\t4 | 17 | 26 | 101 | 1 | 1 | -1.36078806 | -1.4002199 | -0.22155305 | 0.07955613 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -1.5705327 | 0.0000000 | 0.0000000 | -1.7574746 | -1.265740 |
\n",
"\t5 | 17 | 26 | 102 | 1 | 1 | 0.10257030 | -0.4581527 | 0.05129390 | 0.59299501 | 0.3880289 | ⋯ | 1.0262552 | 0.2231589 | 0.138756071 | -0.1091625 | -0.7479582 | -0.4402011 | 0.3954425 | 1.2637707 | 0.4972984 | -1.255886 |
\n",
"\t6 | 17 | 26 | 102 | 1 | 2 | 0.64987009 | 0.6302157 | -0.04065368 | 0.64469364 | 0.3880289 | ⋯ | 0.7141936 | -0.7839926 | 0.004121467 | 0.1446865 | -0.9688721 | 0.7134064 | 0.8394153 | 0.7211874 | 0.4394261 | -1.178694 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 22\n",
"\\begin{tabular}{r|lllllllllllllllllllll}\n",
" & CCA & CPRO & CMUN & CDIS & CSEC & early\\_childhood\\_boy & early\\_childhood\\_girl & age\\_middle\\_to\\_oldest\\_old\\_male & age\\_middle\\_to\\_oldest\\_old\\_female & disability & ⋯ & unemployment & attending\\_university & no\\_higher\\_education & foreign\\_nationals & rented & primary\\_school\\_age & one\\_person\\_households & year\\_built & tree\\_cover\\_density & impervious\\\\\n",
" & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & 17 & 26 & 1 & 1 & 1 & -0.19258164 & -0.1467916 & 0.48180824 & -0.10021618 & 1.2753218 & ⋯ & -1.0021455 & 1.2303104 & 0.071438769 & 0.1446865 & -0.5073936 & 0.3093621 & 1.0319635 & -0.9481277 & -0.4793341 & -1.232806\\\\\n",
"\t2 & 17 & 26 & 10 & 1 & 1 & -0.36188692 & -0.3284478 & 1.32081073 & 0.44848018 & -1.3865567 & ⋯ & -1.6262688 & -1.2875683 & 1.619736710 & -1.2514828 & 0.0000000 & -0.6060650 & 0.0000000 & 0.0000000 & 0.6403542 & -1.105968\\\\\n",
"\t3 & 17 & 26 & 100 & 1 & 1 & 0.01083739 & -1.4002199 & 0.23798535 & -0.52201032 & -1.3865567 & ⋯ & -1.6262688 & -1.2875683 & 1.619736710 & -1.2514828 & 0.0000000 & -0.9083608 & 0.0000000 & 0.0000000 & 0.5002384 & -1.264703\\\\\n",
"\t4 & 17 & 26 & 101 & 1 & 1 & -1.36078806 & -1.4002199 & -0.22155305 & 0.07955613 & -1.3865567 & ⋯ & -1.6262688 & -1.2875683 & 1.619736710 & -1.2514828 & 0.0000000 & -1.5705327 & 0.0000000 & 0.0000000 & -1.7574746 & -1.265740\\\\\n",
"\t5 & 17 & 26 & 102 & 1 & 1 & 0.10257030 & -0.4581527 & 0.05129390 & 0.59299501 & 0.3880289 & ⋯ & 1.0262552 & 0.2231589 & 0.138756071 & -0.1091625 & -0.7479582 & -0.4402011 & 0.3954425 & 1.2637707 & 0.4972984 & -1.255886\\\\\n",
"\t6 & 17 & 26 & 102 & 1 & 2 & 0.64987009 & 0.6302157 & -0.04065368 & 0.64469364 & 0.3880289 & ⋯ & 0.7141936 & -0.7839926 & 0.004121467 & 0.1446865 & -0.9688721 & 0.7134064 & 0.8394153 & 0.7211874 & 0.4394261 & -1.178694\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 22\n",
"\n",
"| | CCA <int> | CPRO <int> | CMUN <int> | CDIS <int> | CSEC <int> | early_childhood_boy <dbl> | early_childhood_girl <dbl> | age_middle_to_oldest_old_male <dbl> | age_middle_to_oldest_old_female <dbl> | disability <dbl> | ⋯ ⋯ | unemployment <dbl> | attending_university <dbl> | no_higher_education <dbl> | foreign_nationals <dbl> | rented <dbl> | primary_school_age <dbl> | one_person_households <dbl> | year_built <dbl> | tree_cover_density <dbl> | impervious <dbl> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.48180824 | -0.10021618 | 1.2753218 | ⋯ | -1.0021455 | 1.2303104 | 0.071438769 | 0.1446865 | -0.5073936 | 0.3093621 | 1.0319635 | -0.9481277 | -0.4793341 | -1.232806 |\n",
"| 2 | 17 | 26 | 10 | 1 | 1 | -0.36188692 | -0.3284478 | 1.32081073 | 0.44848018 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -0.6060650 | 0.0000000 | 0.0000000 | 0.6403542 | -1.105968 |\n",
"| 3 | 17 | 26 | 100 | 1 | 1 | 0.01083739 | -1.4002199 | 0.23798535 | -0.52201032 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -0.9083608 | 0.0000000 | 0.0000000 | 0.5002384 | -1.264703 |\n",
"| 4 | 17 | 26 | 101 | 1 | 1 | -1.36078806 | -1.4002199 | -0.22155305 | 0.07955613 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | -1.5705327 | 0.0000000 | 0.0000000 | -1.7574746 | -1.265740 |\n",
"| 5 | 17 | 26 | 102 | 1 | 1 | 0.10257030 | -0.4581527 | 0.05129390 | 0.59299501 | 0.3880289 | ⋯ | 1.0262552 | 0.2231589 | 0.138756071 | -0.1091625 | -0.7479582 | -0.4402011 | 0.3954425 | 1.2637707 | 0.4972984 | -1.255886 |\n",
"| 6 | 17 | 26 | 102 | 1 | 2 | 0.64987009 | 0.6302157 | -0.04065368 | 0.64469364 | 0.3880289 | ⋯ | 0.7141936 | -0.7839926 | 0.004121467 | 0.1446865 | -0.9688721 | 0.7134064 | 0.8394153 | 0.7211874 | 0.4394261 | -1.178694 |\n",
"\n"
],
"text/plain": [
" CCA CPRO CMUN CDIS CSEC early_childhood_boy early_childhood_girl\n",
"1 17 26 1 1 1 -0.19258164 -0.1467916 \n",
"2 17 26 10 1 1 -0.36188692 -0.3284478 \n",
"3 17 26 100 1 1 0.01083739 -1.4002199 \n",
"4 17 26 101 1 1 -1.36078806 -1.4002199 \n",
"5 17 26 102 1 1 0.10257030 -0.4581527 \n",
"6 17 26 102 1 2 0.64987009 0.6302157 \n",
" age_middle_to_oldest_old_male age_middle_to_oldest_old_female disability ⋯\n",
"1 0.48180824 -0.10021618 1.2753218 ⋯\n",
"2 1.32081073 0.44848018 -1.3865567 ⋯\n",
"3 0.23798535 -0.52201032 -1.3865567 ⋯\n",
"4 -0.22155305 0.07955613 -1.3865567 ⋯\n",
"5 0.05129390 0.59299501 0.3880289 ⋯\n",
"6 -0.04065368 0.64469364 0.3880289 ⋯\n",
" unemployment attending_university no_higher_education foreign_nationals\n",
"1 -1.0021455 1.2303104 0.071438769 0.1446865 \n",
"2 -1.6262688 -1.2875683 1.619736710 -1.2514828 \n",
"3 -1.6262688 -1.2875683 1.619736710 -1.2514828 \n",
"4 -1.6262688 -1.2875683 1.619736710 -1.2514828 \n",
"5 1.0262552 0.2231589 0.138756071 -0.1091625 \n",
"6 0.7141936 -0.7839926 0.004121467 0.1446865 \n",
" rented primary_school_age one_person_households year_built\n",
"1 -0.5073936 0.3093621 1.0319635 -0.9481277\n",
"2 0.0000000 -0.6060650 0.0000000 0.0000000\n",
"3 0.0000000 -0.9083608 0.0000000 0.0000000\n",
"4 0.0000000 -1.5705327 0.0000000 0.0000000\n",
"5 -0.7479582 -0.4402011 0.3954425 1.2637707\n",
"6 -0.9688721 0.7134064 0.8394153 0.7211874\n",
" tree_cover_density impervious\n",
"1 -0.4793341 -1.232806 \n",
"2 0.6403542 -1.105968 \n",
"3 0.5002384 -1.264703 \n",
"4 -1.7574746 -1.265740 \n",
"5 0.4972984 -1.255886 \n",
"6 0.4394261 -1.178694 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 22\n",
"\n",
"\t | CCA | CPRO | CMUN | CDIS | CSEC | early_childhood_boy | early_childhood_girl | age_middle_to_oldest_old_male | age_middle_to_oldest_old_female | disability | ⋯ | unemployment | attending_university | no_higher_education | foreign_nationals | rented | primary_school_age | one_person_households | year_built | tree_cover_density | impervious |
\n",
"\t | <int> | <int> | <int> | <int> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
\n",
"\n",
"\n",
"\t1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.48180824 | -0.10021618 | 1.2753218 | ⋯ | -1.0021455 | 1.2303104 | 0.071438769 | 0.1446865 | -0.5073936 | -0.3093621 | 1.0319635 | -0.9481277 | -0.4793341 | -1.232806 |
\n",
"\t2 | 17 | 26 | 10 | 1 | 1 | -0.36188692 | -0.3284478 | 1.32081073 | 0.44848018 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | 0.6060650 | 0.0000000 | 0.0000000 | 0.6403542 | -1.105968 |
\n",
"\t3 | 17 | 26 | 100 | 1 | 1 | 0.01083739 | -1.4002199 | 0.23798535 | -0.52201032 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | 0.9083608 | 0.0000000 | 0.0000000 | 0.5002384 | -1.264703 |
\n",
"\t4 | 17 | 26 | 101 | 1 | 1 | -1.36078806 | -1.4002199 | -0.22155305 | 0.07955613 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | 1.5705327 | 0.0000000 | 0.0000000 | -1.7574746 | -1.265740 |
\n",
"\t5 | 17 | 26 | 102 | 1 | 1 | 0.10257030 | -0.4581527 | 0.05129390 | 0.59299501 | 0.3880289 | ⋯ | 1.0262552 | 0.2231589 | 0.138756071 | -0.1091625 | -0.7479582 | 0.4402011 | 0.3954425 | 1.2637707 | 0.4972984 | -1.255886 |
\n",
"\t6 | 17 | 26 | 102 | 1 | 2 | 0.64987009 | 0.6302157 | -0.04065368 | 0.64469364 | 0.3880289 | ⋯ | 0.7141936 | -0.7839926 | 0.004121467 | 0.1446865 | -0.9688721 | -0.7134064 | 0.8394153 | 0.7211874 | 0.4394261 | -1.178694 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 22\n",
"\\begin{tabular}{r|lllllllllllllllllllll}\n",
" & CCA & CPRO & CMUN & CDIS & CSEC & early\\_childhood\\_boy & early\\_childhood\\_girl & age\\_middle\\_to\\_oldest\\_old\\_male & age\\_middle\\_to\\_oldest\\_old\\_female & disability & ⋯ & unemployment & attending\\_university & no\\_higher\\_education & foreign\\_nationals & rented & primary\\_school\\_age & one\\_person\\_households & year\\_built & tree\\_cover\\_density & impervious\\\\\n",
" & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & 17 & 26 & 1 & 1 & 1 & -0.19258164 & -0.1467916 & 0.48180824 & -0.10021618 & 1.2753218 & ⋯ & -1.0021455 & 1.2303104 & 0.071438769 & 0.1446865 & -0.5073936 & -0.3093621 & 1.0319635 & -0.9481277 & -0.4793341 & -1.232806\\\\\n",
"\t2 & 17 & 26 & 10 & 1 & 1 & -0.36188692 & -0.3284478 & 1.32081073 & 0.44848018 & -1.3865567 & ⋯ & -1.6262688 & -1.2875683 & 1.619736710 & -1.2514828 & 0.0000000 & 0.6060650 & 0.0000000 & 0.0000000 & 0.6403542 & -1.105968\\\\\n",
"\t3 & 17 & 26 & 100 & 1 & 1 & 0.01083739 & -1.4002199 & 0.23798535 & -0.52201032 & -1.3865567 & ⋯ & -1.6262688 & -1.2875683 & 1.619736710 & -1.2514828 & 0.0000000 & 0.9083608 & 0.0000000 & 0.0000000 & 0.5002384 & -1.264703\\\\\n",
"\t4 & 17 & 26 & 101 & 1 & 1 & -1.36078806 & -1.4002199 & -0.22155305 & 0.07955613 & -1.3865567 & ⋯ & -1.6262688 & -1.2875683 & 1.619736710 & -1.2514828 & 0.0000000 & 1.5705327 & 0.0000000 & 0.0000000 & -1.7574746 & -1.265740\\\\\n",
"\t5 & 17 & 26 & 102 & 1 & 1 & 0.10257030 & -0.4581527 & 0.05129390 & 0.59299501 & 0.3880289 & ⋯ & 1.0262552 & 0.2231589 & 0.138756071 & -0.1091625 & -0.7479582 & 0.4402011 & 0.3954425 & 1.2637707 & 0.4972984 & -1.255886\\\\\n",
"\t6 & 17 & 26 & 102 & 1 & 2 & 0.64987009 & 0.6302157 & -0.04065368 & 0.64469364 & 0.3880289 & ⋯ & 0.7141936 & -0.7839926 & 0.004121467 & 0.1446865 & -0.9688721 & -0.7134064 & 0.8394153 & 0.7211874 & 0.4394261 & -1.178694\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 22\n",
"\n",
"| | CCA <int> | CPRO <int> | CMUN <int> | CDIS <int> | CSEC <int> | early_childhood_boy <dbl> | early_childhood_girl <dbl> | age_middle_to_oldest_old_male <dbl> | age_middle_to_oldest_old_female <dbl> | disability <dbl> | ⋯ ⋯ | unemployment <dbl> | attending_university <dbl> | no_higher_education <dbl> | foreign_nationals <dbl> | rented <dbl> | primary_school_age <dbl> | one_person_households <dbl> | year_built <dbl> | tree_cover_density <dbl> | impervious <dbl> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.48180824 | -0.10021618 | 1.2753218 | ⋯ | -1.0021455 | 1.2303104 | 0.071438769 | 0.1446865 | -0.5073936 | -0.3093621 | 1.0319635 | -0.9481277 | -0.4793341 | -1.232806 |\n",
"| 2 | 17 | 26 | 10 | 1 | 1 | -0.36188692 | -0.3284478 | 1.32081073 | 0.44848018 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | 0.6060650 | 0.0000000 | 0.0000000 | 0.6403542 | -1.105968 |\n",
"| 3 | 17 | 26 | 100 | 1 | 1 | 0.01083739 | -1.4002199 | 0.23798535 | -0.52201032 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | 0.9083608 | 0.0000000 | 0.0000000 | 0.5002384 | -1.264703 |\n",
"| 4 | 17 | 26 | 101 | 1 | 1 | -1.36078806 | -1.4002199 | -0.22155305 | 0.07955613 | -1.3865567 | ⋯ | -1.6262688 | -1.2875683 | 1.619736710 | -1.2514828 | 0.0000000 | 1.5705327 | 0.0000000 | 0.0000000 | -1.7574746 | -1.265740 |\n",
"| 5 | 17 | 26 | 102 | 1 | 1 | 0.10257030 | -0.4581527 | 0.05129390 | 0.59299501 | 0.3880289 | ⋯ | 1.0262552 | 0.2231589 | 0.138756071 | -0.1091625 | -0.7479582 | 0.4402011 | 0.3954425 | 1.2637707 | 0.4972984 | -1.255886 |\n",
"| 6 | 17 | 26 | 102 | 1 | 2 | 0.64987009 | 0.6302157 | -0.04065368 | 0.64469364 | 0.3880289 | ⋯ | 0.7141936 | -0.7839926 | 0.004121467 | 0.1446865 | -0.9688721 | -0.7134064 | 0.8394153 | 0.7211874 | 0.4394261 | -1.178694 |\n",
"\n"
],
"text/plain": [
" CCA CPRO CMUN CDIS CSEC early_childhood_boy early_childhood_girl\n",
"1 17 26 1 1 1 -0.19258164 -0.1467916 \n",
"2 17 26 10 1 1 -0.36188692 -0.3284478 \n",
"3 17 26 100 1 1 0.01083739 -1.4002199 \n",
"4 17 26 101 1 1 -1.36078806 -1.4002199 \n",
"5 17 26 102 1 1 0.10257030 -0.4581527 \n",
"6 17 26 102 1 2 0.64987009 0.6302157 \n",
" age_middle_to_oldest_old_male age_middle_to_oldest_old_female disability ⋯\n",
"1 0.48180824 -0.10021618 1.2753218 ⋯\n",
"2 1.32081073 0.44848018 -1.3865567 ⋯\n",
"3 0.23798535 -0.52201032 -1.3865567 ⋯\n",
"4 -0.22155305 0.07955613 -1.3865567 ⋯\n",
"5 0.05129390 0.59299501 0.3880289 ⋯\n",
"6 -0.04065368 0.64469364 0.3880289 ⋯\n",
" unemployment attending_university no_higher_education foreign_nationals\n",
"1 -1.0021455 1.2303104 0.071438769 0.1446865 \n",
"2 -1.6262688 -1.2875683 1.619736710 -1.2514828 \n",
"3 -1.6262688 -1.2875683 1.619736710 -1.2514828 \n",
"4 -1.6262688 -1.2875683 1.619736710 -1.2514828 \n",
"5 1.0262552 0.2231589 0.138756071 -0.1091625 \n",
"6 0.7141936 -0.7839926 0.004121467 0.1446865 \n",
" rented primary_school_age one_person_households year_built\n",
"1 -0.5073936 -0.3093621 1.0319635 -0.9481277\n",
"2 0.0000000 0.6060650 0.0000000 0.0000000\n",
"3 0.0000000 0.9083608 0.0000000 0.0000000\n",
"4 0.0000000 1.5705327 0.0000000 0.0000000\n",
"5 -0.7479582 0.4402011 0.3954425 1.2637707\n",
"6 -0.9688721 -0.7134064 0.8394153 0.7211874\n",
" tree_cover_density impervious\n",
"1 -0.4793341 -1.232806 \n",
"2 0.6403542 -1.105968 \n",
"3 0.5002384 -1.264703 \n",
"4 -1.7574746 -1.265740 \n",
"5 0.4972984 -1.255886 \n",
"6 0.4394261 -1.178694 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Get the indicator weighting, previously loaded from the config file\n",
"indicator_weighting <- indicator_mapping %>% select('indicator', 'weight')\n",
"indicator_weighting <- indicator_weighting %>% spread(key = 'indicator', value = 'weight')\n",
"\n",
"# Get the column names and weights\n",
"names <- names(indicator_weighting)\n",
"weights <- indicator_weighting[, names]\n",
"\n",
"# Copy and rename the dataset\n",
"indicator_data_weighted <- indicator_data\n",
"head(indicator_data_weighted) \n",
"\n",
"# Multiply the indicators by the config file weighting\n",
"indicator_data_weighted[, names] <- sweep(indicator_data_weighted[, names], 2, unlist(weights[, names]), \"*\")\n",
"head(indicator_data_weighted)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4305b36c-46c6-4d56-a328-9cf9b0cf485b",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde5wleV3f/9fAzl7YC+yCu4siurBcBEEFMQZQERVQBKICCqI8TDD44+fP\nS0DEWxyMSmISCRqJMUYFFFFRBJQQQEQFEiHITXABQWAJCyywy87ed5j5/VHfds709vT05XSf\nnu7n8/GoR58+VXXOp+rUubyrvvWtfdWRAAAA6BaLLgAAAGCnOGXm9huq1y+qEAAAgAV5YPWA\npX+OjOHAoqoBAABYoAONXKSJHQAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEszPg8bwVYstY1V/Wx0ZwzMWXMt6bKbu1ebdzOO+bWben5zj4+5Uqy3vRpws6+jstua9Pe/1\nudMs4vXdqs8JYI85ZdEFwC7y5+Pvp6vbLrIQYG7ulPc2G3OH6uLqE9W7F1wLsA4CEszfwUUX\nwDG+rTpj3P7oIgvhpHTwOLdZ3cn2vtuKep9dPbr6veo75vSYwDYQkGD+/IjaWd6z6AI4qQlI\nG3Oyve/mXe9Z1cPn/JjANhGQYP6uWmXcadVdm85r+ET192t4vM+pvrDaX32s+sBxprt/deq4\n/Tejjts3NfH4cPWh48x3m+pLZ/5/Syv/EPzSMW3V5dW71lD7iZzStD5uU11Zvbc6tI75P7+p\nGcsnqvcfZ5r7VWeO2x9oWhfrsW/UeO6YdzN7l9dS73IXVRdUN1WXjnnXaiPzznN5N+ILqwub\naj3etr7cWpZzo9v5bA2rvbePZx7rcz2v40qfA7es7tb0+fO+6upl83xudcemz5cPnqCWtX4e\nrfa+W6nG2tj7Yy3m+TlxYdO62lf93+qy6rMz48+u7ls9oKNHpM5vOoet6vWt/Bm32ffqpaOe\nqrtUnzduX9qxy7ze74nNfP/Mc7uDbbd0UuKBBdcBJ7ubmt5Lr1xh3OdWz6uu7eh77kj1kep7\nj/N4j6jeumz6I01fJE9cYfpLZ6Z5aPV9TV/EsyeBr3Qi8q2ra2buf8oKj31K0/kXS9P80HFq\nXqvbVs9t+hKdXbYrq39X3WrZ9LN1P7W6c/WGZfP+TfVFKzzXZjppeHj1D8ue58+afnD9zcx9\nq3XSsN56q06v/nXTj+nlr//ftvLrP495N7q8GzG7jp5WfUX1jmXP/ebqHseZf73LuZntfLX3\n9mo2sz43+jp+eGa6hzb98H/fzH0Hq/9vTHtO9dJlj/2qjgbEWev9PFrtvbW8xvW+P45nqz4n\nqr6n6SjT8uX/WPWzHQ1XX77CNLPD7LrdzHv1EU3rfnae1zUFjt+Zue9Zy+Zby/fE0uOv5/Xe\nqu0OttOBjm6T/3jjwOLqgV3hlU17B3922f1f0LRnb+m9dn3TXrrDHf/9990d++VxTdPet9n7\nnrxsnktmxv1Add3M/6sFpJrC29L9r11h2R48M/6mpj2iG3V+x35xrjT8r6YfD0uW133pceb7\nYKuHq/UEpAd39Ifx8uHdra8Xu/XUe1b11ydYP0eqX+3mNjPvZpZ3I2bX0XO6+fa9NHy0Om9O\ny7nR7fx47+3VbGZ9buZ1nP0ceEr1qRXmO9x0hONlx3nc31v2mBv5PFrtvTVb45Na3/tjNVv1\nOfGT3Xz93bjsvjc2Bez7NgWOw8umPzSGW4/H3Mxr/A0dDTXLh7+rXj3z/08vm3ct3xOb/f6Z\n13YH2+1AR7fHf7xxYHH1wK72mo6+z/5HUxOMmvaML+05PFTda9y/v6l5xdI8v9b0xbuv+k8z\n93+yY5vJzn7Bv6/pi++FTT8+v2WFaWZ/BHzVzP2HmppVzJp93j9Z7wpY5g9nHuvSpi/Ms5v2\nOn5yZtzPHGfZ/m9TU7zHjeX6q479kv3uZc+30YD0zplxl1Vf3dRU5CuamkbOPudqAWm99f7m\nzLiD1ROa9rheXP3nZfN++xzn3czybsTsOrqxaY/y3ZqaGf34suf7+Tkt53Zu55tZn5t5HZdv\ne6+rvqnp/TQ73zubdtb8UFMHBbM7LWbXzTw+j1Z7313a6u+P72rttuJz4vSOHnn8bPXNM8t5\n94496vmEmfl+deb+F61Q67xe4082fXae2bR9Lw+Fq302rfQ9MY/Xex7bHSzCgY5uj/9448Di\n6oFd6x4d++Vw12Xjv39m3C+N+85ranK0NHzBzPR3XvZ495wZ97fLxn3tCvWsda/uv1w27gMz\n4x5znGVdi4s6ds/qo5eN/8GZcbPnaiz/MX3RzLhzmn5gLI3/z8secyMB6V4duy6X/0j7pmXj\nV/sRsp56P79j9wyv1AzsFTPj3zSneTe7vBsxu46u6Oj5GktePjP+fTP3b2Y5a3u2882sz80u\n3+x6PdjRIxZ18z33/2pm3IOXjXvIuH8en0erve/W+35ezVZ8Tlw0c/9nOvbIdk3nrD2x6ajO\n587cv1pA2sxrfO+OXedPWjbfty4bv9pn00rfE/N4veex3cEiHGhsiy4UC1vrq2du39R0TZWH\nzQz7V5j209V/GMNvNjXz+Zqmk3yXt50/Xpvtv+zotVvW6tdnbn/bzO17dfSHxpVNX3Yb9bVN\neyJr+hB6xbLxv9z0Q/mMpnW1kpc3ndex5Kqm8wyW3G4T9S358mX/L6/zlU0/ltZiPfV+XdOJ\nzUtW2vP8hzO379v0w2+z885zeTfij5v2ZM96+cztOzc1SarNLWdtz3a+mfW52eWb9bJlz/MX\ny8b/9sztv2x6Ty5ZatY4j8+j1WzV+3lej3tZ07mjNa3nN1U/1vR5fUZTU8nnNTVrW2sHHJt5\nje+7bLqXLvv/Za29t8WVvifm8XrPY7uDhdKLHWytO8zc3t/UxO54Lp65fb+m5gz3P8Hj7zvO\n/W89cWk387ympkz7m/bqndf0ZfnImWl+r7phA4+95Atnbn+qoz88lhxuan6xmktWuO9jM7fn\n8bl2+5nb1zTVOutwUzOSW3di66l3NhR+egzLzfYidYumbezdm5x3nsu7ER9c4b7ZXsT2Nf1Q\nu7rNLWdtz3a+mfW52eWbtbzHtk/O3D7YsT2lHWr6Ubv0o3d2u9zs59Fqtur9PK/Hvb76uTHU\nFKSXmkPf2HTu0Yuq32rt28w836uXL5vvUFPnP2vp4OJ43xObfb3ntd3BwtgQYWudOnP7xqbO\nB47nSNMX4V2b9uot9Yp0adMJ5VePxzter3ez1tMV9JLLm/b8fVvTZ8M/q36jqTnQkudv4HFn\nzTajWk933rNW2ju60cc6nuWv20pOFOSWrKfe2eY7x3vem5b9f9oc5p3n8m7ESutoea1L31eb\nWc7anu18M+tzs8s3a/kOiM+uMm75+CV3b/OfR6vZqvfzPB/355s61nlG9cUz95/adGTlQU3N\n5B7czcPwSrb6vbrSa7uSlb4n5vF6z2O7g4USkGBrXTFz+3BHr4Wxmh/q6JfTR6ov6+iX7gWt\n7Qvq8BrrW+7XO9rs6FHVi5tOKq/pxPI3bvBxl8yuj9s07YE8cpxpF2n2ejdnNzWHWf4lfuEW\nPO/sntZzmwLz8tdy+UnMS3uQNzPvopZ3yQUr3HfbZf8vNdnZzHIu2ertfDPrcx7LN0/z+Dza\nDX5nDHesHth0lOUbOnoezr2rf9PK5xMtt5nXeDb4bfa9utL3hNcbmt6UwNZ558zt0zv+eTWz\nZvdQ/q+O3SP5pW2tV3W0adPXVd/Y0R0pm92rXvX2mdund+xJvjV9Gb9mDK/q5ifub5fZC/ie\n0vTjZ9bFHdvUZV5mT8Y+rZufb1BTr39LLmv6EbPZeRe1vEtWasozW/+V1cfH7c0s55Kt3s43\nsz7nsXzztMjPo53mFk3bzQurH25aN0+bGX+8JmnLm6LN8736Jcvmu7hjO4tYL683JCDBVntt\n04+7JT+2bPzPNP3we0dHexuabTbxeTO3T61+atn88z4n5HBTc6Oa9iL+xLh9pHrBHB7/tR37\nhfv0ZeOf2vSD9euaTkpefuL+dvmrjm3isrzOH29j51us5XlnTyz/Nx17MvddOrbXqt+a47yL\nWN4lDxzDkguaLsy55FUztzeznEu2ejvfzPqcx/LN0yI/j3aCx1f/p+mo4DNXGD+7E2z282q2\nOd+dl80zz/fqj3XstrTZ9+pef72h0sQOttq1TV9+/3H8/6Smo0hvaDrX6LFNX2bndrTXrDd0\ntOvV+zf17Pa+putkfFFTb0nfMMY/vanL2JUuJrhRv9F0dfdbdPRk5L9s5RPp1+u6piD4X8b/\n39VU/1uqr+zoXtND1Y/O4fk26oqmnpaWfqR/R9Ne2b9ualrzT5t6rFraUzuvnU2fbWqi86fj\nMR/adCL1q5o6E3h0R6+j9d7q385p3kUs7+wPwo9W/7PpZPeDo9alJkZHqmfPTLuZ5Zy1ldv5\nZtbnvJZvXhb9ebRob2k6cnLLpiD9RU09193Q1NzucTPTzvZG96GZ2/dtuq7WR5p6h/v7Nv4a\nf7rpCNYTx/+Prv5307Z1n6amope18SO+e/31hn+01Pf8gQXXAbvVvupZTT98jqwwfKbpC3LJ\neR178byl4ZqmnrYevsK4Wv26I61jmpp625t9/O9ZZdqN+ImmvaArrY9Pd/PrI52o7l+fGf/i\ndcy72rhzO/Zin0vDZ6vv69gLAP/csnk3U29Ny3/lCs+9NLyxY3tInMe8m1nejZi9WOoPNB1d\nXP7ch7v50Zclm1lHS7ZyO9/s+tzo8q227T1hZtzHurnZCzUvXfR0Kz6PNvv+OJ6t+pz4tqad\nO8d7LQ43XVdpNuh+fkcvMDs7zHYBv9HX+LyOv219f1PTuKX7VrsO0krraCte741sd7AIBxrb\noiNIsPWONDWDeH7T3sZ7Vbdq2oP8lqYmPbPXjPh0017mpzTtaa56V9MVzZe6fn1S05fV/vEY\nVW/u6Mm/s10kz1rLNFUvabpOU01HwdbzI2Utfq5pb+vjmvbOnjPqemP1u928J6gT1f2ejl5r\n413rmHe1cVc07Y39vqbrgOxv+lH//KZ1fn5Hj8Ivv/7JZuqtaX2/pmn9PGA81/VNr/8rOrbJ\n2bzm3czybsTbO3pexdubjio+oWlnwblNTZCe1/F7ftzMOlqyldv5ZtfnRpdvtW3v4x3d7lbq\nWvoNHW029fGZ6eb9ebTZ98fxbNXnxB82HaV5bNN5khc0haErmoLKH3bzbtYvbXr9f7DpYqsH\nxzT/MDPNRl/jT4/HfnJTxz/7m7rWfn5Tc8B/MTPt8q7HT7SOtuL13sh2Bwu3lNoPLLgOYOf4\n445+NvzWYkuBLWM7Z7fZlyMysFEHcgQJOI6HN3V9XNMHxbNXmOaL2tgJum/ONS92k5N5O1jL\ndg470X9taonw+U1dj882aXt0R7vIP9zUqQOwTgISUFMzt59tajpyn5n7n9+xXXMv+c421uXr\ntze1ZWd3ONm2g/Vu57ATXdvR5m9PbzpP6W1NXXzPnkf3go7tLAJYB03sgAd18xNv35JuXNld\nHpTtnJPf6U3nzx2vc4cj1R81nesKrN2BNLEDZlzW9IV7TtNJsn/V1OPTodVmgpOM7Zzd4Prq\nW5ouEvvt1Rc2dYt/dXVJ9dKmTiWATXAECQAA2MsONHLRvC5uCAAAcNITkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYDhl0QVss3Oqu1fnV6dX11WXVZdU\n1y6wLgAAYAfYKwHp4dXTqwdUt1xh/E3Vq6ufq964jXUBAAA7yF4ISM+onlXdUP1Z9a7q8vH/\nadWF1ZdWD60eVn1v9RsLqRQAAFi4I2M4sOA6tsJF1aGmYHT+GqZ9c1Ozu9tvcV0AAMDOcaCR\ni3Z7Jw0PaWpS9z3VJ04w7T9U39V0btI3bnFdAADADrTbA9J5TecXfXiN07+nOlxdsGUVAQAA\nO9ZuD0iXVfure65x+vs0rZOPbllFAADAjrXbA9L/aDqn6Lere5xg2n9SvbA6WP3pFtcFAADs\nQLu9F7uPV0+pfr2p97pLOtqL3Y1NvdhdUN27ulNTz3aPrz65iGIBAIDF28292C25T/U7TcHn\nyArDZdV/q+66qAIBAICFOdDIBrv9CNKSv6m+c9y+oKnL79Or66uPNR1Rmqezqx9t7UfoTq0u\nrh455zoAAIB12CsBadbHx7Dkwuorm44ifWhOz3FGdeemLsbX4rbVg5uC0o1zqgEAANiA3d7E\n7szqF6v3Vu+ontkURE5t6pRhtqnd61rMRWLvP57/1AU8NwAA7HUH2kNN7H6zekx1qOmaSP+6\nukNT07rvqF5dfaSpl7uvqV7SdEQJAADYg3bzEaR7Nl349d83HZ3ZV31r07lHl1VPXDb9v2pa\nF/ffxhrLESQAAFikA41ctNuvg3S/6prqx5vO7TlS/VH1F+P285ZN/5+arpv05dtYIwAAsEPs\n9iZ2FzR1yHDTsvsvbeoYYbnDTT3anb3FdQEAADvQbg9IH23qdGGpS+8lX1R9YVMvc5+duf+M\nMf2nt6k+2IxbVl/d2ntLPJndWP1V05FfAIAts9sD0hur06pfbmpmd0P15Kamd5dWP9nUq11N\nPzL/XbW/esO2Vwrr98DqtWefvbsPeB45cqSrr766ph0blyy4HABgl9vtAen91a9V/0/1pJn7\nn1O9p3pu9fim6x/dvfr86k+bugOHne6UW9ziFr30pS9ddB1b6jOf+Uzf8i3fUrv/8woA2AH2\nwg+OH6g+UD2q6QjSS6r/0nS+0XnVj1Z3bWrC89vVUxZTJgAAsGh7ISAdqv7DGJb7uepZ1fnV\nlR17nhIAALDH7IWAdCKHmy4aCwAA7HG7/TpIAAAAayYgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAcMqiCwBYzZEjR5Zu/vPq4wssZTscqZ7X7l9OANixBCRgR7v66qurusc97vHDZ5xxxoKr\n2VrveMc7uummmz5SvXDRtQDAXiUgATva0hGkpz71qV100UULrmZrPfaxj+2Tn/zkvkXXAQB7\nmXOQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAAhlMWXQDb6l7VP110EdvkPdVfLLoI\nAABOLgLS3vLD55xzzvdceOGFi65jS11xxRVdfvnlf1Pdd9G1AABwchGQ9pZ997///Xv605++\n6Dq21Itf/OKe+9zn7lt0HQAAnHycgwQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\nwymLLmAB9lVnVqdX11XXLLYcAABgp9grR5AurJ5Zvbm6ujpYXT5uX1W9vvqR6pxFFQgAACze\nXjiC9JDqxdXZTUeL3tMUjm6oTmsKT/erHlA9tXpEU5ACAAD2mN0ekG5Tvai6snpC9Yrq0ArT\nnV49pvrF6iXV3dL0DgAA9pzd3sTu4dW51WOrl7VyOKq6vnpB9fjq86pv3JbqAACAHWW3B6Q7\nVjdV/3uN07+2OlxdvGUVAQAAO9ZuD0hXVfur89c4/e2b1slVW1YRAACwY+32gPTn4++zq1NP\nMO2Z1a9UR6rXbGVRAADAzrTbO2l4d/Xc6inV11Qvr97V1IvdjU292F1Q3bt6ZHW76lnVexdR\nLAAAsFi7PSBVfX9T194/Un3fKtO9r3pa9bztKAoAANh59kJAOlL9UvXL1RdX92g6J+n0pt7r\nPla9s7pkjs95alOPeCdq1rfkznN8bgAAYIP2QkBacqQpCL1zG57rgqYjVqevcfql6fZtTTkA\nAMBa7JWA9OCm846WwtH+puZ0313dqbqhelv1nOoP5/B8l1b3XMf096/e0BTiAACABdntvdhV\n/Uz1Z9VDxv/7qj+ufr6paduHqiurB1Yvrn5yATUCAAA7wG4PSHetfqL6n9WLxn3fNIY/arru\n0V2bLih7z6ajSD9dfeF2FwoAACzebg9IX9u0jP+8+r/jvq+urqmeWH1qZtq/G/ed0tGjTQAA\nwB6y2wPSudWh6qMz951SfaC6eoXp31l9trrt1pcGAADsNLs9IL2/KRB99cx9b63u0ModVNy7\numVHjzYBAAB7yG4PSH/aFHZe2NSTXU0dMVza1HnDbLfa96l+tzpYvWIbawQAAHaI3d7N97XV\nt1Z/0tST3fuqN1VvbrpO0XeM++7QdAHZm5ou8PrJRRQLAAAs1m4PSDUFortXP1w9pvrOmXEX\njeGqpqNHP1/97XYXCAAA7Ax7ISBVfbr6qTGcXX1BdVZTBw6fbLoWkou0AgDAHrdXAtKsgzlK\nBAAArGC3d9IAAACwZgISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwHDKogsA\nYHL99ddXfXt1rwWXsh1+r3rroosAgOUEJIAd4tprr+2iiy56xHnnnfeIRdeyld73vvd11VVX\nlYAEwA4kIAHsII9//OP7uq/7ukWXsaWe8Yxn9KY3vWnRZQDAipyDBAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAMN6AtJ3\nV7+6hsf7cPXwDVcEAACwIOsJSHeqvvIE09yqOr+624YrAgAAWJBT1jDN/x5/71CdO/P/cvuq\ni6rTqk9vvjQAAIDttZaA9IrqftVdqjOqL11l2quqF1Qv3HxpAAAA22stAelnxt8D1T9r9YAE\nAABw0lpLQFrya9Xvb1UhAAAAi7aegPTRMVxY3bs6u+m8o5W8ewwAAAAnjfUEpKpfqJ7aiXu/\ne2ZTkzwAAICTxnoC0ldUP1K9s3p59anq8HGmPV5PdwAAADvWegPSpU092t2wNeUAAAAsznou\nFHt69a6EIwAAYJdaT0B6S3X3jt8xw8liX3VWdbvqzAXXAgAA7CDrCUivawpJ/746bUuq2ToX\nNnUc8ebq6upgdfm4fVX1+qbzq85ZVIEAAMDireccpK+uPlg9qXpC9bbqk8eZ9o/GsBM8pHpx\nU7fk11TvaQpHNzQFvQubzqt6QFMPfY9oClIAAMAes56A9LVNAaLq1tVDV5n279sZAek21Yuq\nK5tC3SuqQytMd3r1mOoXq5dUd2sKUwAAwB6ynoD0y9VvVp9dw7RXbaycuXt4dW71Ta3e9fj1\n1Quqj1Wvqr6x6agTAACwh6wnIH1qDCeTO1Y3tfbrMr226dpOF29ZRQAAwI61noB0xzGcyC2r\nj1Tv31BF83VVtb86v/rEGqa/fVPHFTvlCBgAALCN1hOQ/nn102uc9pnVgXVXM6q2NOcAACAA\nSURBVH9/Pv4+u/qe6sZVpj2z+pXqSPWaLa4LAADYgdYTkP6y+rnjjPuc6iuqi6qfrf5sk3XN\ny7ur51ZPqb6mennTxW4vbwpLp1UXVPeuHtl0baRnVe9dRLEAAMBirScgvXYMq/nB6tuajtjs\nFN/f1LX3j1Tft8p076ueVj1vO4oCAAB2nvUEpLV4TlMI+YbqlXN+7I06Uv1SUy98X1zdo+mc\npNObeq/7WPXO6pI5Pue+6oGt/YK695zjcwMAABs074BU9aGmJms7JSAtOdIUhN65wrh7Vv+0\n+l9zeq6Lms5jOnWd8+2b0/MDAAAbcIs5P95tqi+rPjPnx91qP9x0hGlePtB09GjfGocHjPmO\nzLEGAABgndZzBOlhY1jJvuq86uur21av32Rd83LvMZzInZvqf8L4/x1jAAAA9pD1BKSvbOqE\nYTVXNR2NedeGK5qvb23tXZNXvWD8fWYCEgAA7DnrCUi/Vv3JccYdqa5ualp202aLmqN3VDc0\n1fer1V8cZ7r/t+m8oaeN/+fZYQMAAHCSWE9A+ugYTiZ/VH1JU7j7oabrHP1w9cll031zdW71\nx9taHQAAsKNspJOGC5uOtPx+9box/G7T9YZuM6/C5ug91YOqf9kUhP6u+q5FFgQAAOxM6+3m\n++FNYejsFcZ9R/WT1aOqv95kXfN2pPpvTU0Ef7l6flNIenL1DwusCwAA2EHWcwTp1tVvV9c0\nHS26V3XBGL6kemp1y+rFTRdh3Ykuqx5d/bOmC8b+bVOTO9cfAgAA1nUE6aFNTei+vHrLsnGf\naOoQ4S+rN1cPqV42jwK3yEurP6+eVf3H6lB6rQMAgD1vPUeQ7tR0BGZ5OJr1f6oPV3ffTFHb\n5Kqm3use2HTdpncvthwAAGDR1nME6bPVrdYw3S2qwxsrZyHeWD140UUAAACLt54jSO9qOg/p\nW1eZ5qHVHdo5F4oFAABYs/UcQXp19f6mjhp+rXpt03WR9lWfW3199aTqvdVr5lsmAADA1ltP\nQLqpemTTxVR/cAzL/V1TD3E3bb402JjLLrus6uKmUL+bnbfoAgAAdpv1Xgfp3dU9q2+q7l/d\nvukaQ5dVf1X9z6Ye4WBhPvGJT3Tuueee/bCHPezrF13LVrrkkkt6+9vfvugyAAB2lfUEpH1N\nYeimpm6yXzoz7tSmYHQydc7ALna7292u7/3e7110GVvq93//9wUkAIA5W2snDV/RdH2jzznO\n+B+q/qK68zyKAgAAWIS1BKQvaeqQ4b5N1wxayW2qB4zpzp9PaQAAANtrLQHpv1dnVN9RveQ4\n0/x49V3V51e/Mp/SAAAAtteJAtK9mo4c/Ur1eyeY9neq36q+pSkoAQAAnFROFJC+bPz97TU+\n3m9Ut2zq4Q4AAOCkcqKAdPvx9wNrfLz3j7933Fg5AAAAi3OigLR0wdfT1vh4Z46/126sHAAA\ngMU5UUD6h/H3K9f4eA8afz+0oWoAAAAW6EQB6XXVDdWPVvtPMO2tqx+rPlP92aYrAwAA2GYn\nCkhXVP+1ul/1B9VtjzPdxdWrqztV/7m6bl4FAgAAbJdT1jDNM6ovrx5VfX31J9Xbqqur86p/\nUj20qfe6V1cHtqJQAACArbaWgHRd9eDqZ6qnVN8+hlmXV8+ufqH67DwLBAAA2C5rCUh19Dyk\nn6keUN2lqce6y5u6AH99ghEAAHCSW2tAWnJN9aoxAAAA7Con6qQBAABgzxCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAAhlMWXQAAe8ull15a9eTqMQsuZTv8QfWMRRcBwNoJSABsq2uvvbb73e9+t/mqr/qq2yy6\nlq30+te/vje96U1fsug6AFgfAQmAbXfxxRf3zd/8zYsuY0tddtllvelNb1p0GQCsk3OQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAACGUxZdwDb62uqb\nqntW51enV9dVl1XvqF5WueQ5AADsYXshIH1B9QfV/Wbuu7G6oTqt+vLqEdVPVK+snlB9aptr\nBAAAdoDd3sRuf/WK6kurZ1f3r27dFIzOGX/Pqx5c/Ub10Orl7f71AgAArGC3H0F6SHWP6rur\nFxxnmiuqPx/D26pfqh5UvXYb6gMAAHaQ3X6k5B7VZ6vfXeP0/606Un3ZllUEAADsWLs9IH22\naRn3r3H6/dW+ppAEAADsMbs9IL2lKfA8ZY3TP2381ZsdAADsQbv9HKS/qt5Q/Yfqn1R/WL2r\nurypJ7vTqguqe1ePrx5WvWrMAwAA7DG7PSAdrh5Z/Xr1mDGsNu1vVd+fJnYAALAn7faAVPXp\n6luruzQdIbpHRy8Ue331seqd1Z9Wl87xeW9fnbHGaT93js8LAABs0F4ISEveN4btcOfq7zcw\n3755FwIAAKzdXglI51VfW51V/XV1yXGm29/U1fcfj2Gj3l/dsbX3nnef6g/StA8AABZqLwSk\nb266DtJZM/f9bvXk6uCyaW9ZPbH6YJsLSLW+5noXbvK5AACAOdjtAenMpiNC+6tfaTqy85XV\n46q7Vw+urlxYdQAAwI6y2wPSNzQdnXl801GjJb9XPb966Zjmxu0vDQAA2Gl2+4Vi79R0Xs/y\n5nJ/1HQU6YHVr213UQAAwM602wPSDU09w526wriXV09rOufoJ7ezKAAAYGfa7QHpb8ffJx1n\n/LObzlH6N9WPbEtFAADAjrXbz0H6i+rN1b+v7tV0pOgjy6b5vvH3F6qv377SAACAnWa3H0Gq\nenT19qamdCt1p324+pfVjzddKwkAANij9kJA+nB13+qrqveuMt2zqi+qfqp63daXBQAA7DS7\nvYndksPV69cw3furn93iWgAAgB1qLxxBAgAAWBMBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAAhlMWXQAA7EaXXHJJ1cOqIwsuZTu8rfqyRRcBMA8CEgBsgRtuuKG73e1uPelJT1p0KVvq\nrW99ay984QvPX3QdAPMiIAHAFrn1rW/dfe9730WXsaWuvPLKRZcAMFfOQQIAABgEJAAAgEFA\nAgAAGAQkAACAQScNAMCGfeITn6i6bfXqBZeyHa6uvr26cdGFAFtHQAIANuzyyy/vVre61Wnf\n+Z3f+fWLrmUrXXHFFb34xS+uunV1+YLLAbaQgAQAbMoZZ5zR4x73uEWXsaU++MEPLgUkYJdz\nDhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nMOvD1ZE9MHy2etyc1hm7yCmLLgAAgB3lc5/85Cd38cUXL7qOLfWc5zznFh/5yEduv+g62HkE\nJAAAjnGXu9yl+9znPosuY0udccYZiy6BHUoTOwAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIDhlEUXAAAA2+2aa66penC1f8GlbIfX\nVG9ZdBEnCwEJAIA951Of+lSf8zmf8/Bzzz334YuuZSt97GMf66qrrvqt6nsWXcvJQkACAGBP\nesxjHtOjH/3oRZexpX7hF36hV77ylYsu46TiHCQAAIBBQAIAABgEJAAAgEFAAgAAGHTSAACw\ndl9SXbHoIrbYvkUXAIskIAEAnMDHP/7xpZuvXmQdwNYTkAAATuDQoUNVveAFL+icc85ZcDVb\n61GPetSiS4CF2osBaV91ZnV6dV11zWLLAQBOFmeddVZnn332ossAttBe6aThwuqZ1Zurq6uD\n1eXj9lXV66sfqXb3LiEAAGBVe+EI0kOqF1dnNx0tek9TOLqhOq0pPN2vekD11OoRTUEKAADY\nY3Z7QLpN9aLqyuoJ1SuqQytMd3r1mOoXq5dUd0vTOwAA2HN2exO7h1fnVo+tXtbK4ajq+uoF\n1eOrz6u+cVuqAwAAdpR91ZFx+5nVgcWVsiV+rGm5Tl3j9Lesbqx+ovq3m3jei6q/bu1H6E5p\nagJ4anXTJp73RH79lFNO+RdnnHHGFj7F4l133XUdPny4M888c9GlbKmbbrqp66+/ftefLHz4\n8OGuueaabnWrW3XLW95y0eVsqYMHD3b66ae3f//+RZeypa6++ur279/faaedtuhSttS1117b\nvn372u2fuddff32HDh3qrLPOWnQpW2rpM/ess85q377dfZmggwcP7pnP3NNOO61TT13rz8ST\n03XXXdehQ4f+e/WkRdeywx2ofrp2fxO7q6r91fnVJ9Yw/e2bjqpdtcnn/VDTUau1rt99TTVu\nZTiq+qlDhw696ODBg1v8NAt3q+q8gwcPfmTRhWyxW1QXHTx48P2LLmQbXHzttde+v6M7dHar\nL7j++usvu/76629cdCFb7IIbb7zxuhtvvHGzn7U73TnVGQcPHvz4Cac8uZ1a3f7gwYMfWnQh\nW2xfdeerr7767xddyDa487XXXvsP1eFFF7LF7nDDDTd8+oYbbrh20YVsg3ctuoCTzZExHFhw\nHVvhHk3L9jud+CjSmdVLmz4M7rrFdQEAADvHgUYu2u1HkN5dPbd6SvU11cubEvTlTU3pTqsu\nqO5dPbK6XfWs6r2LKBYAAFi83XwEqaZD4j9QXdrRZV1peG/1xAXVCAAALM6B9sgRpJoW9Jeq\nX66+uKnZ3flNXXtfX32semd1yaIKBAAAdoa9EJCWHGkKQu9cdCEA/P/t3XmwJWV5gPFnZEYG\nZhxAhmVYB1xGi0WCQkDClsIgSkSURQOJQcsYo5gIpWCQeBOglNIQFrcgicqmEktiXFgEgUhE\nVhEI6wAKOEEYNlmG2Tj543277rk9fe70OffM7XvufX5VXT2nu0/3e7q/vtNvf/19LUnSxDTZ\n34MkSZIkSbWZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiS\nJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElK\nJkiSJEmSlKY3HYC0BpwFfLTpICRJkiaIXwC7Nx3EoDBB0mT0EHAPcETTgagv1geuAA4H7m84\nFvXHmcB9xM0MDb63An8LHNB0IOqbG4gbjTc0HYj64jPAs00HMUhMkDQZrQBeAG5uOhD1xdwc\n3wnc0WQg6ptngEfxHJ0sFgDL8XhOJi3gXjymk8UTTQcwaGyDJEmSJEnJBEmSJEmSkgmSJEmS\nJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJElpetMBSGvAshw0\nOSwn3uruMZ08PEcnF4/n5OMxnVw8lj1o5TDUcBxSv8wENms6CPXVtk0HoL7aGJjddBDqm+nA\nVk0Hob7aBpjWdBDqmw1y0OiGyLzIGiRNRi8Ci5oOQn31QNMBqK8eazoA9dUK4KGmg1BfPdh0\nAOqrp5oOYNDYBkmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGS\nJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElS\nmt50ANI42AlYH/gZsLLhWNS9+cA84Ang3mZDUZ/Mz+F24rhqcK0FbAVsBDwEPNpsOOqDDYFt\ngGeBXwNLG41G/fQmYDZwHR7X1WrlMNRwHFK/zQLOZriMz242HHVpJ+AWho9fC1gI7NtkUBqT\nacDRwBLieB7YbDgaow8Aixh5jv4K2KfBmNS7nYGrGHk8XwA+D8xsMC71x27ETeIWsEXDsUxU\nQwyXfRMkTUq7ErUNjxN3wEyQBss84tg9BXwU2AP4C+Bh4j/s7ZoLTT2aB1wKLAduxQRp0H2Q\nOIa3A38O/DHw98BzwIvA65sLTT14NVFj9AzwKeJ4HgJcQxznrzcXmvpgBnGuFtf8JkjVhjBB\n0iR3O3AlsBlxUWaCNFj+mThmf1qavlNO/864R6SxOgt4kLiLeTwmSINsGlFz9ATxOFa7jxHH\n9rPjHZTG5CziuB1Smr4OcayXAmuPd1DqmxOJm1M/xgRpNENkXmQnDZqsTgHeQvxh1+A5GPg/\n4Iel6bcCNxIX1i8f76A0JpcSCe4vmg5EY7YucCqRDJXbkF2b483GNSKN1TeBI4AflKYvAe4k\n/t6uM95BqS8WACcAp2M73tpMkDRZfRt4qekg1JM5RAPhov1R2U3EBdprxzMojdmPiMd3NPie\nB84ALqiYNz/H941bNOqHm4ALWbXh/obEjY2FwNPjHZTGbBrRFnsR8JmGYxko9mInaaIpqv47\n1f4V07cE7ljz4UiqaV3iIux5bLMyyLYHNgdeQ7QBnUZ0yKHB80FgL2B/ov2uajJBkjTRrJvj\nFzvMX5LjWeMQi6R6ZhI1SjsQj2r9ttlwNAYnAwflv28iOsi5oblw1KN5xKOw5wGXNxzLwPER\nOw2qy4C7S8NajUakflmR4043cIrpy8YhFkmrtzHRPfSBwPuBbzUbjsbos8DhwCeI/1d/TrRh\n0WA5i/j/9JimAxlE1iBpUC3GHnUmq6LR9wYd5r8yx0+OQyySRrcj0bB/DvA24CfNhqM+uD4H\ngH8hOlg5iaiFuLGpoNSVg4B3E13wL244loFkgqRBdUTTAWiNeYRow7Cgw/zi/Sp3jU84kjrY\nAbiaaLy/O1GTr8G0LrA+q7b9XEl0erQfsCcmSINgOvAl4h2QAEe2zXtdjg8m3jN4IXZoVckE\nSdJE0wJ+StyN3oJImAqvAPYBbmbV7oUljZ8tidqixcDeRLf8Glw3A9sCc4kXxrbbJMc+1jwY\nZhKdbEC0P6pyZo6/S+f2vlOabZAkTURfJJ59/zLxx578fAaRJJ3RUFySwjnAesTLnE2OBt9F\nxLuOvsrIDnB2BD5O1CRd1kBc6t5zxP+TVcOXc5kF+dnkaBStHIYajkPql+2Il1EWw9NEGb+h\nbdo7GotOdZ1GHLfHiAbgj+TnbxDdzmqwXMPw+fcQcSzvbps21Fhk6tZOxPF7hpF/a9uHixuL\nTr2YQdQItohHr64DbicSo5eAY5sLTX10OnGMt1jdglPUEJkX+YidJqMWI++K3FqxzMpxikW9\nO4ZoFPweorvSq4Dv4YXXoFrK8It/H8ih3fLxDUdjdM1q5pdfOKqJbTnwJ0RPhAcAWxMd4VxO\ndN9+S3OhqY8WEueu52cN1iBJkiRJmsqGyLzINkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmS\npGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGS\nJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElS\nMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmS\nJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSpop9gA0b3P7rgBZw\nToMxFLYgYjm/xrJF3F8tfa7zOz6dy761h+02oRxvN5o+vlvRfBmXpEnBBEnSVHEV8MamgxhA\njwGfAi5uOhCN6jAs45LUF9ObDkCSxtGzTQcwgJ4EPtd0EFqt53JsGZekMTJBkjSVVF08ziIe\nj5oOPEjUmHQyF9iSeJTqAeD3pfnrArvmen6T690I+FlpuXnAAuB+4OGK7WwOvAa4F1g0Sjyj\n2SDX8WxuZ1nFMq0crwO8HlgKLMxxofhNizKeTqblOl4B3EckVp3U2W67OcBrgbVY/TGqu2w3\n8fZiDnGMlwN3ACtGWa5TvN2Uk7oJ0ibE7+7kduCJ1ayjMIN4tG8jYv89QOffWac8wuqPX91z\nrJvzWpJW0cphqOE4JGlNagHz2z7PBL5EXJS32oYrSstBXAReAbzUttxLwDeB9dqWK9qhnAR8\nLf99R2neOcQFagv4QYdYL8j5b+jmB6ZZwLnEhWoR62PAUW3LFG2Bvg4cCTzVtuxi4J0Vv2m0\nNkjbAXe1rWM5cDpwItVtkOpsF2A2sY+XM/IY/ZRVj1E3y9aNtxvt++mTwAtt6/9dxTrrxNtN\nOXknq5bxKkeWtlceDlzN9wsfAR4tfXcRI8sZ1CuPUP/4jXaOQXfntSS1G2L4b4YJkqQpYXtG\n1ppfRFyMfZq4EH0V8CGiVmghcae6cBtxx/to4uL6DcCprNrhwDY57Urgl8A7gN1yXjmx+J/c\n/ialOGdmDLf09Cvh+7mdLwC7A/sB1xEJXZGAFInKjUTtyaHE/nkf8Hxuf1Yp7k4J0oxcx0rg\nWGI/7kG0h7mf6gSpznYBLsnlP0fUKiwAPkFcbC8kaqC6XbabeLtR7Jc7gP8lEo0diTLzIlHD\ns2kP8dYtJ7NZtYxXmQ28ujTsAywhktR5NX7r3hn75cCbgW2BvfJzi9ifhTrlEervj9HOMeju\nvJakdkOYIEmawt7I8EVb2dE5r7jDPRs4AfibimXvImoKig5vigRgJbB1adlyYnFUfj62tNzB\nOf1j9X7KCLswXEPTblPiQvMnpTiXEY89tfvXnLdnKe5OCdLbS/ML6zBcw1BOkOps9835+bsV\nv/OUnPeXPSzbTbzdKPbLCuIivt0JOe/jPcS7JspJu5cRyWELOKjmd4re/vYpTV8fOBn4w/xc\ntzx2sz9GO8e6Oa8lqWyIzIvsxU7SVHRAjlcA7ykNL895xYX6c8RF2leIi/q9iLvg+xG1HusQ\nSVS7W4j2EaO5iGiP8b7S9MOIO+AX1v41w/bP8Q9L0x8lambeUpp+PVGb0m5hjufW3ObuOb68\nNH0JcFmH79TZ7n45/l7F9/8rx3v3sGwv8XbjZqLNS7tivbvmuJt410Q5aXc8keh8hajtqaNo\nD/URom1R4Wkiebo+P9ctj93sj0LVOdbNeS1JHdlJg6SpaNscHzfKMu2PQx0KnMbw3eslOZ6Z\n88s3mx6pEcPzwLeAvyLufN9MJFsHEm1OFtdYR1nxu6q2X9UBQlXD/+U5XqvmNjfP8W8r5j3U\n4Tt1tjs/xw9ULFtcGG/Zw7K9xNuNhRXTiuNRlKn5Oa4T75ooJ4VdgH8E7mTVGqqTiHLf7iji\n8bgLgXcBhxC1TtcTtUEXE508FOqWx/k5rrM/ClXr7Pa8lqRK1iBJmopm5Hh/4mKzaigeN9oF\n+DZxAb8vcSd6FlFrdEWH9T9fM47iMbWiduDtud5v1Px+WfG7OvUkVvZSj9up2ubyinkrx7Dd\nYr1VvZ0V21p7DMt2E283qhLRYlvFTclu4oX+lxPy+xcSv/m9RNLf7vdETU/7UMS7nDg/9s3Y\nNicSrduA/2Rkey9YfXnsdn9A9TnWzXktSR2ZIEmaioq77nOJBvRVQ3Fh9l7ib+WxwNWMvNir\n+xhaJzcSF5WH5TYOJXo8u6TH9RVdVW84xri6UXQrvV7FvLHsn9F+yytz/EQPy66peAtV6y2m\nPZPjbuKF/pcTgC8SHTR8Mtdd9nni0bv24ebSMlcTbfO2Jdpg/QeRgByf8+uWx273RyfdnNeS\n1JEJkqSp6KYcH1Axb1OiTURxt79oY1F+/Gcb4A/6EMs5RA9lbyMemzqf+jVAZUWPZrtVzDub\nuCjut6It0fYV83avmFZXcTG+a8W8XXL8yx6WXVPxFnaumFZs664cdxNvoZ/l5HCiNurHwJk9\nfH8OkVy1u4foQnwFw73Y1S2PveyPKt2c15I0KnuxkzTVzAYeJ+4o79I2sEK8PwAAA5JJREFU\nfQbRk1aL4Yu14t04H2pbbgPixZR35Lyi17KijVJ719+FqvcHFetaQrS1aFF94V7XesS7hX7H\nyB6+3s3InttGi/Pvct4hpbg79WJXvKvnLkbWABSdCFT1Yldnu3OImoVFjOx6ejbwK+JxrFf1\nsGw38Xaj2C8vMbKsrE3UtLSAP+oh3kK/ysnWRGcKjwIb97iOK4namnJvfW/K2M7Nz3XLYzf7\nY7Qy1M15LUllQ9jNt6Qpbn+ii+4Xicbl5wO/ZvgllIXNiPYYS4kXc55HXMz9A3BMLv9z4o58\nLwkSDL/w88ax/SQgun9eRvS+d0nG1iLu8Be1Yf1MkCBqA1rEhfD3ieRxMfGYVovhO/rdbBfi\nHTdLicerziXa3CwikpAPl77fzbJ14+1GkXhdQCQx/028+PSenP6dMcRb6Ec5OS/XcRtxHMrD\nu2qsY1ficcElRG+AFxCdNCwlXgK7oG3ZOuUR6u+P0coQ1D+vJalsCLv5ljTFXUZc1H6BeOxm\nA+BHRDfAJ7Ytt4h4lO5rRHuIFvEo0T8R7+45i7hYXElc4F3D8KNU7V7IefdUzCvakvz7WH5Q\nuph4ke3Z+flhov3UTsTdfFYT5yM57/H8XMR9b+lz++/4a+D9wLVEJxY3ErUJV+ayRdubbrYL\n0cXzDsC/Ee1KNiG6vd6Z6JaaHpetG283luV3ryISiGuBjYjf+mHgz8YQb6Ef5eQ3GeeTRLJR\nHubUWMcNROynEGVqLlEjdRzx6F172ahTHqH+/hitDEH981qSRmUNkiQ161Liorz8PiWpneVE\nktacIaxBkqQJ4QPEY0GnEY8hSVUsJ5I0TuzNRZKacTrx+NCexCNep1Ysszcj22mM5lniETH1\nx0TZ93XKiSSpj0yQJKkZLyPa85xMXPS+WLHMqUTbmDruZmw94GmkibLv65QTSVKf2QZJkiRJ\n0lQ2hG2QJEmSJGkkEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJ\nyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJ\nkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRk\ngiRJkiRJaXrbv/cAjmsqEEmSJElqyB7FP6YBrQYDkSRJkqQJw0fsJEmSJCn9P2XWGpHgl4X6\nAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title “'early_childhood_boy' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZxsd13n/1dIQhIQElCTIIuyiBgUwiYICIjIpiyiOILg/EBHGWR+qCw6\nGR2D4g8VlRkURwHZlUUUkVVWUcAIyigQVhEEJIRAgLBkz/39cb7trdvpe28v1V2d6ufz8TiP\nqq7zrXM+VdWnqt51vud7jqj2BQAAQFdadAEAAAC7xVEz199WvXVRhQAAACzIHas7rPyxb0yn\nL6oaAACABTq9kYt0sQMAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQIL5+/bq\nLmO67kIrObgfqvaN6YIF17IRW6n7UPfdynLvP3PfS+a43N3qUI93p231+T3U/bdjO95Nz912\nWMT/+3a9JwB7mIAE8/cr1ZvHdP8F1wJsju2YzbpjU7C+yoLrADbpqEUXAEvoSwe5zmK9vrrF\nuH7ZIgthbrbzNbUdb9wVbRvbjnpPqf52XP/W6gNzWi6wgwQkmD9frHanL1b/tOgimKvtfE1t\nxxt3RdvGtqPeB815ecACCEgwf1+euX7eIdpdu7pOdXH1kaYP60M5urpRdc3q/OpDq9a14huq\nG4/r51bvro6sbl5drXrLIdZxanXCuP656j1rtDlhtFvxzuorh6l9PU6qrtfU9fdfq3M2cN+r\nVN9cXbl630Hq+frqpuP6ZdXfbKLGa4z1rDz/F25iGbW+ele7WnWD6qrV56sPt/7jWDZ733k9\n3vU6YazvgqYaL2j6v7/DTJu/rS4d1w/1mm5lO6j1b8cHs9XnbiOv2VqPterrxjI+U31s1X2O\nGfc5tmk7P9QxOOt979no61Gb2xbWY57vCVceyzqh6bX4ZJf/n/j26murH5m57Tuqk0f7f1lj\nuZvdLje6nWx0W9jKZ03N7/8OFmrlAMXTF1wHLItfbP92dbs15v9o9f6ZNvuaQtLLqm9co/01\nqv/T9IE8e59LqhdX11rV/sdn2vxd04fcuzvwwPCDHZz8azO3n9Xaxyk+ZqbNOU0fpltxn+pd\nHfjYVmr/rlVtZ+te+VX/8U3hcuX286tfXmM9Wxmk4WrVc5tep5V2n6v+W3XfDnxN5lXvittW\nr1u17n1NX1ie2xQq533fzT7ezTq+ev6q9Z1bPbrpi+Bs7cfM3O9Qr9tWtoM6/HZ8MFt97jbz\nmj181WO9UvXUVct4e/vfKx5YnT0z74vVg9dY7kbfew71fK6usTa+Laxlu94Tahqc44/H/Wcf\n/2XVXzUdZ7TilavazE7/a9VyN7tdbnY7Wc+2UBt/vbfr/w4W5fT2/38KSDBnP1y9dUw3WDVv\nNoDsqz7VgR/kn2zas7TiKu3/IFv5YP7cuFy57UPV18zc50dm5r23+t8d+EFXB/9icINVy77T\nGo/vb2bmP/WQz8Th/VwHPh+rp4tHrStm6z77MPf/6VXr2mxAOqJ6wyHW88KZ64cKSButt6Yv\nD6u/RK2ezqm+bY733crj3YwjmgZCONj6nrrq71mHet22sh3UobfjQz2WrTx3m33NZh/rmdUT\nDnLf1zXt1bhkjXmXrFruZt571vt6nNmht4VHrvHcHMx2vSec2PT+PHv/C1f9fWnTDzxVL+/y\nz+slY/rtmeVuZbvc7Haynm1hq5818/q/g0U6vZltaOXK6YurB/aE72r/9nZxda9x+5Wq35mZ\n95KZ+zx65vYvNx30W3XDpl8OV+b9zMx9Vn9hOK/656ZfMZ+1RpvVXwzeODNvdQD62g78kLv1\n+h76mk5dtazfaeqace3qOTO3f7Hpl83VdX+x6Rfj/1V9b/ULHfgF5l9XrW+zAekHZ+btq35/\n1HmNLh94DxWQNlrvt4xaVub/5bjt+OqeTWF69svJleZ036083s144KplPrvpf+Drm56r9T6/\nh3pNN7MdbMZWnrutvGazj+PzTe8NP9M0+t7qL71nNoW4+1W/taqm2e19q+89h3o9Pt+ht4WP\ntH7b9Z7wP2fmvbKpq1zVcR0Ywj48c5+TO/D5vMmqZW7lNZ7XdnKwbWGrr/e8/u9gkU5v///l\nf1w5fXH1wJ7wkvZvb3+yat7RTV3a9jWFpxPH7d9fPXZMqw/+ff7M8v505vbZD619TSM1re4G\nd6gvBg+amffJpl8uV/znmXlnHuKxrsezZ5a1+lino5v6r6/M/8k16t5XPWPV/Vb/gvl1M/M2\nG5D+bGbeh7t8t8N3zMw/1BeTjdb79JnbP9GBXWZq+kV29r73ntN9t/J4N+PPZ5b3sS5/bOw/\nH2J9631NN7MdbMZWnrutvGarH+uvzMy75ap5Zzd9yV8xu0f47TO3b/W953Cvx0a2hUPZrveE\n587MO22N9T68ekBT98uV1/lwAWkrr/G8tpODbQvz+KyZx/8dLNLpjf9L50GCnTPbXe3Cpl8M\nV6bvaerOUdMH3+3H9Vc2/dr2lOr/tv/8GnfpwA+bEzq4/68pdK3Xnzd1rajpF8rZ4y/uO3P9\neRtY5lq+Z+b6q1fNu7hpAIvjxvSs1rb6l8fXrPp7vV+yDmV2L9lru/xwwC/ewLI2Uu/dZ66/\nrMsf5P+OpgC74q5zuu88H+963Grm+qu6/Je71T8mbNZGt4PN2Mpzt5XXbLXnz1x/VwceYP9n\nTcfUrJg9QP+aM9fn8d5zKNu17c5rubN7sf5n03vQj1bXH7c9q+m98ozWP0T4Vl7jeW4na20L\n83i95/F/B7uCUexgZxzVNErbiv9nTAdzo3F5dNMvGv+1/d3M1nLEIeb938NWd6ALqxc0dbmo\n6VfCv2v6tfMe47bLRpvNOrIpAK34+BptLjrMMvZVH1x126dX/T2P97iTZ67/2xrz16p9LRup\n98gOPFD7w63tX9v/PK6038p9a36Pd71m1/fRNeavddtmbHQ72IzNPndbfc1m7evyz9ln23/s\nyOplf3bm+uz2Mo/3noPZrm13nsv9w+q/ND3fx1QPG1NNIeaVTV0o1xrpcy3z3C63up2stS1s\n9fWe1/8d7Ar+KWFnXHnV3x9q6lJ3MCt7cP6gqStHTR9Ar236knVJ0y98Nz/Mei+uvrChSifP\n7MCA9JimPWBXHbe9sfr3TSx3xbEd+EG7ma5aF3X5EDWvUdVWHNGBXVHWCm3r7Zq1kXqP6cDn\n52BhcfZX4GNmLjd733k+3vVYz/q+Oof1bHY72IitPHdbec1Wu6jL/19dOnP9/EPMm7XV955D\n2a5td57LPbupy9uTmt4Drzoz7zrVI5oC1KOanqvD2e7tcr3bycG2ha2+3vP6v4NdQUCCnfHV\npg+QlaD0rOo3DnOfa7X/F8uqn6+ePPP3/+nwH1qbPTv8e6u/bxqO9npNZ5uf7R7y3E0ud8VX\nOvD52K1dLPY1dRO52vh7rV9WT17jtq366piuMv4+WLegr5+5vnLeqK3cd6cf776m/4WVX5m3\na32b3Q42YivP3VZes+0wj/eeZXBW057+n2oKS7ervrPpvfCqTXuFfrdpsIVPrb2I/7DV7XJe\n28la24LXG1ZxDBLsnNmuGDc9aKsD28z+4viqVfNPbXs9c+b6vZtGhapplKiXzWH57565fqs1\n5j+ladSjN7R/kIZFmD3B4y3XmL/WUOjz8M6Z67dfY/412j/SVE3HL8zjvjv9eGfXt9b/wZ3n\nvL7ttJXnbiuv2bwt+r1nNzmyqdvx3zaFhgc0HYe00p3sqKbwtJbV3dHmtV3OezvxesMqAhLs\nnD+fuf5D7T/OqKZfE/+9qf/525u6cKzuRjF7fqR7d+DgCcfPr8z/8KL2H2T7oOpm4/pLm0+3\np9nRkO7TgV8Mbtp0LpTvGdO8j3vZiDfNXL9XB56z48YdeJ6meZodBOOeXf7L9RPb3+3my02v\nyzzuu9OPd/X6bjHz9022YX3baSvP3VZes3lb9HvPoh3TdIzRR5tG0/zaVfPP6cBjm1a6j63u\nYnbDVX/Pc7uc53ay119vWNPKMIunL7gOWHYnNH3RX9nmPlv9XlMf94/O3P6i0f5qTd0qVm7/\nYFN/999p+kCeHVL44qZzfnxH6xu6eL3DGz9jpt3KdJcNPOZD+ZqmX0VXlntu00HPT+/Ak+e+\nfgN1X2dVrbNfUDc7zPeNmr5ArMz/fFOXk98fNf/rzLzV3Ve2Uu9RHTgU7gVNX7Ce3DRy1uz9\nHrFquVu571Ye72bceNX6zmsaAv6Pmo6V+NjMvM0O873V7WC9tvLcbeU1O9zjmN3OVt/3UTPz\nVvZSbMd7z1a2hUPZrveEF8zM+2jT6/DYphHt3jQz71MdOMrbl1fNe9q4X23tNd6u7aS277Nm\no/93sGint///UkCCHXRKB35orJ5e1oEfto8+SLvXjXbvXHX76c33i+FtVy3/Y21u1KqDuWHT\n8U4Hez5eVV19A3VvR0Cq6RiES9eo791NJz6cvW32YOqtfik8oemX7IM9P19t+qKxlq3cd7OP\nd7MecZD1vbd6yMzfuz0g1daeu82+ZtvxRXXe7z1XtIB0tabuvQd7LfY1jVS4+mTZv7tGu1fO\nzN/Kdrkd28mK7fisEZC4ojm98X9pkAbYWe9rCkk/3HSOi29o+kD8WFN3itUnzPvf7f/wu3ZT\nd49XNZ109tLqB5tOYnjDpi4fr2kaIW7lHBMHGynpnHW0qWmghk+NOmv/CQPn5SNNB/8+oOkY\np+s0Pa6PNIXFt6xqf7i6L1x1n6+s876HW+4fNg2N++PVNzXtGXhL02AVX7dqnVdu/0hUW6m3\npl+Gv79pFKn7Nf2KfFzTKId/X72wabSttWzlvpt9vJv1B03nTXl40/EdX2j6pf051d1m2q0+\nb8xWXtP1ttmorTx3m33NDvc4/r7959dZPZjAv8/cd3Zkynm/92x1WziY7XpP+FLTe9I9x+UN\nmkLThU3B6G+a3qNWB4OfbfrCf5emrnpndeAxm1vZLrdjO1mxHZ81m/m/g11j9tcAgFmntv89\n4tIu36cettv/m1+a4XBsJ7B1p2cPEnAYxzb9qrjiLzrw7PI1/aK6nhH5VjurtU+kyRXTVv4P\nrt90TMN1m4Z7v3nTr9c17WGZHX74rzdfIlyh3SXbCewYAQlY7beavuzesjpx3HZh9T/WaHvd\n6hc3sY6XNw0AwXLYyv/Bq5q6G62ciPPvmg5c31fdv/1DDF9Q/fbWyoQrrA9lO4EdpYsdMOuv\nO/Bg3Is78NdJmLd7NR2rc7AD1z/XNNww7GW2E9hep6eLHXAQr2/6FfKy6sNNB52/b6EVsexe\n0zRAxw83nXPlG5pGeDur6ZfyFzUNawx7me0EdpA9SAAAwF52eiMXXWnBhQAAAOwaAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMBw1KILAPaMa1U3XXQR2+Cc6p8XXQQAMB8CErBT\nfvWoo4768eOOO27RdczNJZdc0vnnn//F6oRF1wIAzIeABOyUI+92t7v1+Mc/ftF1zM0ZZ5zR\naaed5n0UAJaIY5AAAAAGAQkAAGAQkAAAAIa92Hf+iOqq1bHV+dVXFlsOAACwW+yVPUgnV0+o\n3ll9ufpS09C8X67Oq95aPa66+qIKBAAAFm8v7EG6e/XS6mpNe4s+2BSOLqyOaQpPt6nuUD2m\nuk9TkIJFukP1DYsuYs6+adEFAAAczrIHpBOqF1VfqB5Svbq6ZI12x1YPrH6neln1Lel6x2K9\n+rjjjrv6UUctzyb6la/YpACA3W95vn2t7fuqa1T3rs44RLsLqudXn65eV92raa8TLMqRv/RL\nv9Ttbne7RdcxNw996EMXXQIAwGEt+zFI16su7tDhaNabqsuqG21bRQAAwK617AHpvOro6sR1\ntr9W03Ny3rZVBAAA7FrLHpDePC6fUl35MG2vWj2t2le9YTuLAgAAdqdlPwbpfdXvV4+s7ly9\nojqzaRS7i5pGsTupull13+rrqidVH1pEsQAAwGIte0CqelTT0N6Pqx5xiHYfrh5bPXcnigIA\nAHafvRCQ9lVPrX63+rbqlKZjko5tGr3u09V7qg/McZ1HV/+puso62x9ZXbP6tTnWsJYbVrfc\n5nUswmeqtyy6CAAArvj2QkBasa8pCL1nB9Z1reqXWv/ze0x17eo3m0bd2y6nXeUqV3n48ccf\nv42r2FkXXnhh55577peqqy+6FgAArviWPSD9TPXo6iXVE6qv7tB6P950stn1un31tuqI7Snn\nP1zpTne6U49//OO3eTU754wzzui0005b9sFGAADYIcv+xfKE6puqn63e2zQQAwAAwJqWPSCt\nuG3TsUYvr15X3WKx5QAAALvRXglI76/uWP1UUzh6V/Xapj1Ky97NEAAAWKe9FA4uq55evbj6\nuabjk+5RfaH6q+qdTedN+lz10aZzJQEAAHvIXtmDNOuL1S9X16n+W/UvTUNy/1b16urvq59e\nWHUAAMDC7KU9SKt9qfq9MV27+q7qZtV1m/YkAQAAe8xeDkiz/r160ZgAAIA9ai92sQMAAFjT\nsgekZ1bfWV246EIAAIDdb9m72H1yTAAAAIe17HuQAAAA1k1AAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACA4ahFF7DDrl7dpDqxOrY6vzqr+kD11QXWBQAA7AJ7JSB9X/X4\n6g7VkWvMv7h6ffVr1dt3sC4AAGAX2QsB6ReqJ1UXVm+szqzOGX8fU51cnVrdo7pn9V+qZy2k\nUgAAYKGWPSBdv3pi9abqQdVnDtP2JdXTqtc0db0DAAD2kGUfpOHuTV3qHtahw1HVR6uHNh2b\ndK9trgsAANiFlj0gXbPp+KKPr7P9B6vLqpO2rSIAAGDXWvaAdFZ1dHXTdba/ZdNz8qltqwgA\nANi1lj0gvaZpKO8XVKccpu1tqz+pvlS9apvrAgAAdqFlH6Th7OqR1TObRq/7QPtHsbuoaRS7\nk6qbVTdoGtnuwdVnF1EsAACwWMsekKqeU727ekzTUN4/uEabTzeFqCdXH9qxygAAgF1lLwSk\nqndVPzqun1Sd2DRa3QVN4eicOa/vpKZzKV15ne2PH5dHzLkOAABgA/ZKQJp19phqCjI3qq5b\nvb/peKV5+HL1zqYQth7Xrm5T7ZvT+gEAgE3YCwHp2Oq06q3V68Zt16ue0XSepBUXjtse39aD\n0leq0zfQ/vbVQ7a4TgAAYIv2QkB6WXXP6nFNAem46k3VDZu63v1jU4i6U/Wopr05D1hIpQAA\nwEIte0C6Y1M4+o3qt8dtP9IUjv579eszba/cNKDDg5q6u71zx6oEAAB2hWU/D9Ktmo7r+dX2\nH99zs6ZhvH9jVduLmka6q6nLGwAAsMcse0A6urqsKfysOL9p5Lq1BkQ4u7q09Q+uAAAALJFl\nD0j/tzqy+rGZ297c1MXummu0v99o/4HtLw0AANhtlj0gvbl6e/V/ql9pGoDh9dWfVn9SfeNo\n9/XVz1bPqz5SvXbHKwUAABZu2QdpuKxpr9CLql8a0783dbG7efWxpu53Kyd0/Wh136YhvwEA\ngD1m2QNSTQMy3K36nuqBTSPUfVPTsUYXjvnvqV7RtAfpgoVUCQAALNxeCEgr3jgmAACANS37\nMUgAAADrJiABAAAMAhIAAMAgIAEAAAx7aZAGgLk655xzqo6r/mHBpczbpU0n2P7gogsBgJ0m\nIAFs0rnnnttRRx11pYc97GG3WnQt8/TsZz+7Sy655IYJSADsQQISwBYcddRRPehBD1p0GXP1\nvOc9r0suuWTRZQDAQjgGCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgOGrRBeyg767uXd20OrE6tjq/Oqt6d/WX1TsWVh0A\nALBweyEgfWP1p9VtZm67qLqwOqa6dXWf6n9Ur60eUn1uh2sEAAB2gWXvYnd09erq1Oop1e2r\n45uC0dXH5TWru1bPqu5RvaLlf14AAIA1LPsepLtXp1Q/Vj3/IG0+X715TP9UPbW6S/WmHagP\nAADYRZZ9T8kp1aXVC9fZ/hnVvuoW21YRAACway17QLq06TEevc72R1dHNIUkAABgj1n2gPSP\nTYHnkets/9hxaTQ7AADYg5b9GKS/rd5W/VZ12+rPqjOrc5pGsjumOqm6WfXg6p7V68Z9AACA\nPWbZA9Jl1X2rZ1YPHNOh2j6nelS62AEAwJ607AGp6tzqAdU3N+0hOqX9J4q9oPp09Z7qVdUn\n5rjea1XHrbPtN8xxvQAAwCbthYC04sNj2gk3rP5lE/c7Yt6FAAAA67eXAtJq31U9rCnMfLX6\n++oPmvYobdVHquu1/tHzbln9abr2AQDAQi17QPqfY7pqdeHM7Y+vfmNV23tW/626d1NY2qqN\ndNc7eQ7rAwAAtmjZh/m+UnVkB3Zd+/bq16tPVf+punb1rdUvNB2X9JLqyjtbJgAAsBss+x6k\ntTywKTD9UPV347ZPVR+ovtDUze5u1asXUh0AALAwy74HaS3XqT7T/nA06yXj8pSdKwcAANgt\n9mJAOquDD4bw1THvsp0rBwAA2C32YkB6Q3VSdaM15n1PU/e7j+1kQQAAwO6wV45BenXTCWO/\nMDM9pbrPTJv7V3842v3VThcIAAAs3rIHpHOrs6vbV8esmnf9metHVC9q2qP24OorO1IdAACw\nqyx7QHrqmGoKSNeoTqiO78DuhfuqJ1avqP55JwsEAAB2j2UPSLMurD49prU8cQdrAQAAdqG9\nOEgDAADAmgQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYjlp0AQtwRHXV\n6tjq/Ooriy0HAADYLfbKHqSTqydU76y+XH2pOmdcP696a/W46uqLKhAAAFi8vbAH6e7VS6ur\nNe0t+mBTOLqwOqYpPN2mukP1mOo+TUEKAADYY5Y9IJ1Qvaj6QvWQ6tXVJWu0O7Z6YPU71cuq\nb0nXOwAA2HOWvYvd91XXqH64+svWDkdVF1TPrx5cXbu6145UBwAA7CrLHpCuV11cnbHO9m+q\nLqtutG0VAQAAu9ayB6TzqqOrE9fZ/lpNz8l521YRAACway17QHrzuHxKdeXDtL1q9bRqX/WG\n7SwKAADYnZZ9kIb3Vb9fPbK6c/WK6symUewuahrF7qTqZtV9q6+rnlR9aBHFAgAAi7XsAanq\nUU1Dez+uesQh2n24emz13J0oCgAA2H32QkDaVz21+t3q26pTmo5JOrZp9LpPV++pPjDHdV6l\nKYwdvc723zjHdQMAAJu0FwLSin1NQeg9a8y7afWd1d/NaV3HVz9QHbfO9l8zLo+Y0/oBAIBN\n2EsB6VB+tjq1uvWclndW9V0baH/76m1NIQ4AAFiQZQ9INxvT4dywumb1kPH3u8cEAADsIcse\nkB5Q/fIG2j9/XD4hAQkAAPacZQ9I764ubOq69gfVWw7S7qer6zeNYlfzHbABAIesubMAACAA\nSURBVAC4glj2gPTn1c2rp1c/03Seo5+tPruq3fdX16j+YkerAwAAdpUrbaDtjzXthTnc8j5e\nfd+mK5q/D1Z3qX6yKQi9v3roIgsCAAB2p40EpBtUtztMm6s0nWPoWzZd0fbYVz2j6RxIb6me\nV72uqVsdAABAtb4udmeMy+s0dUM74yDtjmgKHMdU5269tG1xVvVD1f2qp1XvrX4x5x8CAABa\nX0B6dXWb6pubTnx66iHantc0EtyfbL20bfXy6s3Vk6rfri7JqHUAALDnrScg/cq4PL26f4cO\nSFck5zWNXvfH1ROrTy62HAAAYNE2Mord06uXbFchC/T26q6LLgIAAFi8jQSkT43p5Opm1dU6\n+LE77xsTAADAFcZGz4P0m9VjOvzod09o6pIHAABwhbGRgPQd1eOq91SvqD5XXXaQtgcb6Q4A\nAGDX2mhA+kTTiHYXbk85AAAAi7ORE8UeW52ZcAQAACypjQSkf6xukpOqAgAAS2ojAemvm0LS\nk6tjtqUaAACABdrIMUh3qj5W/UT1kOqfqs8epO2fjwkAAOAKYyMB6bubhviuOr66xyHa/ksC\nEgAAcAWzkYD0u9Wzq0vX0fa8zZUDAACwOBsJSJ8bEwAAwFLaSEC63pgO58jqk9VHNlURAADA\ngmwkID28+uV1tn1CdfqGqwEAAFigjQSkv6l+7SDzvr76jur61ROrN26xLgAAgB23kYD0pjEd\nyqOrH6yesumKAAAAFmQjJ4pdj//dtDfpe+e8XAAAgG0374BU9W/VzbZhuQAAANtq3gHphOoW\n1RfnvFwAAIBtt5FjkO45prUcUV2zulv1tdVbt1gXAADAjttIQLpd0yAMh3Je9bPVmZuuCAAA\nYEE2EpCeXr3yIPP2VV+u/rW6eKtFAQAALMJGAtKnxgQAALCUNhKQVpxcPaTpxLAnjtvOqt5W\nvaD6wnxKAwAA2FkbDUjfV72wutoa836k+sXqftXfb7EuAACAHbeRYb6Pb9pD9JXqUdW3VyeN\n6ebVY6ojq5dWx863TAAAgO23kT1I92g6z9Gtq39cNe8z1burv6neWd29+st5FAgAALBTNrIH\n6QZNxxqtDkez/qH6eHWTrRQFAACwCBsJSJdWV1nnMi/bXDkAAACLs5GAdGbTcUgPOESbe1TX\nyYliAQCAK6CNHIP0+uojTQM1PL16U9N5kY6ovqG6W/UT1YeqN8y3TAAAgO23kYB0cXXf6i+q\nR49ptfdX9x9tAQAArlA2eh6k91U3re5d3b66VrWvafCGv63+qrpkngUCAADslI0EpCOawtDF\n1cvHtOLKTcHI4AwAAMAV1noHafiOpvMbff1B5v9M9ZbqhvMoCgAAYBHWE5Bu3jQgw62qOx6k\nzQnVHUa7E+dTGgAAwM5aT0D6o+q46keqlx2kzWnVQ6vrVk+bT2kAAAA763AB6dub9hw9rXrx\nYdr+cfWc6geaghIAAMAVyuEC0i3G5QvWubxnVUc2jXAHAABwhXK4gHStcfmv61zeR8bl9TZX\nDgAAwOIcLiCtnPD1mHUu76rj8qubKwcAAGBxDheQPjoub7fO5d1lXP7bpqoBAABYoMMFpL+u\nLqx+vjr6MG2Pr/579cXqjVuuDAAAYIcdLiB9vvrD6jbVn1Zfe5B2N6peX92g+r3q/HkVCAAA\nsFOOWkebX6huXd2vulv1yuqfqi9X16xuW92jafS611enb0ehAAAA2209Aen86q7Vr1SPrP7T\nmGadUz2l+s3q0nkWCAAAsFPWE5Bq/3FIv1LdofrmphHrzmkaAvytCUYAAMAV3HoD0oqvVK8b\nEwAAwFI53CANAAAAe4aABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwHLXoAnbQVau7VDetTqyOrc6vzqreXf1NddGiigMAABZvLwSkK1e/Vv10ddwh\n2n2h+vXqN6t9O1AXAACwy+yFgPSi6geqd1Uvrc6szqkurI6pTq5OrX6kKSBdv3rEQioFAAAW\natkD0m2bwtHvVI/t4HuGXlb9avX06qeq36veuxMFAgAAu8eyD9LwnU2h6AkdvtvcJdXPj+t3\n2caaAACAXWrZA9Ix1aXVl9fZ/vPVZU0DOgAAAHvMsgekDzd1I7znOtv/QNNz8oFtqwgAANi1\nlj0gvbb6ZPWC6pHVSQdpd92m7nXPrj4y7gcAAOwxyz5Iw1er+1cvr542ps81jWJ3UVMXvJOq\nE0b7D1X3axrhDgAA2GOWPSBV/WN14+pHm7randL+E8VeUH2q+qvqFdVLqosXUyYAALBoeyEg\n1bQn6Rlj2gnXbeqmd+w626+0O2J7ygEAANZjrwSkqqs1jWj31Znbjqi+v2mv0tlNe5E+N4d1\nnV09ubryOtvfsHp8hx+KHAAA2EZ7ISBdv3pOdaemAPLm6qFNIeY11ffOtP1i0zFIb9niOi8a\n61yv2zcFJAAAYIH2QkB6cXWb6v3VZ5rCyPOqFzaFoz+szqhOrX66elFTqLpgEcUCAACLs+wB\n6U5N4ejJ7d9Dc8vq76rjq6dWj55p/+Hq96q7Va/cuTIBAIDdYNnPg3TKuPyNmdve1RR+bt20\nJ2nWi8flTba5LgAAYBda9oB0tabjjr6w6vYPj8tPrLr9y9teEQAAsGste0D6WNNIdbdedfs/\nNZ089iurbl9p97FtrQoAANiVlj0gvaFpZLo/ajoWaeU8Qy+q7t+BAekG1dOahgHf6ih2AADA\nFdCyB6TPV6dVN63eUZ18kHY/VP1LdbPqV6tzdqQ6AABgV1n2Ueyqfr/6QPXj1WcP0uZL1duq\nP6j+eIfqAgAAdpm9EJCq3jSmg/mrMQEAAHvYsnexAwAAWDcBCQAAYBCQAAAABgEJAABg2CuD\nNLCkzjrrrKqrVOcuuJR5u8qiCwAA2IsEJK7QzjvvvI4++ugjTjvttGssupZ5esITnrDoEgAA\n9iQBiSu8I488sjvf+c6LLgMAgCXgGCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAwSh2ABzg\noosuqnpxdfGCS5m3p1anL7oIAHY3AQmAA+zbt6+HP/zhX/Ot3/qtiy5lbl784hf3D//wD9+4\n6DoA2P0EJAAu50Y3ulG3utWtFl3G3LzxjW9cdAkAXEE4BgkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGA4\natEF7KDvru5d3bQ6sTq2Or86q3p39ZfVOxZWHQAAsHB7ISB9Y/Wn1W1mbruourA6prp1dZ/q\nf1SvrR5SfW6HawQAAHaBZe9id3T16urU6inV7avjm4LR1cflNau7Vs+q7lG9ouV/XgAAgDUs\n+x6ku1enVD9WPf8gbT5fvXlM/1Q9tbpL9aYdqA8AANhFln1PySnVpdUL19n+GdW+6hbbVhEA\nALBrLXtAurTpMR69zvZHV0c0hSQAAGCPWfaA9I9NgeeR62z/2HFpNDsAANiDlv0YpL+t3lb9\nVnXb6s+qM6tzmkayO6Y6qbpZ9eDqntXrxn0AAIA9ZtkD0mXVfatnVg8c06HaPqd6VLrYAQDA\nnrTsAanq3OoB1Tc37SE6pf0nir2g+nT1nupV1SfmuN6bt/7n91vmuF4AAGCT9kJAWvHhMe2E\nGzYd/3TkDq0PAACYg2UfpGHFNasfrP5zdZNDtDu6qZvd/be4vo80hc8j1jndYYvrAwAA5mAv\nBKTvr/6temlT+Hl/9SfV1dZoe2RTiDp1p4oDAAB2j2XvYnfVppO/Hl09rWnPzu2qBzXtSbpr\n9YWFVQcAAOwqyx6Qvrc6uWkI7xfO3P7i6nnVy0ebi3a+NAAAYLdZ9i52N2gasvsvVt3+5017\nke5YPX2niwIAAHanZQ9IFzYNgnDlNea9onps0zFHv7iTRQEAALvTsgek947LnzjI/Kc0HaP0\nq9XjdqQiAABg11r2Y5DeUr2zenL17U17ij65qs0jxuVvVnfbudIAAIDdZtn3IFX9UPXPTV3p\nTl5j/mXVT1anVd+9g3UBAAC7zF4ISB+vblV9V/WhQ7R7UvWt1S9Vf739ZQEAALvNsnexW3FZ\n9dZ1tPtI9cRtrgUAANil9sIeJAAAgHURkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYDhq0QXssKtXN6lOrI6tzq/Oqj5QfXWBdQEAALvAXglI31c9vrpDdeQa8y+uXl/9\nWvX2HawLAADYRfZCQPqF6knVhdUbqzOrc8bfx1QnV6dW96juWf2X6lkLqRQAAFioZQ9I16+e\nWL2pelD1mcO0fUn1tOo1TV3vAACAPWTZB2m4e1OXuod16HBU9dHqoU3HJt1rm+sCAAB2oWUP\nSNdsOr7o4+ts/8HqsuqkbasIAADYtZY9IJ1VHV3ddJ3tb9n0nHxq2yoCAAB2rWUPSK9pGsr7\nBdUph2l72+pPqi9Vr9rmugAAgF1o2QdpOLt6ZPXMptHrPtD+UewuahrF7qTqZtUNmka2e3D1\n2UUUCwAALNayB6Sq51Tvrh7TNJT3D67R5tNNIerJ1Yd2rDIAAGBX2QsBqepd1Y+O6ydVJzaN\nVndBUzg6Z87rO7761aY9VOthUAgAANgF9kpAmnX2mNZyRHXD6twxbdZRTSPoXXmd7a82s34A\nAGBB9mJAOpRjqg9XT6hO38JyPlc9ZAPtb1/dtdq3hXUCAABbtOyj2AEAAKybgAQAADAsexe7\nnxzTejkGCAAA9rBlD0gnVbdqOueR43sAAIBDWvYudn/UNBrdHzUN63246YTFlAkAAOwGyx6Q\nPlX9VPVfqx9YcC0AAMAut+wBqeql1XOb9iJdd8G1AAAAu9iyH4O04ieaus99+TDtLq7+e/XW\nba8IAADYdfZKQLqk+uw62l1a/fo21wIAAOxSe6GLHQAAwLoISAAAAIOABAAAMAhIAAAAw14Z\npAGAPezss8+uukv1ksVWMncfrX5+0UUALBMBCYCl95nPfKbrXOc633Tqqad+06JrmZfPfOYz\nveMd7/hKAhLAXAlIAOwJ3/Zt39bP/dzPLbqMuTnjjDN6xzvesegyAJaOY5AAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAIajFl0A\nAMCS+/Hqvy66iG3woerBiy4C5k1AAgDYXne88Y1vfKs73/nOi65jbj7xiU/02te+9iaLrgO2\ng4AEALDNbnCDG/SgBz1o0WXMzRlnnNFrX/vaRZcB28IxSAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISP9/e3ceLUdZ5nH8m+QGsoFE2QTBEB2CQJBxJIKMBmZwAdTBhTgoM6CO\no8JxOcNxVBS5URA5LuOCOoOAIougjhB1VBQXBsaZiFEkKhLD5hJ2xFxCyHrnj+ctb6dvdd/q\nu729fD/n9Kl0V92up6uqO/Wrt+otSZIkSUoMSJIkSZKUGJAkSZIkKTEgSZIkSVJiQJIkSZKk\nxIAkSZIkSYkBSZIkSZISA5IkSZIkJQYkSZIkSUoMSJIkSZKUGJAkSZIkKTEgSZIkSVJiQJIk\nSZKkxIAkSZIkSYkBSZIkSZKSvtwFSJIk1fgeMC93EeNsl9wFSKrOgCRJktrJs4477rjZ8+fP\nz13HuLnoootylyCpBQYkSZLUVhYtWsShhx6au4xxc+WVV+YuQVILvAZJkiRJkhIDkiRJkiQl\nBiRJkiRJSgxIkiRJkpQYkCRJkiQpsRc7SZI60N133w0wC3gocynjbVbuAtTTfgw8NXcRE+Aj\nwNm5i+gUBiRJkjrQ2rVrmT59+pTTTz99bu5axtPSpUtzl6Detv8JJ5wwe999981dx7hZtmwZ\nN910UzeGvgljQJIkqUNNmzaNxYsX5y5D6ioLFy7sqvtwLV++PHcJHacXA9IUYDYwA1gPrMtb\njiRJkqR20SudNOwOLAVuBB4BBoD707/XAjcAbwd2zFWgJEmSpPx6oQXp+cBXgB2I1qJbiXC0\nAdieCE+HAIcDpwEvJoKUJEmSpB7T7QFpJ+AK4GHgROCbwOaS6WYAxwMfBa4CFuCpd5IkSVLP\n6fZT7I4F5gJLgK9RHo4AHgMuAV4F7AkcPSnVSZIkSWorU4DB9O+lQH++UibEu4jPtV3F6acB\nG4F3Ax8cw3z3AZZTvYWujzgFcDtg0xjmO5IL+vr6Xjdz5swJnMXk2rBhA5s2bWLOnDm5SxlX\nAwMDzJw5k76+7mnkXbduHVOnTsXtr/25/XUGt7/O0Y3b38aNG9mwYcMgcZZON9lp5syZU7pp\n+1u/fj2bN2++EPin3LW0uX7gTOj+U+zWAtOBXYH7Kkz/RKJVbe0Y53sX0WpVdflOIWqcyHAE\ncMbmzZuvGBgYmODZTKo+YO+BgYHbcxcyzuavX7/+LmBL7kLG0eO3bt3KwMBAN93U0u2vc7j9\ndQ63v87QB+wNuP11hl/mLqDTDKZHf+Y6JsL+xGe7jJFbkWYDy4CtQPfcHUySJEnSSPpJuajb\nW5B+BXwaOAVYDHydSND3E6fSbQ/sBhwEvATYGTgHWJWjWEmSJEn5dXMLEsTpa28BfsfQZy17\nrAJOylSjJEmSpHz66ZEWJIgP+gngk8CBxGl3uxJdez8G3AOsBH6dq0BJkiRJ7aEXAlJhkAhC\nK3MXIkmSJKk9dft9kCRJkiSpMgOSJEmSJCUGJEmSJElKDEiSJEmSlBiQJEmSJCkxIEmSJElS\nYkCSJEmSpMSAJEmSJEmJAUmSJEmSEgOSJEmSJCUGJEmSJElKDEiSJEmSlBiQJEmSJCkxIEmS\nJElSYkCSJEmSpMSAJEmSJElJX+4CpDE6Cfh87iIkSVLXOBm4OHcRyseApE73ILAeeE7uQjSi\nM9NwadYqVMX1wLuAG3IXoqb+GjgHf/86gb9/neN6Yt9CPcyApE43CGwFVuQuRCMq/sNxXbW/\nrcBqXFftbnf8/esU/v51jq3EvoV6mNcgSZIkSVJiQJIkSZKkxIAkSZIkSYkBSZIkSZISA5Ik\nSZIkJQYkSZIkSUoMSJIkSZKUGJAkSZIkKTEgSZIkSVLSl7sAaYw2pofan+upc/i96gyup87h\neuocfq8EwGB69GeuQxqNqcC83EWokrnpofY3D88w6AT+/nUOf/86xzz8/etV/aRcZAuSOt1W\n4M7cRaiSP+YuQJXdmbsAVeLvX+fw969z3Jm7AOVnQpYkSZKkxIAkSZIkSYkBSZIkSZISA5Ik\nSZIkJQYkSZIkSUoMSJIkSZKUGJAkSZIkKTEgSZIkSVJiQJIkSZKkxIAkSZIkSYkBSZIkSZIS\nA5IkSZIkJQYkSZIkSUoMSJIkSZKU9OUuQBpnBwM7AdcDWzLXoiGzgAXANOA3wJ/ylqMR+D1q\nf9OAvYFdgN8C9+QtR03MBp4CTAHuANbmLUcV9AGHA48ByzPXokwG06M/cx3SWMwGzmdoe56T\ntxwlU4EPAOsYWjcbiXU1I2NdKuf3qDO8DljD0HoaBH4OHJGxJg23K3ARsImh9bQV+DLw5Ix1\naWT/Sqyv1bkL0aTqZ+i7akBSx1sErALuB+7EHbt2cjaxPr4GvBA4ErgwvXZxxro0nN+jzvB6\nYt2sBP4B+BvgdOAR4mj30/KVphrbATcT6+rTwNHAMQwdgLgVmJ6tOjXzFOBRDEi9qB8DkrrI\nSuB7wB7At3HHrl3sTOyw3cjw6x2vJo6k7j/ZRakhv0ftbwrRcvQg8IS6cW8h1tk5k12USr2c\nWB/nlYy7Ko07clIrUlXXArcBv8CA1Gv6SbnIThrUDc4GnkfsOKh9HANsD1xAhKFa5xM7ey+b\n7KLUkN+j9jcLOJcIQw/WjbshDfeY1IrUyE+BJcCHSsatSMPHTV45quhk4G+BtwKb85ainOyk\nQd3gitwFqNTBabiiZNxP6qZRfn6P2t864OMNxs1Lw99MTikawR3pUW8K0XK0GfjZpFakkewC\nfAS4EvgGcFbecpSTAUnSRHlSGpa1SNxP7CDsNXnlSF1rFnAmEaA+l7kWDfckohfPPYnrxhYD\npwF35SxKw3ycCLBvzV2I8jMgSZoos9LwsZJxg+n12ZNXjtSVZgCXAQuBVwN/yFuOSrwC+Lf0\n7zXAPwKX5ytHJY4GTiB6iLw3cy1qAwYkdYJrGN4l6gF4f5Z2V5y/3eh3po/o8lvS6OwKLAOe\nCbwW+GLectTA14l7Ve1O9OZ5KfBK4Hj8DWwHs4HPAD8kumWXDEjqCA8QF/ursxQXkc8F7qsb\nN4s48v3QpFYkdY+DiB3vHYkOUb6btxw1cVt6QHT5/V5gKdHZxodzFaU/O4s42PC83IWofRiQ\n1AlenbsAjcqtabig5t+F/dLwlskrR+oaC4mj3Q8DhwG/zlqNykwndrrvYfjZDpcRAem5GJBy\nO4AIqtcAz0qPwlzi4OyJxHWz10x6dcrGgCRpolybhscQN4qt9eI09D8cqTV7Ea1FDxAX+9+d\ntxw18AngjcQpdfW/c7uloafX5bcPcZ++o9OjzCXAcvz/qud4o1h1E29w2V5+BGwAjqh57WBg\nLdGq5EGa9uT3qH1dA6wnWmbVvo4kvkMr2ba3zl2Ie1YNEteNKa9pxO9c2eNm4tTIOcDMXAVq\nUvWTcpE7J+p0BwAX1jwvTt36PkM3J/0Aw1swNDlOBv6bWB8rgE3AImCA6DHIG/G1B79HneFg\n4PnEAYaLG0xzN/DSSatIjfwAeD9wBrAa+CXxe3cAcQ3mV2m8DjV5tgCPNBi3ldhZbjReXcyA\npE5XdBdduKlkGnu7y2cVcCBwCnAIcY+Jc4geg8ruj6Q8/B51jutGGL9hUqpQFe8F/pO499F8\nore0y4mbkC7LWJeq+Qm2HPU0T7GTJEmS1Mv6SbloauZCJEmSJKltGJAkSZIkKTEgSZIkSVJi\nQJIkSZKkxIAkSZIkSYkBSZIkSZISA5IkSZIkJQYkSZIkSUoMSJIkSZKUGJAkSZIkKTEgSZIk\nSVJiQJIkSZKkxIAkSZIkSYkBSZIkSZISA5IkSZIkJQYkSZIkSUoMSJIkSZKUGJAkSZIkKTEg\nSZIkSVJiQJIkSZKkxIAkSZIkSYkBSZIkSZISA5IkSZIkJQYkSZIkSUoMSJIkSZKUGJAkSZIk\nKTEgSZIkSVJiQJIkSZKkxIAkSZIkSYkBSZIkSZISA5IkSZIkJQYkSZIkSUoMSJJ60RHAEzLO\nfz9gELggYw2FJxG1XFph2qLuf697XuVzvCdN+8JRzDeH+nonSv0yrTJtsbz3Jv+2LEldx4Ak\nqRf9APir3EV0oPuAdwFX5S6ki4xlmS7BbVmSxl1f7gIkKZOB3AV0oIeAD+YuosuMZZk+koZu\ny5I0jgxIknpV2U7lbOI0pj7gDuLofiM7A3sRpzzdDqytGz8LWJTe5670vrsA19dN90RgAXAb\n8LuS+ewJ/AWwCljTpJ5m5qb3GEjz2VgyzWAazgSeBmwAVqdhofhMa1I9jUxJ77ED8BsiBDRS\nZb61dgT2BaYx8jqqOm0r9bZqv1THKuBhYFdgf+AXwAMMX6ZVtxuoHpB2Iz5fIyuBB0f+KABM\nJ07t24VYTrcDmxtMW2W7g5HXU9Vl0sr3V5KaGkyP/sx1SNJkGQTm1TyfAXyK2CkfrHlcWzcd\nxM7htcDWmum2AhcDj6uZrrhe5P3AZ9O/f1E37gJix3UQ+HqDWi9L45/eygdMZgNfIHZgi1rv\nA15TM01xLdDngBOBP9ZM+wBwXMlnanYN0gHALTXvsQn4GHAG5dcgVZkvwBxiGW9i23X0fYav\no1amrVpvqxbWve/69J5vSs+PTdM1WqYjbTcQy6h+Wy5zItsuh/rHiyp+plOBe+r+dg3bbk9Q\nbbuD6uup2TKB1r6/ktRIP0O/HwYkST3nQLZtQf8SsZP2HiKwPAV4A9EqtJo4gl24mTgS/mZi\n5/rpwLkM73Bgn/Ta94CfAS8BDk3j6nd0/yfNf7e6OmekGn46qk8Jy9J8PgwcBhwF/C8R6IoA\nUgSVG4nWk+OJ5XMSsC7Nf3Zd3Y0C0vT0HluA04jleDhxncxtlAekKvMF+Faa/oNEa8MC4O3E\nTvhqogWq1WlbqbcV2xEtGFuAdxLL6SjgV+nz1r5v/TJtZbuZw/Btucwc4Kl1jyOI0PYA0Yo5\nksVp3t8Bng3MB56bng8Sy61QZbuD6uup2TKB1r6/ktRIPwYkSQLiAvdiZ67em9O44sj3HODd\nwCkl094CPMpQ5zdFANgCPLlu2vod3dek56fVTffS9Ppbqn2UbRzCUAtNj7n39gAABy5JREFU\nrd2JHdDv1tW5kTgdqtZ/pHHPqau7UUA6tm58YSZDLQ/1AanKfJ+dnn+l5HOencadPIppW6m3\nFS9Jf3te3ev7EJ+3WUBqZbsZralECBwE/q7i3xS9+h1R9/pOwFnAs9LzqttdK+up2TJp5fsr\nSc30k3KRvdhJ6nVHp+Fm4O/rHtulccWO+iPEzttniJ365xJHx48iWj1mEiGq1k+J6yaa+RJx\nncZJda8vIY6MX1750wx5QRp+o+71e4iWmefVvb6caE2ptToNd644z8PS8Dt1r68HrmnwN1Xm\ne1QafrXk77+WhotHMe1o6q2iCAvfrnv9DuK0ryqqbDej9U4i6HyGaO2porg+7lTi2qLCw0R4\nWp6eV93uWllPhbJl0sr3V5IqsZMGSb1ufhq+o8k0u9f8+3jgowwd1V6fhjPS+PoDT7+vUMM6\n4IvAPxNHxFcQYetFxLVJD1R4j3rF5yqbf1kHCGUdRGxKw2kV57lnGv6hZNxvG/xNlfnOS8Pb\nS6Ytdpj3GsW0o6m3ij3SsOyz/Zyhnfpmqmw3o3EIsJQ43a++xfL9xPZd6zXE6XGXAy8DXkG0\nOi0nWoOuIjp5KFTd7ualYZX1VCh7z1a/v5I0IluQJPW66Wn4AiKUlD2K05AOAa4gduCPJI5Q\nzyZajRq1DKyrWEdx2lTRinRset/PV/z7esXnatTDWL2to5xP2Tw3lYzbMob5Fu9b1gtaMa/t\nxzBtK/VWUbRclL3voxXfo+p204o5RNDZApxAhPtaa4mWntpHsRw3Ed+DI4ltdU8iaN0MXM22\n13XByNtdK+upULZMWvn+SlIltiBJ6nVF68zOwGMjTHsCcWDpNOCHdeOqnobWyI3EzuYS4G3E\nkfx7iQvZR6PoqvoJY6yrFUV3048rGTeW5dPsszw+DR8cxbQTVW/R/fYOJeNytmacR3TQ8FZi\nW6v3ofRo5ocMbfsLGGp1eidwJtW3u1bWUzOtfH8lqRJbkCT1up+kYdlpT7sT10oUB5OKay/q\nTwvaB/jLcajlAqInu2OI0+supXoLUL2i57tDS8adz/AOBMZDcS3RgSXjDit5raoVabioZNwh\nafizUUw7UfUW28f+da9PYfi1X5PllUTr5DeBT4zi73ckwlWtW4kuxDcz1Itd1e2ulfXUTCvf\nX0mqxIAkqdctI45CH8/QjhnEqTvnEddZPCO9Vuz41u78zSXu+XJLzfPRupQ4Cv4pomviz4/h\nva4mLqA/lW17/no58HomZqexaO06hW1bBpYAB43hfa8m7pN0Ktt2ST2HuPZkE0NdrLcy7UTV\nW5xu+Sa27ar8Xxi67mkyPZnoGfBeRt+j21XA/xEHA2odRGxLxU2Mq253raynZlr5/kpSZXbz\nLanXvYC4NuQxYkfwUuBOhm5OWdiDuE5jA3ED10uIU4XeS+z8DgI/Io7UF504lO3kNeuuubgx\n7I1j+0hAdBO+kTjl61uptkHiyH8R5JrV+bY07hV1dTe7Uez56bV7iZ3X64kd2A+l14sj/a3M\nF6Lr7A3EaVdfIMLjGuIapjfV/X0r01att1VfTn9/e6rhOqLFqrhn1kjdfLe63TRzSfq7m9P7\n1j9eVuE9FgF/Iq5b+g6xnX6XWM73EafbFapsd1B9PTVbJlD9+ytJzfRjN9+S9GfXEDeY/DBx\nhHsu8F9E98Bn1Ey3hjiV7rPEdRKDxClG7yOO0H+S2IncQuz4XcdQy1KtR9O4W0vGFa0aF43l\nAyVXETeyPT89/x1x/dTBxNF7Rqjz92nc/el5Ufequue1n+ONwGuBG4jOCm4Enknc5PM6Yvm0\nOl+Irp8XAhcS15vsRnSP/gyiu2pGOW3Velv1KuI+PCuJ7elaImQUHQ0UnRPUL9PRbjfN3JX+\n7iEibNQ/dqzwHj8mlunZxLazM9GJwzuIU+9qa6qy3UH19dRsmUD1768kVWYLkiS1j28TO+X1\n91NS55le8trFxP+5C0rGSZLy6ccWJElqO68jThf6KEM9oanz7Ei0rqwgriUr7EdcK3MbQy1G\nkqQ2Y88ukpTfx4jTip5DnOJ1bsk0i6neAcQAcYqYxsdolv2nifsErSKua9qBuIcQwBuIo5SS\npDZkQJKk/KYS15ecRYSjsvu5nEtcG1PFrynvulqjM5pl/z4iGC0B9iYC0SeJDhZWT0CNkqRx\n5DVIkiRJknpZP16DJEmSJEnbMiBJkiRJUmJAkiRJkqTEgCRJkiRJiQFJkiRJkhIDkiRJkiQl\nBiRJkiRJSgxIkiRJkpQYkCRJkiQpMSBJkiRJUmJAkiRJkqTEgCRJkiRJiQFJkiRJkhIDkiRJ\nkiQlBiRJkiRJSgxIkiRJkpQYkCRJkiQpMSBJkiRJUmJAkiRJkqTEgCRJkiRJiQFJkiRJkhID\nkiRJkiQlBiRJkiRJSvpq/n048I5chUiSJElSJocX/5gCDGYsRJIkSZLahqfYSZIkSVLy/yOo\nw9DvDpzfAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title “'early_childhood_girl' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZwtd13n/1cgG4GwBEyCAoZFxCCLhqgDDCKDgLK4gCIIzjCDg8M444Jm\nXH8GhQHjjI6O/H6KiowggqIOoJIBiYKg47DIsMQQhsWwBAgETAgh283vj/reuX2b7r7dfbr7\nnHv6+Xw86tGnT1Wd+nR9z6mu96mqbx1T3RgAAADdZN4FAAAALIpjVzx+U/XGeRUCAAAwJw+s\nHnDwlxvHcO68qgEAAJijcxu5yCl2AAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhI7KQHj+GfzreMo9q7qhvH8GNbnPftK+b9qR2cd5aa+ELzauNlZX1+oZ38zJ7c7mzbl3Xd\nHzSP7eYsy7SdhxWOnXcBLJW/GD8vr247z0JYSneo7lZ9orpwzrXsd9pi/7hLtu1sj+0ERy0B\nid1w5bwLOIo9trrZePzReRaygH6pelz1suq75lzLfqct9o8r13nMxo62bflu1Gs7wVFLQGI3\n+Ce6fe+ZdwEL6hbVI+ddBJW22G8EpO052rblO12v7QRHNQGJ3XDFBuO+qDqjOq76WPX+I7zW\nMdXdq9tUH6o+Mp7/supLxuMPVe9bZ/4TxvwnNx3m/z9HWN5W3L86fjx+W9PffdPqy8dy31t9\ndtU8X1zdqelv/+Aar3l2dfPx+P3VJWtMs3KdXNLWvu2bZd4j2Y11fXJ1VvWADn27eWrT9RBV\nb6yuX2O+O1enVdc1vT8+sQO1bGSnlzdrO22nLU5vem8e0/Q5u7S6YcX47bbFdiza+tys3dgm\nrLTV7eeRbOZ9srLejbbt69mJdb+V98OitMFG2/K1aqy6Y9NpaZ9o/f9p27GZ193M/57ave3E\ndj7z29k/WGvd377pVMBLqn9YtYzNtvduv++Yg4MX5Z075zo4+l3X9F46f41xj67+rkPvt4PD\nB6t/vs7rPXqMXzn9XzZtUH53xXPPWWPeL67+W/W5VfN/uPrerf1Z67pkxes+vOkfzHtXPHdl\n9e/GtLesXrGqltdUt171mke6UPaR1QdWvc7rmv4Bvm3Fc2td9LzdeY9U026u6/utes3Vw8r1\nd2L1/zTtgK2e7l2t/z7bru0ubzfbeDtt8ZSmb49X/w0fq57VoZ2mrbTFdizi+tyq3dgm1Na3\nnzv9md1o276RWdb9dt8PR0MbrK7xrtWbVr3u26qvWOdvXM/KZT5ji697pPfMbmwnZtlmb3f/\n4EMdvu6/rymwrX4fbrW9d+t9x946t0Nt8n8fnDu/elgS5zd9O/SsVc9/T4dvCK5q+iZl5XNP\nWzXPN3Zoo7V6+PvqtSt+/5lV835p0zdJB8d/vulboQPt7Pv9ohWv9/TqU2vUeqDpm7RXrvO3\nvGzVa270T+ohHdpRWT1c2Ma9Qs0y70Y17fa6PqvpfbDy9Q6M566vbjWmu0X1t+v8fSuHX5uh\nlpVmWd5utfF22uKnVi3jQHXtquf+uulsg822xXYs4vrcjt3YJmxn+7nTn9n1tu0bmWXdz/J+\nOBraYGWNT+3wnfaVwwerk9b4G9ezeplbed2N6t2N7cQsbTzL/sHKdf/vq6tX/H7wfbid9t6N\n9x1779wOtce6G0TYCcc1HSo/+D57ftNG9Jjqv6x4/pMdfsrnu1aNe3jTN1T/tC/c6K/+5/rn\nK8a9uumQf9WZHfqm6vrqXjP+bStr/EjTt1ffXP3sqvre2bQT8oNNF8Ku/Fbp+qZD+Gu95up/\nUu9cMe7S6kFNh+6/punUmI3WySzzblTTXq3rX1uxnJeuMf63V4y/snpS07d0d6t+tcP/vsfP\nWMusy9utNt5qW5zY9I//xqZTZB7Voc/gPap3rHi9J61YzpHaYjsWcX1ux05vE3Zi+zmvz+ws\n636n3g+L2gYrx32ourh6QvVt1V+tqvPJbd7qv32j1/2eDeZdWe9ubSd2qo23un+wct73NgWk\nl1S/PNbTTrT3Tu0PsPfO7VB7/N8H586vHpbYKdWPrBi+dMW4u3b4huOe4/l7r3r+qate89tb\nfwN45qpxd1817/evGPcr2/+zqsM3iFd2+Dfoq78h+uEV4x6yatzD1nnNlf+k7rVqntX/NL+5\n9dfJLPNuVNNeruuN/tnescO/TXz6GvP/2Yrx/2vGWmZd3m608Xba4s4rnvvHph2hle7bdCrJ\nNzadknXQTgekRVyf27XT24TtbD9X1zGPz+ws634n3w+L2Aarx13b9Fk86Jaj7oPjf3WNv389\ns7zuevXuxnZiljaeZf9g9d95Y/UNq8bvRHvv1P4Ae+/cRlvopIHddnn1n8bj2zbdU+OMpm9j\nbrFq2oPn35616vlXrPr9lU0boJP7Qg9a8fi6sby7rHjuuHWmndUrm/55HPT6pnOYD3rxisdv\naPoAHjN+P2UTr3+/Vb//2arfzx/LX+s0p1nm3ci81vVq/6zpYtiD1tpp/8Pqm8bjs5p2FrZz\nwfluLm+WdtpOW1zadA3KSaO+/1X9XtM1C29uOgXq7UeoeScs4vrcCTuxTdjO9nMje/WZnWXd\n7+T7YRHbYLVXNV2nddAVTZ/Bh4/fb7eN19zJ192N7cQsbTzL/sFqb+jQPb4O2on23u39AfaA\ngMReOLvp0PT9jzDdwQ3E7Vc8d1V12arprm+6mHitC03vsOLxcU2nkKznbkeoZytW9wz0yRWP\nr+zwHnmub9p4Hty4buZzuHqdfGrV+ANNh/XX2uGYZd6NzGtdr7ZyB+/yMay2suehmzTVvt0b\nF+7W8mZpp+20xeerZ4+hpm/9D55WdW3TNQUvrV5YXbNx6TNZxPW5E3Zqm7DV7edG9uozO8u6\n38n3wyK2wWoXrfHcx1Y83u5+2k697m5sJ2Zp41n2D1b7u3Wen7W9d3t/gD2gIdht92j6huZg\nDzcfqi5ouuDx+NbuMen4FY+vXed1P7fO86vn/ZsNaruxacN7YINpNmt1PTdsMG71+M3YzDr5\n/C7Mu5F5revVVp7ysd7fd92q309YwOXtZBtvti3+Y9MF+j9WfeWq13vwGJ7edBrI6p3cnbKI\n63Mn7MQ2YTvbz43s1Wd2lnW/k++HRWyD1da6t9ROdJe/k6+709uJWdp4lv2D1dbqSnwn2nu3\n9wfYAwISu+0HO7Sh+XD1VR3agJ7W2hublRv2k5sOxa/egJy+zvI+veLxgQ7de+Fot/L0ka2u\nk1nm3ciirOuV387dprV36lZf+Lr6W8dFWN4s7TRLW/zuGO5UPbDp29Nv7PBrAn+uta8T2AmL\nuD4XxXa2nxvZq8/sLOt+rz/PR7LTbXC02sntxCxtPMv+wWprhX/tTTW9KWE3rfy26W86/Nul\n+64zz8qbFR5b3WfV+Lt1+MWgK71zxeMTO/xQ/tFs9Tq596rxd+vwUw92at6NzGtdrz6tYeUF\nvCf0heeo19S16kGXNv3j267dWt4s7TRrW9yk6T4eL6l+qOlz+yMrxq93qsl2TilabRHX56LY\nzvZzI3v1mZ1l3e/15/lIdroNjmY7tZ2YpY1n2T/YDO1NJSCx+1YeAv+SFY+Pr3561bQHz0f/\nqw4/vP7jHb6B/YnW3zG7oPrMqnlX+tnq401dk+5Er1V7ZfU6OWfV+I3WySzzbmQv1/XKU0Pu\numrcX3X4xcg/1+EXAH9Zh/d09MIZa9mt5c3STttpiydWb2n6tv+Za7zmyp3pq1c83qgttmMR\n1+ei2M72cyN79ZmddXu1l5/nI9npNjja7MZ2YpY2nmX/YDP2e3szOMWO3famDnWjef/qvzb1\n+/+kposoX9t0mL6mf6J3bOoe9CUdulv146r/2XRTua9uuo/Gpa39DeTnmja2/3n8/tSmb0nf\n1NSl7Xc2bTxv09TTzNHi00093zxl/P5dTd+S/W3TqQ7/pOkeJge/ObvJDs27kb1c1/+w4vFZ\n1Z80faP4n5q+UXx69aej9oc3XXz7mqYegR7XoR6NLq6eO2MtN+zS8mZpp+20xVubvhG9afWT\nTZ/HtzddaH2npvunHLSyl6kjtcVWLeL6XBTb3X6uZ68+s7Os+916P2zXTrfB0Wa3thPbbePL\n2/7+wWbs9/ZmhYN9r5875zpYTqd0+I3QDg5XVY+pHrnGuIPzvXONcTc03avjb1Y8t/qbzmOq\n54xpV89/8F4OD292G93n4kkrxn2sL/TJFeNX3lxvo9e8Teuvk+/r8BtAPnsH592opr1a13fs\n0M0KVw4ruxN+XNO342vVcWNTb0sre/Ga1XaXt1ttvJ22eGyH30l+9XCg6X4pK3dgN9MW27Fo\n63M7dnqbsN3t5yJ8Zmdd97vxfliUNthoXNVvrhj/8jXGr2eW191o3t3aTmy3jWfZPzjSOtqN\n9t7u/gB779xGWziCxG67vOkbw6c3fWtY9e6mu1Mf7MbzqU0bnuOavq06ON/XVE9rupD4uKau\nM3+n6XD/v1qxjNVdi97YdNj9d5q+3bpX0z0cPjpe/0Udfo+C7Xpzhy42vWTVuI833fug1u7C\n9E0dOjz/8U2+5qeb1sn3VV/ftE7+T9Pf+dbq1A4dFf7oDs67UU17ta4/NOr/gaYb913Z1OXr\nB1ZM8/Kmna4nNJ2/fmpTT1nvb7oPy2t2oI6Vtru83Wrj7bTFHzZ9+/qdTRcjn9a0k/Ppph2Q\nP+wLu0/eTFtsx6Ktz+3Y6W3Cdrefi/CZnXXd78b7YVHaYKNxVe9ZUee71xi/nlled6N5d2s7\nsd02nmX/4EjraDfae7v7A8zZwdR67pzrgM06Jt+4AACHs3/ALM7NESQW3K83fbN5x6auRVce\nsn5c0x2uazq0/1czLOcr2t6Flm/OvQu2atHW9aLVc7RblvW5LH8HLKu92j9gHxOQWFSf69Dh\n7XOazkN+e1MXnk9ZMd2LOvxi0K367rbXdefjm85JZvMWbV0vWj1Hu2VZn8vyd8Cy2qv9A/Y5\np9ixiE6s/rj1L968sfqjpnPnAYD9wf4Bu+XcnGLHgvt89W1NN4F7fHVG0521P1tdVL2i6aJR\nAGD/sH/ArhOQWHT/ewwAAAfZP2DXLOKN8QAAAOZCQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABiOnXcBwI65fXXPeRdxBO+uLp13EQAA6xGQYHn83LHHHvuvbnazm827jjVdffXV\nXX/99b9VPXXetQAArEdAguVx04c+9KGdc845865jTeedd17nn3/+TeddBwDARlyDBAAAMAhI\nAAAAg4AEAAAwCEgAAADDfuuk4ZbVPapTqxOrq5u6HL6o+twc6wIAABbAfglIj6zOqR5QrdWL\n1nXVa6tnV3+9h3UBAAALZD8EpB+rnlNdU72u6UaVl43fT6hOr+5bPbx6RPW91QvmUikAADBX\nyx6Q7lw9q7qgekL1iSNM+/vV86pXN516BwAA7CPL3knDw5pOqXtKG4ejqg9UT266Numbdrku\nAABgAS17QDql6fqiSzY5/XuqA9Vpu1YRAACwsJY9IF1aHVfdc5PTf3XTOvnorlUEAAAsrGUP\nSK9u6sr7xdWZR5j2a6uXVFdWf7rLdQEAAAto2Ttp+Hj19Oo3m3qvu6hDvdhd29SL3WnVvau7\nNPVs98Tqk/MoFgAAmK9lD0hVL6zeUT2jqSvvx64xzceaQtQvVBfvWWUAAMBC2Q8Bqept1XeP\nx6dVpzb1Vvf5pnB02ZzqAgAAFsh+CUgH3bL60g4FpKubOnG4qvrcHOsCAAAWwH4JSI+szqke\n0HRfpNWuq15bPbv66z2sCwAAWCD7ISD9WPWcpg4YXtehThquaeqk4fTqvk3XJz2i+t7qBXOp\nFAAAmKtlD0h3rp5VXVA9ofrEEab9/ep5Td2DX7rr1QEAAAtl2QPSw5pOqXtKG4ejqg9UT67+\nvvqmZjuKdEzT6XwnbmH6E6tXzbBMAABgRssekE5pur7okk1O/57qQFNPd7O4c9NRq+O2ON/x\nTfUCAABzcJN5F7DLLm0KKffc5PRf3bROPjrjct/fFHaO2eTwgDHfMTMuFwAAmMGyB6RXN3Xl\n/eLqzCNM+7XVS6orqz/d5boAAIAFtOyn2H28enr1m029113UoV7srm3qxe606t7VXZp6tnti\n9cl5FAsAAMzXsgekqhdW76ie0dSV92PXmOZjTSHqF6qL96wyAABgoeyHgFT1tuq7x+PTqlOb\neo37fFM4umxOdQEAAAtkvwSklT4+hrUcU921unwMAADAPrLsnTRs1QnVe6t/P+9CAACAvScg\nAQAADAISAADAsOzXIP3rMWyWG7UCAMA+tuwB6bTqrKZ7Ht0451oAAIAFt+yn2P1WU290v9XU\nrfeRhlvPp0wAAGARLHtA+mj1tOrfVN8251oAAIAFt+wBqerl1X9rOop0xznXAgAALLBlvwbp\noKc2nT732SNMd13149Ubd70iAABg4eyXgHR99clNTHdD9dxdrgUAAFhQ++EUOwAAgE0RkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgOHbeBeyhm1cPru5ZnVqdWF1dXVq9o3pDde28igMAAOZvPwSk46tn\nV/+2utkG032mem51XnXjHtQFAAAsmP0QkF5afVv1turl1bury6prqhOq06v7Vt/VFJDuXH3f\nXCoFAADmatkD0tc2haNfrH6k9Y8M/XH1c9Xzq6dVv1q9ay8KBAAAFseyd9LwT5pC0TM78mlz\n11f/YTx+8C7WBAAALKhlD0gnVDdUn93k9J+uDjR16AAAAOwzyx6Q3tt0GuEjNjn9tzWtk4t2\nrSIAAGBhLXtAOr/6cPXi6unVaetMd8em0+t+u3rfmA8AANhnlr2Ths9V31q9onreGD7V1Ivd\ntU2n4J1W3XpMf3H1LU093AEAAPvMsgekqrdWd6++u+lUuzM7dKPYz1cfrf5H9arq96vr5lMm\nAAAwb/shINV0JOk3xrAX7lJd2HSEaiuO2YVaAACATdovAanqi5uOGF2+4rkTm06pu3N1adNR\npMu/cNYt+0D1sOr4TU5/z+q/dOSuyAEAgF20HwLS3auXVl81fn9D9cSmMPLGpnB00Kerx4zn\nZ3HjWM5mfW7G5QEAADtgPwSk36vu0xRYrq7u3xSY3l/dsvrJpp7uzmzq6e73m0KTjhoAAGCf\nWfaA9PXVV1ePq/5wPHdG9Y7x/IOaOnE46DXV66pvrP5kz6oEAAAWwrLfB+krqk92KBxVfbCp\n17qPdng4qrqg+kx1j70oDgAAWCzLHpBOrq5c4/mrqs+uM8/n2nznCgAAwBJZ9oD0weqO1e1X\nPHds03VId+/QDWIP+pIx7Uf2ojgAAGCxLHtA+vOmo0WvbLoO6dFNp9vdrvq76neauv+u+rLq\nd6sDYz4AAGCfWfZOGj5dnVP9WvUH47kbq39ZXdLUKcNHqms7dFrdf8wRJAAA2JeWPSBVPb/p\naNFjmrrufkX1zjHun1U/Wt2t+njTEaXfmkONAADAAtgPAanqzWNY7fVjAAAAWPprkAAAADZN\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIDh2HkXAEeRu1UPmXcRG7j7vAsA\nADjaCUiweT9+0kkn/ctb3epW865jTZdddtm8SwAAOOoJSLB5N3nQgx7UOeecM+861vTkJz95\n3iUAABz1XIMEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\nw7HzLmCP3bK6R3VqdWJ1dXVpdVH1uTnWBQAALID9EpAeWZ1TPaC66Rrjr6teWz27+us9rAsA\nAFgg+yEg/Vj1nOqa6nXVu6vLxu8nVKdX960eXj2i+t7qBXOpFAAAmKtlD0h3rp5VXVA9ofrE\nEab9/ep51aubTr0DAAD2kWXvpOFhTafUPaWNw1HVB6onN12b9E27XBcAALCAlj0gndJ0fdEl\nm5z+PdWB6rRdqwgAAFhYyx6QLq2Oq+65yem/ummdfHTXKgIAABbWsgekVzd15f3i6swjTPu1\n1UuqK6s/3eW6AACABbTsnTR8vHp69ZtNvddd1KFe7K5t6sXutOre1V2aerZ7YvXJeRQLAADM\n17IHpKoXVu+ontHUlfdj15jmY00h6heqi/esMgAAYKHsh4BU9bbqu8fj06pTm3qr+3xTOLps\nh5d3WtO9lI7f5PS3Gj+P2eE6AACALdgvAWmlj4+hpiBzt+qO1d83Xa+0E66q3tJ0Ct9mfEl1\ndnXjDi0fAADYhv0QkE6sfqJ6Y/Wa8dydqt9ouk/SQdeM585p9qD02epntjD9/asnzbhMAABg\nRvshIP1x9YjqR5sC0s2qC6q7Np1699amEPWg6vubjuZ8+1wqBQAA5mrZA9IDm8LRz1f/eTz3\nXU3h6Mer566Y9vimDh2e0HS625v3rEoAAGAhLPt9kM5quq7n5zp0fc+9m7rx/vlV017b1NNd\nTae8AQAA+8yyB6TjqgNN4eegq5t6rlurQ4SPVzc0nXIHAADsM8sekP6uumn1PSue+4umU+xO\nWWP6bxnTX7T7pQEAAItm2QPSX1R/Xf1/1c82dcDw2uoPqpdUXzqm+6Lqh6rfqd5Xnb/nlQIA\nAHO37J00HGg6KvTS6qfH8JGmU+zuU32w6fS7gzd0/UD1mKYuvwEAgH1m2QNSTR0yPLT6Z9V3\nNPVQd0bTtUbXjPHvrF7VdATp83OpEgAAmLv9EJAOet0YAAAA1rTs1yABAABsmoAEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAw1YC0vdUv7aJ17ukeuS2KwIAAJiTrQSku1Rfd4Rp\nTqpOrb582xUBAADMybGbmOZ/jp93qG6z4vfVjqnuXJ1QXT57aQAAAHtrMwHpz6qzqy+rblbd\nd4Npr6heVL1k9tKAZfLxj3+86sHV78+3kg29rPrDeRcBAMzPZgLSz46f51bf2sYBCWBNn/jE\nJ7rDHe5wxn3ve98z5l3LWt7+9rf34Q9/+KoEJADY1zYTkA56fov9zS+w4L7yK7+yH/7hH553\nGWs677zz+vCHPzzvMgCAOdtKQProGE6v7l2d3HTd0VouHAMAAMBRYysBqeq86hkdufe7Zzad\nkgcAAHDU2EpA+prqR6t3Vq+qPlUdWGfa9Xq6AwAAWFhbDUgfaurR7prdKQcAAGB+tnKj2BOr\ndyccAQAAS2orAemt1T1av2MGAACAo9pWAtJfNoWkX6hO2JVqAAAA5mgr1yA9qPpg9dTqSdXb\nq0+uM+0fjQEAAOCosZWA9A1NXXxX3ap6+AbT/p8EJAAA4CizlYD0X6vfrm7YxLRXbK8cAACA\n+dlKQPrUGAAAAJbSVgLSncZwJDetPly9b1sVAQAAzMlWAtK/rH5mk9M+szp3y+4WBPcAACAA\nSURBVNUAAADM0VYC0huqZ68z7ouqr6nuXD2ret2MdQEAAOy5rQSkC8awkR+oHlv90rYrAgAA\nmJOt3Ch2M3656WjSN+7w6wIAAOy6nQ5IVf9Q3XsXXhcAAGBX7XRAunX1VdU/7vDrAgAA7Lqt\nXIP0iDGs5ZjqlOqh1W2rN85YFwAAwJ7bSkD6uqZOGDZyRfVD1bu3XREAAMCcbCUgPb/6k3XG\n3Vh9tnp/dd2sRQEAAMzDVgLSR8cAAACwlLYSkA46vXpS041hTx3PXVq9qXpx9ZmdKQ0AAGBv\nbTUgPbL6verkNcZ9V/VT1bdUfztjXQAAAHtuK91836rpCNFV1fdX96pOG8N9qmdUN61eXp24\ns2UCAADsvq0cQXp4032O7le9ddW4T1TvqN5Qvbl6WPXKnSgQAABgr2zlCNJdmq41Wh2OVnpL\ndUl1j1mKAgAAmIetBKQbqpM2+ZoHtlcOAADA/GwlIL276Tqkb99gmodXd8iNYgEAgKPQVq5B\nem31vqaOGp5fXdB0X6Rjqi+uHlo9tbq4+vOdLRMAAGD3bSUgXVc9pvrv1Q+MYbW/r751TAsA\nAHBU2ep9kC6s7ll9c3X/6vbVjU2dN/xV9T+q63eyQAAAgL2ylYB0TFMYuq56xRgOOr4pGOmc\nAQAAOGpttpOGr2m6v9EXrTP+B6vXV3fdiaIAAADmYTMB6T5NHTKcVT1wnWluXT1gTHfqzpQG\nAACwtzYTkH6ruln1XdUfrzPNT1RPru5YPW9nSgMAANhbRwpI92o6cvS86mVHmPZ3qxdW39YU\nlAAAAI4qRwpIXzV+vniTr/eC6qZNPdwBAAAcVY4UkG4/fr5/k6/3vvHzTtsrBwAAYH6OFJAO\n3vD1hE2+3s3Hz89trxwAAID5OVJA+sD4+XWbfL0Hj5//sK1qAAAA5uhIAekvq2uq/1Add4Rp\nb1X9ePWP1etmrgwAAGCPHSkgfbr69ers6g+q264z3d2q11Z3qX61unqnCgQAANgrx25imh+r\n7ld9S/XQ6k+qt1efrU6pvrZ6eFPvda+tzt2NQgEAAHbbZgLS1dVDqp+tnl49fgwrXVb9UnVe\ndcNOFggAALBXNhOQ6tB1SD9bPaD6sqYe6y5r6gL8jQlGAADAUW6zAemgq6rXjAEAAGCpHKmT\nBgAAgH1DQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGI6ddwFzcEx1\n8+rE6urqqvmWAwAALIr9cgTp9OqZ1Zurz1ZXVpeNx1dUb6x+tLrlvAoEAADmbz8cQXpY9fLq\n5KajRe9pCkfXVCc0haezqwdUz6ge3RSkAACAfWbZA9Ktq5dWn6meVP1Zdf0a051YfUf1i9Uf\nV1+eU+8AAGDfWfZT7B5Z3ab6zuqVrR2Oqj5fvah6YvUl1TftSXUAAMBCWfaAdKfquup/bnL6\nC6oD1d12rSIAAGBhLXtAuqI6rjp1k9PfvmmdXLFrFQEAAAtr2QPSX4yfv1Qdf4Rpb149r7qx\n+vPdLAoAAFhMy95Jw4XV/1s9vfr66lXVu5t6sbu2qRe706p7V4+pblc9p7p4HsUCAADztewB\nqer7m7r2/tHq+zaY7r3Vj1T/bS+KAgAAFs9+CEg3Vr9S/dfqK6szm65JOrGp97qPVe+sLtrB\nZd6s+jdN1z9txpfu4LIBAIBt2g8B6aAbm4LQO9cYd8/qn1R/s0PLuk317U0hbDNuMX4es0PL\nBwAAtmE/BaSN/FB13+p+O/R6H60euIXp71+9qSnEAQAAc7LsAeneYziSu1anVE8av79jDAAA\nwD6y7AHp26uf2cL0Lxo/n5mABAAA+86yB6R3VNc0nbr2a9Xr15nu31Z3burFrna2wwYAAOAo\nsewB6Y+q+1TPr36w6T5HP1R9ctV0j2rqWOG/72l1AADAQrnJvAvYA++pHlz966Yg9PfVk+dZ\nEAAAsJj2Q0Cq6RS732i6B9Lrq9+pXtN0Wh0AAEC1fwLSQZdWj6u+tSksvavplDv3HwIAAPZd\nQDroFU0B6YXVf84pdwAAQPs3IFVd0dR73QOrN1YXzrccAABg3pa9F7vN+OvqIfMuAgAAmL/9\nfAQJAADgMAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADMfOuwBY4Qerfzfv\nIjbwRfMuAACA3SUgsUjuc+aZZ97lEY94xLzrWNMLXvCCeZcAAMAuE5BYKHe605161KMeNe8y\n1vSyl71s3iUAALDLXIMEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDG8UCVJdccknVo6u3zLmUjfx29bx5FwEAy0xAAqj+8R//sTPPPPO2j3jEI24771rWcv75\n53fhhRe+c951AMCyE5AAhjvd6U496lGPmncZa7rwwgu78MIL510GACw91yABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMx867gD30DdU3V/esTq1OrK6uLq3eUb2y\n+l9zqw4AAJi7/RCQvrT6g+rsFc9dW11TnVDdr3p09ZPV+dWTqk/tcY0AAMACWPZT7I6r/qy6\nb/VL1f2rWzUFo1uOn6dUD6leUD28elXLv14AAIA1LPsRpIdVZ1bfU71onWk+Xf3FGN5e/Ur1\n4OqCPagPAABYIMt+pOTM6obq9zY5/W9UN1ZftWsVAQAAC2vZA9INTX/jcZuc/rjqmKaQBAAA\n7DPLHpDe2hR4nr7J6X9k/NSbHQAA7EPLfg3SX1Vvqv5T9bXVH1bvri5r6snuhOq06t7VE6tH\nVK8Z8wAAAPvMsgekA9Vjqt+svmMMG037wur7c4odAADsS8sekKour769+rKmI0RnduhGsZ+v\nPla9s/rT6kM7uNx7t/lrn758B5cLLKHrrruu6rbVWXMuZSPvqz4z7yIAYBb7ISAd9N4x7IW7\nVm+rbrpHywOW3MUXX1zTTa0fPedSNvL86mnzLgIAZrFfAtIp1TdUt6j+trponemOa+rq+7+P\nYbve16Eb0W7G11Tnz7A8YMkdOHCghzzkIf3AD/zAvEtZ0y//8i93wQUXHD/vOgBgVvshID2q\n6T5It1jx3O81fct55appb1r98+qDzRaQqj43hs1YXQfAFzj++OM7+eST513Gmo4/XjYCYDks\ne0C6edMRoeOq5zUd2fm66gnVPaqH5Hx5AABgWPaA9I3V6U1deP/eiudfVv1O9YoxzbV7XxoA\nALBolv1GsXdp6rJ79elyf9R0FOmBTRcVAwAALH1AuqY6plrr5PhXVT/SdM3RT+1lUQAAwGJa\n9oD0rvHzqeuM/6Wma5R+rvrRPakIAABYWMt+DdLrqzdXv1Ddq+lI0YdXTfN94+d51UP3rjQA\nAGDRLPsRpKrHVf+76VS609cYf6D619VPNN0rCQAA2Kf2Q0C6pDqr+qfVxRtM95zqK6qfrv5y\n98sCAAAWzbKfYnfQgeqNm5jufdWzdrkWAABgQe2HI0gAAACbIiABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAcOy8CwDg6HfgwIGqk6u7\nzLmUjXy4unbeRQCw2AQkAGZ20UUXVT12DIvqV6t/N+8iAFhsAhIAM7vhhht60IMe1NOe9rR5\nl7KmX//1X+8Nb3jDLeZdBwCLT0ACYEecdNJJ3f72t593GWs66aST5l0CAEcJnTQAAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAcOy8CwCA3Xb55ZdXnVU9d86lbOTV1evnXQTAficgAbD0PvKRj3Tb\n2972Xmeccca95l3LWj74wQ/2qU996rQEJIC5E5AA2BfOPvvszjnnnHmXsabzzjuv888/f95l\nAJBrkAAAAP4vAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGBwo9j95QHV\no+ddxAbOmncBAADsbwLS/vLU2972tv/ijDPOmHcda3rXu9417xIAANjnBKR95uyzz+6cc86Z\ndxlrevKTnzzvEgAA2OdcgwQAADAISAAAAIOABAAAMAhIAMCRPLe6ccGH5+7aXw/sKzppAACO\n5LT73e9+Pf7xj593HWt62cte1lve8pbT5l0HsBwEJADgiG53u9t11lmLebu6173udfMuAVgi\nTrEDAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIDBjWIBYM4uvvji\nqn8xBgDmSEACgDm75pprut/97tfjH//4eZeypp//+Z+fdwkAe0ZAAoAFcLvb3a6zzjpr3mWs\n6YQTTph3CQB7xjVIAAAAg4AEAAAwOMUOAGB/O6t66LyLOII/r9467yLWYf0tmf0YkI6pbl6d\nWF1dXTXfcgAA5ur7b3nLW/6L008/fd51rOljH/tYV1xxxQurp8y7lnVYf0tmvwSk06t/U31z\ndWZ10opxV1bvqF5R/Xp1xZ5XBwAwR/e///0755xz5l3Gms4777zOP//8eZexIetvueyHgPSw\n6uXVyU1Hi95TXVZdU53QFJ7Orh5QPaN6dPXmuVQKAADM1bIHpFtXL60+Uz2p+rPq+jWmO7H6\njuoXqz+uvjyn3gEAwL6z7L3YPbK6TfWd1StbOxxVfb56UfXE6kuqb9qT6gAAgIVyTHXjePzM\n6tz5lbIrfrzp7zp+k9PftLq2+snquTMs987V37b5I3THNp0CeHx13QzLPZLfPPbYY//VzW52\ns11cxPZdddVV3eQmN0l926O+2ahvNuqbjfpmc9VVV3XgwIFrqs/Nu5Z1nDh+fn6uVazvpGOP\nPfYE7bttC73+rr766q6//vrfqp4671oW3LnVz9Tyn2J3RXVcdWr1iU1Mf/umo2qzdtTwD01H\nrTa7fo9pqnE3w1HVT19//fUvvfLKK3d5Mdt2yoEDB7ryyisvn3ch61DfbNQ3G/XNRn2zWfj6\nxk/1bc8p119/vfbdvkVff1XvnncBR5sbx3DunOvYDWc2/W2/25GPIt28qSe7A9Xdd7kuAAD+\n//buPMiWqj7g+PfJQ/Dx2EFQRB5uDw1BXB6CJAIJCagURo1GE4OgEkspkyooC4wgo0RFTSWW\nIqBZZNOosUSNS0RlUcNzeyBLhMdukH2V/S0w+eP367p3enpmuufd2z0z9/uputVzu8/0Pff0\nmZ7zO93ntDR3jJFx0UK/gvRr4FTg3cB+wH8REfRdxK10mwA7AHsAhwLbAR8Frukis5IkSZK6\nt5CvIEHcvva3wM30vmvV6xrgrR3lUZIkSVJ3xhiRK0gQX/RTwKeB3Ynb7p5KDJh8DLgduAK4\nuqsMSpIkSZobRiFAKowTgdAVXWdEkiRJ0ty00J+DJEmSJEm1GSBJkiRJUjJAkiRJkqRkgCRJ\nkiRJyQBJkiRJkpIBkiRJkiQlAyRJkiRJSgZIkiRJkpQMkCRJkiQpGSBJkiRJUjJAkiRJkqRk\ngCRJkiRJyQBJkiRJkpIBkiRJkiQlAyRJkiRJSgZIkiRJkpQWd50BtWolsHfXmZAkSVKrfgrs\n03Um5gsDpNFyA3AX8MGuM6KRdGIurX/qgvVPXbL+qUsnAg92nYn5xABptKwF7gFWdZ0RjaR7\ncmn9Uxesf+qS9U9dumfmJOrnGCRJkiRJSgZIkiRJkpQMkCRJkiQpGSBJkiRJUjJAkiRJkqRk\ngCRJkiRJyQBJkiRJkpIBkiRJkiQlAyRJkiRJSou7zoBatbbrDGikWf/UJeufumT9U5esf7Mw\nnq+xjvOh4ds6X1IXrH/qkvVPXbL+qUvWv3rGyLjIK0ij5b6uM6CRZv1Tl6x/6pL1T12y/jXk\nGCRJkiRJSgZIkiRJkpQMkCRJkiQpGSBJkiRJUjJAkiRJkqRkgCRJkiRJyQBJkiRJkpIBkiRJ\nkiQlAyRJkiRJSgZIkiRJkpQMkCRJkiQpGSBJkiRJUjJAkiRJkqRkgCRJkiRJaXHXGVBndgB2\nAe4EbgYe7zY7WuCWAMuBjYBrgd91mx2NmE2AZ+fyBqx/6s5LgaXASmBNx3nR6HgW8FTgFqLN\npxrG8zXWcT7Ujj8AVtE77uPAHcA7u8yUFqwnAR8BHqZX39YCnwM27TBfGg2bAh8HHmXiOe8b\nwLLusqURtTfRGTkOPKPjvGg0vAi4lInnv4uJgEmTjdErJwOkEbIn0VC9Gzga+CPgbcCNRB14\nW3dZ0wL1YaJufRM4GDgA+Ldcd2aH+dJo+AK9+ncoUQc/m+uuBZ7cXdY0YjYGrqDX5jJA0rDt\nCtwL3Aa8neggP5roMLoG7yKrMoYB0kj6EnGs9y+t3yPXr2w7Q1rQtgMeA37B5PGOXweeAF7Q\ndqY0MnYjzmsXAItK276W2w5qO1MaWScA64DvYICkdvwHsJ5o4/U7EvgyXkWqMoYB0kh6C3Dc\nFNseAH7TYl608B1GnFuqbt98VW47vtUcaZQ8F3gvsG/FtqOJ+ndEqznSqFpOdBZ9AvgkBkga\nvs2JOndu1xmZZ8bIuMjLa6PlnCnWb0sMGv15i3nRwrdnLldVbPtlKY00aNcSDdIqy/rSSMO0\niBhzeStwIjEmUxq2FcSkNBfk+z2IK0b3Aj/DCUJmZIAkgJOJk/inu86IFpSih/TWim13EZf+\nd24vOxIQt94dAVwC/E/HedHCdyTwCuJ2zkc6zotGx3Ny+RjwY2L8UeE24K+BH7adqfnE5yDp\nWOAdwOnEzE7SoCzJ5WMV28Zz/WbtZUfimcR5bj3wV+R95tKQPA34GHA2cF7HedFo2SqXHwZ+\nRdxyvCNwOPF/9+vEo140Ba8gLSw7ABeV1q0iGgJli4FTiPEhnwWOGm7WNILW53Kq88xiYspv\nqQ0riNnsngT8MXB1t9nRCPg0cR48uuuMaGRdCryn7/2ZRID0GeBvgPd3kan5wABpYXkCuL20\n7t6KdFsDXyVmszuO6OGSBu2eXG5NPJC43xLiGTVV9VMatDcBnweuBw4Bbuo0NxoFrwFeT9zK\ndHfHedHoeSCXP6rY9r1cvrClvMxLBkgLy11MnsK7bEvgB8R9+K8nLrNKw7A6l8v7fi7slsur\n2suORtRhwBnELU5vAB7sNDcaBYuJHvqb8v1b+rYV577XAvcBXyQ6N6VBKv7nblmxrRgLt1FL\neZm3nOZ7dCwmehMeJgaNSsP0YuLccnrFthNz2yGt5kij5lXELU7nYoeg2rOUXttqptemHeVR\nC9tTgIeI8Ufl58AdQtQ9J+aabAyfgzSS3kcc67d2nRGNjIuJ6UT371u3J3H5fzU2WjU8WxK3\ndv4v0ViQ2rR0itdniP/Dz8v30rD8M1HXTuhbtyNwWa7fp4tMzXFj+BykkXRsLt+VryqvJaaA\nlAbhcOKq5fnEhCHrgL2I25zeTG8iB2nQjgC2JwL0C6ZI823gpNZypFHy0BTr1+XykWnSSINw\nPPAy4EPA24CbiQ7KzYnz3srusjb3GSCNll/VSOO0txqka4DdgXcTs4gtAj4KnEb185GkQbmf\nybN6lq2bYbs0aNcR9dIHdWrYHgb2Izoq/5S4qv5lYtzbVJ1G6uMtdpIkSZJG2RgZF/mgWEmS\nJElKBkiSJEmSlAyQJEmSJCkZIEmSJElSMkCSJEmSpGSAJEmSJEnJAEmSJEmSkgGSJEmSJCUD\nJEmSJElKBkiSJEmSlAyQJEmSJCkZIEmSJElSMkCSJEmSpGSAJEmSJEnJAEmSJEmSkgGSJEmS\nJCUDJEmSJElKBkiSJEmSlAyQJEmSJCkZIEmSJElSMkCSJEmSpGSAJEmSJEnJAEmSJEmSkgGS\nJEmSJCUDJEmSJElKBkiSJEmSlAyQJEmSJCkZIEmSJElSMkCSJEmSpGSAJEmSJEnJAEmSJEmS\nkgGSJEmSJCUDJElT2R/YtutMdGg3YBw4vUba4zPtwbNIW3zOv84ijwtFkzJoUtbzxUL9/htS\nt5+J5yBJHTFAkjSVC4CXdJ2JDt0JvA84t+uMDNBfAqd2nYl5wrLq1hvxHCSpI4u7zoCkOe3B\nrjPQoXuBk7vOxIAdAjyr60zME5ZVtx7K5SifgyR1xABJ0nSqGifbATsTt87cADwwze/vBmwB\nXAPcDzwVeAFwJXB3Ke1mmX4xcCNxBWe2lgB75X5+A2wDPA+4D1jdl25LYHnm5cb8TuV93Jr5\nLywCng9sDlxLBFJTaZK2yqDKZHOiJ34f4FHi1qX7gMtK6bYgymmjDfy8stnut2n51S2vjYlb\nuLbPfd4ArM9tdcuqiba+/0wG8XfRr8m5oGymY1U3QNqBKKOpXAHcUzNP09WLsq2B52b+rgfW\nTpFupmNfPia75ef/uJRukOdHSTWM52us43xImlvGgWV9758J/AB4gt554wngTKJB1e/3gav6\n0j0KnAC8K9+/ui/tpsBngDV96cfzs/o/v4ldcx8fAT6Q+16f61YCWwF/n/lal+svJhomhaox\nSL9X+l7rgE/mdyuPC6mbtmqcxqDL5KWl/RT7KiwljuO6UprzZ/l5TfdbVQZNyrpJeR0F3F5K\ndytwRG6fqayaaOv71zWIvwuofy7YkLr9Z0w+B1V5C5OPV//rkBl+vzBTvShsBpxFr9zGiWCl\nnK7psT8J+Jf8+cq+7cM4P0qqNkbvb8wASVKl3Zl4lflyopf0PUTj7YXAx4jzxzl96Z5M9HA+\nDhxHNAAOBH4N/ILJjbuvEI2I44me4GcD7yR6o68jelibKnq1VwNfIHp7NwFOyfU/Br5L9D4v\nJhqF48DH+/ZRDpA2JnrxHweOyXzuS4yTuL70vZqkrWpEDrpMNiIav48Rx2AroqFX+G7m4WSi\nt3s58F6iEXgd8JSGn9d0v+UyaFJ+UL+89svfPQ94OXEL3Svy/Xh+xkxlNRe/f12D+LuA+ueC\nDanbS5l8DqqyFHhO6bU/EeTdDTxtht+HevWi8I1c94/EVcYDieDyCSKoK9Q99kXQ+kPgUuBQ\nYO++/Qzj/Cip2hgGSJIaWAq8H3h3xbargEfoTfpyKHFOOaWUbleiUdXfuHsJvcZG2XtyW7ln\nto5n5O/el3kvLMv1a5nYcNqEaLj8pG9dOUB6del94Sn0ep4PnkXaciNyWGUC0ej/aWndy3Of\nX61I/+HcdvgsPqvJfstl0KT8mpRXMQPc/qV0WwH/ALysb11VWTXR1vdvYhB/F03OBW3W7cKT\niEByHHhNzd+pWy9WZLrPl9LtSJTT9/N9k2NfHJPHgV1KadsoL0k9Y2Rc5BgkSXU8RPxjX0Tc\nd/804koRwMNEw20p0atZNCb+u7SPG4nbQl7Zt674eT3wplL6Yv9/yOQGSV2r6I1lgLhlBmJM\n0W1969cQYw62nmZf++TyvNL6R4HvAYfNMm3ZsMuk7MBcfq1i2zeJqwj7AWe0uN8m5dekvG7O\n90cRY4ruy/f3E43kQWrr+8/GhvxdNDkXlLVRt48jAp3TiKs9ddStFwfl8lul37+duMq4Jt/P\n5thfQoxB6tf2uUBSMkCSVNcbgH+i1+P5aC43ze1Fr/HTc3kzk13GxACpmCXs2Gk+d8fZZDbd\nUXq/dor1xbaNptnXTrm8pWLb/21A2rJhl0nZslzeULGtaLDt3PJ+m5Rfk/L6IvA64M+Jqws/\nI3r9zyUG8w/SslwO+/vPxob+XdQ9F5QNu26vAD5I3M57TGnbSUS++x1B3B5Xt14U+f9txWev\n6ft5WS6bHPuqfbZ9LpCUfA6SpDpWAF8i7oU/gOi93IzoKS4PYC96NtdV7OeR0vuNc3kQ0fNc\n9ap7m0yV8Ybrp1Pktep7Pb4Baaf6nGGVyVSfVzULV5H/TVre72zKuk55rcufDyBu+9qJaFBf\nDnyd2Y+1qtLW95+NDfm7aHIuKBtm3V5KBDqPA28mgrZ+DxBXevpfxbGpWy+K/E81s11hNsf+\n4Wn209a5QFLyCpKkOt5MdKgcA1xY2rZd6X1x687mFfsp93YWU31vR4z5mMuK6YbLM/bB5DJo\nkras7TIppo7etmLbNrmsO03yoPbbpPxmU14X0qvHy+ldXTgOOLHmPmbS1vdvW5NzQdkw6/Yp\nxAQNf0cENmWfyNd0LmT6ejHdMe03qL+p+XR+lBYUryBJqqMYg1C+ZWRXc+th1AAABI1JREFU\n4EWldUWaF5TWLwL+pLTul7l8JZPtSNzLP1c6cq7N5e4V2/YpvW+StqztMlmVy70qtq3I5aUt\n77dJ+TUpry2IRnS/1cRU0euZOFvZhmrr+7etybmgbFh1+y+AtwLfAT41i9+vWy8uyeXeTPY5\nehPTDOpvaj6dH6UFx1nsJM2kePbKO/vWbU1MC3xlbts11xczL/2cidMjH0PcRtI/A9dS4C6i\nd3RFX9qNiRmgxqluZMykGBtxTsW24hkiZb8Fru57X57F7vn5/iom9gy/kd6zTg6eRdryTF/D\nKhOIQefXl9ZtQfR438rEGcyWEmPG1hJTCzfVZL/lMmhSfk3K64dEr/yuTFQ8++isvnVVZdVE\nW9+/iUH8XTQ5F7RRt3chjtXtxIOoZ6NuvdiSmMDhDibOOPd6Jp4rmhz76Y7JMM8FkiYbw2m+\nJTXwdOIe/jXE81POJhoAHwCOJs4hFxO9uAD/metuIBoXFxG94sWzUvobdwcRY5MeIwZFnwPc\nlOlOmmV+hxEgQfQSjxMNpG8QjcK7iVt3xpnY01s3bdWzYoZRJtCb/vgnxPNVCocSx/Ye4nid\nQTTuniAe7jtbdfdbVQZNyrpuee0F/I4Yn3IeUZe/n3m8k7itqjBVWTXR1vevaxB/F03OBW3U\n7bPzdy/PfZVfr6uxjyb14rVEgPMQ8ayji/PzVzNxtr+6x366YwLDOxdImmyMjIs2ohcYXcTk\n+4klCWJMxFeIAdk7EVeCPkQ0fC4nxhttRvSOFgOb7yR6QJcQjbsjiVtwDiCmpb0x93098U9/\nDdH4WkI8oPNo4kn0s7EJ0ej5WX52vwOI21vKUyjvQ8wwdW6+XwK8mGgArcx13840m+brMuDt\nRPnsTNzic3PDtMXnrMzPguGUCURZFGMgrgLOz59XE8d3ETED11LgR0RDrjylcRN191tVBk3K\num553UIM5H+A6OXfhghAziJmNLu1L+1UZTUXv39dg/i7aHIuuK7iew26bhdXrB8ljmn5dRXw\nqxn20aReXE3v+UbbE1d4/h14B72xY1D/2E93TGB45wJJk+1P3/PQvIIkaRg2rlh3JnG+WV6x\nTZIkqStjZFzkJA2SBm0LYjzAKqK3s7AbMSPU9cQDKSVJkuYcZz+RNGgPAKcSzxG5hrhtZHPi\nFh6Iwd1Nn0O0HxPv75/Og8Sg64Wu7TIZ9WMwF7//XMyTJC0I3mInaRgOAE4jxlJ8CziZyVPp\n1vVTYrrdOq8rNyjX80fbZTLqx2Aufv+5mCdJmq/GcBY7SZIkSQIcgyRJkiRJkxkgSZIkSVIy\nQJIkSZKkZIAkSZIkSckASZIkSZKSAZIkSZIkJQMkSZIkSUoGSJIkSZKUDJAkSZIkKRkgSZIk\nSVIyQJIkSZKkZIAkSZIkSckASZIkSZKSAZIkSZIkJQMkSZIkSUoGSJIkSZKUDJAkSZIkKRkg\nSZIkSVIyQJIkSZKkZIAkSZIkSckASZIkSZKSAZIkSZIkJQMkSZIkSUqL+37eFzi2q4xIkiRJ\nUkf2LX5YBIx3mBFJkiRJmjO8xU6SJEmS0v8DgwR8nHZUTV8AAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'age_middle_to_oldest_old_male' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebxsaV3f+8+hT9OzNA023QoYWkAFRBBQBANco2BLRKIySMjVoF64xKhB\njJpoPDhErxpNQIw4ELk4AFFJKyqKoAIaEcUBm6GZERlsUOhuaE4P5+SP9RxPnd377LH2rtp7\nv9+vV712DauqfrWe2s9a31prPetQdTwAAAC61aILAAAAWBaHZ67/YfXqRRUCAACwIJ9fPfjE\njePjcmRR1QAAACzQkUYusosdAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\n6/nM6mHjcqeFVrJ3fWV1fFw+vsnnPnrmuTfN8bnbqYlbWlQb71fLOD9/sLph5rWPV+fP8fUX\nYd79wE4sL/b7/8ci+uLtvKdlBweCgMR6vqf6vXF59IJrYX/6/KYVqnMXXAfa4nQeV31bdebM\nfccXVMsys7xgq/Q9LJXDiy6ApXftaa6zcS+r7juuH1tkIUvoHtWrxvXPqN60wFoOOm1xeo+Y\nuf5X1Rc09Yc3LKacpWV5sXl7bfmwE/Xqe1g6AhLrscDbvo9Uf7HoIpbUVy26AP6Rtji9O85c\n//3qQwuqY9lZXmzeXls+7ES9+h6WjoDEeq6buX7NaaY5s7prdVF1fXXViuet5sLqbk37ML9l\n/D2zevDMNK+qbj7N8z+5aaXlxuptTZ32PHxSdfdx/e+bfi2uun11WfV31TtXPOes8Zyzq9d3\ny/2yP7G657h+rHrlad77tk3z5MQ8PLqJurfz3PXsxLz+zOp21eNn7vuc6pLqPdVbV3nOBU1t\ncF71D03fm508JmEn3m+77bTZtrj1eL8Lmz7De7rl//FW2mIrlnF+rufuTX3C7Wbuu6RpV6Ba\nvY/aSBvtRD8zayt98no28rk2srxYy3bbczPfsWVpg7WWD6er8dym+XTr6g3VR9eoYzM28rob\nXZ7tVN+z1X5ks+scq837M6rPGjX8wYrX32h77/T3jjk6cbDdkQXXwXL6zk5+Rx644rHbVv+9\nqdObPXD5puqF1aWrvN5tquc3LWRPTP/31Tc1dV6zr3PWKs//l9UbV0x3Y/Xi6lO29hFP8aSZ\n1/3fTcfpPXNFvX8089keU31g5rGPVE9Y8ZrrHdR6QfW8Fe/xoerfVo/q1Pk6r+du5EDbnZzX\nL1nxurOX/7pi2s+tfqdTP+PxpoXP86o7b7OWlbbyfjvZxrX5trhT9QtNC+rZ5xyrfruTK/i1\nubbYimWcnxv1k51+3qwcpGEzbbQT/Uxtvk+edz+w1vJiLdttz618x/ZCG6ysserfj/c+cf/1\n1XevUsdaZt/zxJa+jb7uet+Znep7troc2Oo6x9d26ry/qCnMrPwebra9d+p7x3wc6eS8/scr\nRxZXD0vssdWrx+WymfvP7WRncaLz+9D4e+K+qzp1BeJQ08G7p+sQn7ni9krfv+Lx93Zqh/6e\npl85t+PxM693ZfWM09T6O02/dN20ymM3Vfeaec21FiiHqt89zXscr35pxevO67nrLeR2el5f\n0S3n3U3j8l9mpntCt1wgrrxc3anzezu2+n471ca1+ba4eEwz+5yjK27fXH3pmH6jbbEVyzg/\nN+PZ4zVm+7VjnZw/543pNttGO9HPbKVPnnc/cLrlxVq2255b/Y7thTZYWePT1viMT11l3pzO\n7Ht+YJ3X/TdrPHdlvTvV92y1jbezzjE77/+6+m8raqyttfdOfO+YnyPNfB9OXDmyuHrYg76p\nk9+d65oOrKz61KZfZ0489s0zz3lMp/6T/4+mhesnNv1atLIDmPVPZx67sbp83H+r6kdnHnvR\nNj/XbOf/D+OzfHPTiEwrO8IrmxbsX1b9yIr6n3ma11y5QPmKFc/7iaZN7bftlisnK+fJdp67\nVk27Na8vWVHjp694/NNGbSce/7Vx322qL25aOZtd0Gx3VM7tvN9OtfFW2uI/zdz/kqb5XHVO\np64IvWXmOeu1xVYs4/zcqtkV+B9Z8dhW2mgn+pmt9MnL0A9spz3n9R1b1jZYWeO1TcvKL6q+\nvVPDx9vauNnX/cg6r/v2NZ67st6d6Hu208bbWedYGSKvqf5yPO+5Y5rttve8vnfMz5FOzuN/\nvHJkcfWwB/3z6unjsvIAy+d38nv1P2fu/9WZ+9/ZLY+B+8tO31m9aOaxX1zx2JnV+zq5IL94\nsx9mxmzndbxp2NoTPnvFYx9o6vhPeOXMY390mtdcuUD5lZnH3tItV/L/pNPPk+08d62admte\nr7dg/KmZx/6mW+5y+Tkrnv8l26hlu++3U228lbZ43sxz/sMqn/NJ1Zc37QJ1opadCEjLOD+3\naq2AtJU22ol+Zit98jL0A9tpz3l9x5a1DVbW+NMrHl+59eH2bcx2Xnetenei79lOG29nnWPl\nPHpZpw7zX9tv73l975ifI415bJAGtuol43JG0368n9/Jzmf2H/rCmev3m7n+G92yQ/rF6t6n\neb+HzFw/2vTL0az3NnW0h6sHVf9r7fI37Pkz11/X9CvRic3lv9K0n/UJf9D0q2tN+ytvxP1n\nrr+0Ww6b+sLqATvw3LUsal6v9PCZ6y/ulgds/0nTr4cnRhj7guo3l/D9ttNOW2mL2V+S/1PT\ngcMvb1qgvqOTv37utGWcnzthHv8v8+hnttInr2W3+oHttOc8v2PL2AYrrdxq8FtN/+Mn3L76\n4AJfdyf6nu208XbWOVb6z00/BsyaR3vv9DoGWyQgsVVnNiXt/7dpV4jTOTRz/ZKZ6+9YZdrV\n7qvpe3qHmdtfMy6nc9c1HtuM492ypg92svN6yyqPnbDR/63ZefKuVR5/9w4993QWNa9XOqNT\nD7pdOa9PeHsnF4zbGaxhJ99vq+201bZ4TvX1TXWeVf3rcalpReIlTbsxvX6N19quZZyfO2Ee\n/y/z6me20iefzm72A1ttz3l+x5axDVY6Xr15xX3vX3F7K+t083zdefc9223jra5zrObPV7lv\nu+29G+sYbJEZzFb9ZNPm8pr+yV/atCC7qelXlM9aMf2hTt08vdoJFj92mve69YrbVzXt3nE6\n8zpHyQ3d8hen2SF9r1/jsY3YyDw53chS23nuWhY1r1c6q1MXKqc7IefsL3qrjXq46PfbTjtt\ntS0+0LTbyQ807c5x3sw0d6ye0rQS8w1N/8c7YRnn506Yx//LvPqZzfbJa9mtfmA77TnP79gy\ntsFqNa78jPPYhXSerzvvvmc7bbyddY7VXv/Dq9y/3fbe6XUMtkFAYisu7eSvQlXfVv3wzO3/\n3i07huNN51Q48cvIar+2XLLKfTV1Yjd0cqH93Or/20S9y+p40+b0C8btzcyT7Tx3Lcsyrz82\nLueO26fbt/4TZ65fvYTvt5122k5bvK/pF/8nN62wPLD6vKbdVc5r+mX2WU0HPL93g6+5Gcs4\nP3fCsvy/bKVPXstufa7t/n/sZh+xnnm3wV41z75nO228nXWOlVbu9lnae9/b7qhPHEz37NRf\ndX5jxeP3Oc3zZk/6dr9VHn/oGu85u0n+nqedau+ZnSefvcrjD1nlvnk8dy2Lmtcrd0N47cz1\nB60y/W07OWpQTfuib8dOvd922mk7bXFG0/76r2pacH95dZdO7tJxuGkFZjVb2QVopWWcnzth\nGfqmrfbJa9mtz7Wd9tztPmItO9EGe9U8+57ttPF21jnWo733OQGJrVi5qXr2PBhf0qknCLzN\nzPVXzFy/vLrvzO1Pb9okfzq/OnP9Kzt1n/fbV3/btB/yH3VyX+S9YOU8mT23wd1be55s57lr\n2a15vXLXgk9dcfv/n7n+xd1yRen7OrkLxXXVL2+jlp18v+2002bb4qym/fzf0XRG9tuteL2r\nO/X4ghO7cKzXFluxjPNzJyxD37TVPnktu/W5ttOeu91HrGUn2mAv2am+ZzttvJ11jvUc9PY+\nEE4MGXhkwXWwd1zQtOn6xHfnzU37FP9oU6c3O2zrjU3nVficpoXdDTOPXdN0XoKfbdq/950z\nj63sNC9s2rf3xOMfrH68aV/nd8zc/4Jtfrb1Tpz41pnHn7LisW+YeWz2l6u1XvOunTpP/qFp\n0/xPNJ0f4e0zj63czL+d565V027N65oWaCde771NJ+Z8+njscKcOa/rxpoXlD1d/PHP/am2x\nFdt5v51q4620xc/P3P+OUf/Tm0aVekWnzu/ZkZbWaoutWMb5uVVrDfO9lTaadz+z1T55GfqB\n7bTnTn3HajnaYL0a77jiM2705KHbed21nrsTfc922ng76xzrzaOdaO/a2joG83Okk/P4H68c\nWVw97EGzJ0ibvfxOU8f32hX3HxnPe0rTgYYrn/fX1RM7fWdVdY9O7TxWXl7cqZ3uVux2QKpp\nX+3V5slfNZ0gbva+ledh2Opz16tpN+Z1Tfuir3ztl8w8fuG4fbo6PtY03+dlq++3k2282ba4\noFNX6Fe7vKtTh1eu9dtiK5Zxfm7FWgGpNt9GO9HPbKVPXpZ+YDvtuVPfsWVog70WkHaq79nO\ncmCr6xzrzaPamf85AWmxjjTmsUEa2Kr/1skO5pObNqn/RtPJBW9uOjv6f2jaXP7+pvMq1DTq\ny+uaRn65S9OvOK+sfq76wpnXX3mug6o3NC2wH9t0roNPauoY39m0WX0eJ067uulcA7X6qDev\naRqutG55gOnfzjz3bzfxms9pGkL0a6t/0vQL6h80nXTv9jPPremg6Rvn8Nz1atqNeV3175o6\n+oc17aLxvqaVrhM+3HQyvs9vWlG6e9OC50NNbfFLTSMnzctW328n23izbXFt9UVNu6N8UXVZ\n04rL0aaVk1c2zeOVC+f12mIrlnF+bsVfdnJQo7et8vhm22gn+pmt9Mlnr1PHbvUD22nPnfqO\nLUMbrFfj0U6dNx9dZZrVbOd113ruTvU921kObHWdY715VDvzP7eV7x07ZDbZwiJ9Y34dAQB2\nnnUOVjqSLUgswMOa9sO9U9NZoD+r6ReXmn4VnB0y8/e38T4XtLVRl97X6icq5PSWbV4vWz17\n3X6Zn/vlcwAb97B2Z52DfUhAYjdd1bSJ/MTJ4/5308GWx6tHd3JYzI9X/2Ub73On6ju38Lwr\nqp/exvseRMs2r5etnr1uv8zP/fI5gI3brXUO9im72LGbLm/av/x0B1t+qGmITACA7bDOwWYc\nyS52LMhvNY2Q89im8wR8UtOoRO9r+nXnBU1DcQIAbId1DrbMFiQAAOAgO9LIRbdacCEAAABL\nQ0ACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgOL7qABThUnVedXV1ffXSx5QAAAMvi\noGxBuqR6RvXa6rrq2urqcf2a6tXVt1afsKgCAQCAxTsIW5AeXv1ydUHT1qI3N4Wjo9VZTeHp\nAdWDq2+pvrQpSAEAAAfQ8XE5suA6dsKF1d9X764e1ekD4dnVv2oKTu9p2gUPAAA4GI40ctF+\n38XukdVtq8dWv1bddJrpPl49v3pC9cnV5btSHQAAsFT2e0C6c3Vj9ccbnP4V1bHqrjtWEQAA\nsLT2e0C6pjqzuniD01/aNE+u2bGKAACApbXfA9Lvjb8/Vt16nWnPq57dtO/h7+5kUQAAwHLa\n76PYvaH6ieqp1UOrX6+ubBqM4YamUezuUN27aRCH21c/UF21iGIBAIDF28+j2NV0YthvrP6m\nk591tctV1VcvqEYAAGBxjjRywX7fglTTB31m9azqXtU9mo5JOrtp9Lr3V6+v3jTH97xV9ZA2\nvoXu0KjpF+ZYA7DzDjf9r++33ZWPVa/s9CN/AsC+dRAC0gnHm4LQ63fhvT6lelEbn7+Hm05k\n+6KmUfeAveGfHTp06KXnn3/+ouuYq+uuu67jx48/ovqdRdcCALvtoASkR1X/vGmL0Ys7OXjD\n/1P9u+ou1fuq51Xf1/Z/NX1HGx85r+pB1R82bUkC9o7DZ511VldcccWi65iryy+/vKNHjx6U\n5QMAnOIgLAC/q/qemdv/tvqmpqG8n1N9rHpvdcfqu5u2/vzrXa4RAABYAvttv/mVLqm+o+kE\nsF9QfV7TsUjPqJ5W/ffqNtVl1e2qX6q+prr7AmoFAAAWbL9vQXpYdUb12OpD474/rh5cfWpT\nSDqxO9211VPGtA/NUN8AAHDg7PeAdOfqPZ0MRyf8RdPxPh9fcf81Tbvbbeb4IQAAYJ/Y77vY\nfbi67Sr3X1xdtMr9h5p2tfvoThYFAAAsp/0ekP6yKSB93cx9n1c9Ytx/+Yrpn1idO54HAAAc\nMPt9F7vXNA3p/dPVN1dHq3uP+/6y+l9NQ3u/s7pn9fimE8b+wQJqBQAAFmy/B6SqJ1Q/07S1\n6MamUPSU6vrqPtXXz0z79uorms4iDwAAHDAHISC9v+kksWdWN3dq+Pmi6v7VXasPVK9uClEA\nAMABdBAC0gmnCz5/Oi4AAMABt98HaQAAANgwAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAACGw4suYBedVz2sumd1cXV2\ndX31vuqvqldWNyyqOAAAYPEOQkC6dfX91b+pzlljug9XP1j9UHV8F+oCAACWzEEISC+o/kX1\nuuqXqyurq6uj1VnVJdV9qsc3BaS7VE9ZSKUAAMBC7feA9LlN4ehHq6d3+i1DL66+t/qp6snV\nj1d/vRsFAgAAy2O/D9LweU2h6Bmtv9vcTdW3jesP28GaAACAJbXfA9JZ1c3VdRuc/h+qY00D\nOgAAAAfMfg9Ib2najfCLNzj9v2iaJ2/asYoAAICltd8D0kur91Q/Xz21usNpprtT0+51/6N6\n23geAABwwOz3QRo+Vj26uqJ69rh8qGkUuxuadsG7Q3XhmP6q6suaRrgDAAAOmP0ekKr+rLp7\n9S+bdrW7RydPFPvx6r3Vb1e/Xr2ounExZQIAAIt2EAJSTVuSfnpcdsNdqte08fl7YrpDO1MO\nAACwEQclIFWd0TSi3QnnV4+sLmvape4vqt9vGsVuu95VPbaNz997Vv+19YciBwAAdtBBCEh3\nqZ7XtPXo+eO+h1e/WN1uxbR/1TSS3du3+Z7HmsLWRn1sm+8HAADMwX4fxe7M6uXV53Zy69En\nVb9anVv9WNOxSV9bvaD6zKZjkQ5CcAQAAFbY70HgkU1bkB7XNABD1eObTgT7z6pXzEz73OpP\nqx9p2sL0m7tXJgAAsAz2+xakuzVtOfqVmfv+SdMxQq9YZfqfajoO6J47XhkAALB09ntA+njT\n4AwXzNz3d53+PEc3NwWkm3a4LgAAYAnt94D0e+Pv987c9+KmrUj3WGX6b2maJ6/d2bIAAIBl\ntN+PQfrr6jnVN1T3Htf/pPr26orq+6qrqjtWT6weVb2sevUiigUAABZrvwekqqdW72kKRb+w\n4rGfW3H7BdXX70JNAADAEjoIAelY05aiZ1WXVw+oPqXpRLE3VR+sXl+9pHrzgmoEAACWwEEI\nSCd8pGkL0QsWXQgAALCc9vsgDQAAABsmIAEAAAwHaRc7YLEe2TRS5H5y50UXAADMl4AE7Jav\nvOMd7/g197nPfRZdx9xcddVVvfvd7150GQDAHAlIwK65173u1dOe9rRFlzE3z3ve8wQkANhn\nHIMEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAw+FFFwDAcjl+/HjVfaobFlzKvF1ZvW/RRQCw\n3AQkAE5xww03dM4553z/4cP7ZxFx/fXXd9NNN/1s9XWLrgWA5bZ/ln4AzM13fdd39cAHPnDR\nZczND/3QD/XSl770jEXXAcDycwwSAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADIcXXQAA7LS3vvWtVU+ovmzBpczbu6r7\nLroIgP1EQAJg37v++uu7//3vf+vHPe5xt150LfPyxje+sec+97n75vMALAsBCYAD4fa3v333\nu9/9Fl3G3Nx4442LLgFgX3IMEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMCwmYD0f1c/uYHXe3f1yC1XBAAAsCCbCUiXVQ9cZ5pzq4urT9tyRQAA\nAAtyeAPT/PH4e8fqtjO3VzpU3aU6q/r77ZcGAACwuzYSkH6zekB1t+qc6j5rTHtN9fzqF7df\nGgAAwO7aSED6nvH3SPXo1g5IAAAAe9ZGAtIJP1W9aKcKAQAAWLTNBKT3jssl1b2rC5qOO1rN\nG8YFAABgz9hMQKr6oepbWn/0u2c07ZIHAACwZ2wmIH1O9a3V66tfrz5UHTvNtKcb6Q4AAGBp\nbTYg/U3TiHZHd6YcAACAxdnMiWLPrq5MOAIAAPapzQSkP6s+vdMPzAAAALCnbSYg/X5TSPrh\n6qwdqQYAAGCBNnMM0kOqd1ZfVz2x+ovqg6eZ9lfHBQAAYM/YTED6v5qG+K66TfWINaZ9awIS\nAACwx2wmID2r+h/VzRuY9pqtlbPjPqHpOKqLmwaduL56X/Wm6mMLrAsAAFgCmwlIHxqXveiR\n1b+vHlydscrjN1Yvq76/+qNdrAsAAFgimwlIdx6X9ZxRvad625Yqmr9vr36gaXjylzcNVX71\nuH1WdUl1n6ZdBr+4+vrquQupFAAAWKjNBKQnVd+9wWmfUR3ZdDXzd5fq+6pXVF9V/d06076o\nenb1W0273gEAAAfIZgLSK5t2QVvNJ1af08lA8vJt1jUvD2/aovWvWzscVb2j+lfVG6vLsxUJ\nAAAOnM0EpFeMy1q+qfqK6se2XNF8XdR0fNG7Nzj9m6tj1R12rCIAAGBpbeZEsRvx35q2Jn3R\nnF93q95XnVndc4PTf3bTPHnvjlUEAAAsrXkHpKp3Vffegdfdit9qGsr756t7rDPt51a/WF1b\n/cYO1wUAACyhzexitxEXVvetXjzn192qD1RPrX6mafS6N3VyFLsbmkaxu0NToLusaWS7J1Qf\nXESxAADAYm0mIH3xuKzmUNPxPl9Y3a569Tbrmqefq/6q+pamoby/YpVp3t8Uon64umrXKgMA\nAJbKZgLSA5sGYVjLNdW/a9pKs0xeV/3Lcf0O1cXV2dXHm8LR1XN+v9s2jea30flrUAgAAFgC\nmwlIP1W95DSPHa+uq97eNGrcMvvAuMz68uqTqh/f/XIAAIBlsZmA9N727+huX5ahv5IAACAA\nSURBVFLdp/kFpH+o/s0mpn9Q9WVzem8AAGCLtjJIwyXVE5tODHvxuO991R82jRb34fmUNheP\nGpf1fH7TsVM/M27/2rgAAAAHyGYD0iOrX6ouWOWxx1ff2bQl5DXbrGtePrv62k1Mf2La9yQg\nAQDAgbOZ8yDdpmkL0Uerb6g+s2lwgTtUn9U0StwZ1S83DYCwDH6tenPTYAw/Vl3aNIDCysvz\nq7+Yuf2DiygWAABYrM1sQXpE03mO7l/92YrH/q5pKO1XVq+tHt5ybIF5XVN4+4/Vt1f/vHpy\n9Xsrpruhurnl2j0QAADYZZvZgnRZ07FGK8PRrD+t3l19+naKmrOj1X9qOoHtB6tXVD/btKUI\nAADgH20mIN1cnbvB1zy2tXJ21JVNgzH82+ox1Rurxy20IgAAYKlsJiBd2XQc0pevMc0jqju2\nfCeKPeFY01De96j+pHpBdUX1iYssCgAAWA6bOQbpZdXbmgZq+KmmXdXeWx1qOsnqF1ZfV11V\n/e58y5y79zQN//2Y6plNQ5evtesgAABwAGwmIN3YFCr+V/VN47LSG6tHj2n3gv/ZFPy+sfrI\ngmsBAAAWbLPnQXpDdc/qS6oHNQ2bfbxp8IZXVb9d3TTPAnfBh6vvWXQRAADA4m0mIB1qCkM3\nNh23c8XMY7duCkbLODgDAADAhmx0kIbPaTq/0ekGM/jm6g+qT51HUQAAAIuwkYD0WU0DMtyv\naZjs1VxYPXhMd/F8SgMAANhdGwlIP1udUz2+evFppvkP1b+q7lQ9ez6lAQAA7K71AtJnNm05\nenb1wnWm/YXq56p/0RSUAAAA9pT1AtJ9x9+f3+DrPbc6o2mEOwAAgD1lvYB06fj79g2+3tvG\n3ztvrRwAAIDFWS8gnTjh61kbfL3zxt+Pba0cAACAxVkvIL1j/H3gBl/vYePvu7ZUDQAAwAKt\nF5B+vzpafVt15jrT3qb6juoj1cu3XRkAAMAuWy8g/UP1nOoB1f+sbnea6e5avay6rPrx6vp5\nFQgAALBbDm9gmm+v7l99WfWF1Uuqv6iuqy6qPrd6RNPodS+rjuxEoQAAADttIwHp+uoLqu+p\nnlo9blxmXV39WPVD1c3zLBAAAGC3bCQg1cnjkL6nenB1t6YR665uGgL81QlGAADAHrfRgHTC\nR6vfGRcAAIB9Zb1BGgAAAA4MAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgOLzoAoBV\nXVRduOgi5uyCRRcAALAeAQmW0xurixddBADAQSMgwXI67+lPf3r3ve99F13H3DztaU9bdAkA\nAOsSkGBJXXTRRV166aWLLmNuDh/W3QAAy88gDQAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMBxedAEAwOYdO3as6ozq\nCxdcyrwdq15Z3bToQoCDSUACgD3obW97W4cOHTr7/PPPf9mia5mn6667ruPHjz+i+p1F1wIc\nTAISAOxBx44d66yzzuqKK65YdClzdfnll3f06FHrJ8DCOAYJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAAhsOLLmABDlXnVWdX11cfXWw5\nAADAsjgoW5AuqZ5Rvba6rrq2unpcv6Z6dfWt1ScsqkAAAGDxDsIWpIdXv1xd0LS16M1N4eho\ndVZTeHpA9eDqW6ovbQpSAADAAbPfA9KF1QuqD1dPrH6zummV6c6uHlP9aPXi6tOy6x0AABw4\n+30Xu0dWt60eW/1aq4ejqo9Xz6+eUH1ydfmuVAcAACyV/R6Q7lzdWP3xBqd/RXWsuuuOVQQA\nACyt/R6QrqnOrC7e4PSXNs2Ta3asIgAAYGnt94D0e+Pvj1W3Xmfa86pnV8er393JogAAgOW0\n3wdpeEP1E9VTq4dWv15d2TSK3Q1No9jdobp39ajq9tUPVFctolgAAGCx9ntAqvqGpqG9v7V6\nyhrTvaV6evW83SgKAABYPgchIB2vnlk9q7pXdY+mY5LObhq97v3V66s3zfE9b1U9pI3P33vO\n8b0BAIAtOggB6YTjTUHo9bvwXp9SvaiNz98T0x3amXIAAICNOCgB6YuajjE6v3pN9XNNW49W\nOqtpd7z/Oi5b9Y42PnJe1YOqP2wKcQAAwIIchID0ndX3ztz+mqbjkR7dLbcmHWra+nPhrlQG\nAAAslf0+zPcdmwLS26vHVJ/dNKLdbas/qD5zcaUBAADLZr9vQfqnTbvNPbH63+O+P69+e1x+\nq/rc6m8XUh0AALBU9vsWpDs1Hdfz2hX3v716ZHVOdUV17i7XBQAALKH9HpA+2HRc0aWrPHZV\n9ZVNJ4n9pfb/1jQAAGAd+z0gvaZpC9J/rs5Y5fHfazp57JdWv1J9wu6VBgAALJv9HpCurH6h\n6RikN7f6CVmfW3119SXtzjmSAACAJbXfA1LVk6pnVXdo9a1IVc+vvqD6yG4VBQAALJ+DcNzN\njdU3Np376Nga072qukf1wOo9u1AXAACwZA5CQDrh6Aamual69U4XAgAALKeDsIsdAADAhghI\nAAAAw0HaxQ4AWHI33HBD1QubjiHeT55ZHVl0EcD6BCQAYGkcP368Jz3pSed/xmd8xqJLmZsX\nvvCF/emf/umnLLoOYGMEJABgqdz1rnftfve736LLmJuXv/zliy4B2ATHIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMhxddAGzT\nJ1Xf1f4L+2ctugAAgINIQGKvu+8ZZ5zxlMsvv3zRdczVS17ykkWXAABwIAlI7HlnnnlmT3va\n0xZdxlwJSAAAi7HfdksCAADYMgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAAhsOLLgAAYD87duxY1QXVZQsuZd4+XP39oouAeROQ\nAAB20Jve9KaqrxiX/eTvqjssugiYNwEJAGAH3XzzzT3kIQ/pyU9+8qJLmZs///M/70d+5EfO\nW3QdsBMEJACAHXbuued26aWXLrqMuXnXu9616BJgxxikAQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGA4vOgC2FVfXz150UXM2W0W\nXQAAAPuHgHSwPOjud7/7/R760Icuuo65ed3rXteVV1656DIAANgnBKQD5rLLLuurvuqrFl3G\n3Nxwww0CEgAAc+MYJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIDh8KILAABgbzl69GjVmdW3LbiUebup+unqmkUXwuIISAAAbMo7\n3/nODh06dOu73e1uP7joWubpLW95S8ePH39D9VuLroXFEZAAANi0s846q5/8yZ9cdBlzdfnl\nl3f06NFDi66DxXIMEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMBweNEFAADAErmkumzRRczZ31ZHF13EXiEgAQBAdcMNN1T97KLr\n2AHPrr5h0UXsFQISAABUx48f7+lPf3r3ve99F13K3DznOc/pla985XmLrmMvOYgB6VB1XnV2\ndX310cWWAwDAsrjooou69NJLF13G3Jx77rmLLmHPOSiDNFxSPaN6bXVddW119bh+TfXq6lur\nT1hUgQAAwOIdhC1ID69+ubqgaWvRm5vC0dHqrKbw9IDqwdW3VF/aFKQAAIADZr8HpAurF1Qf\nrp5Y/WZ10yrTnV09pvrR6sXVp2XXOwAAOHD2+y52j6xuWz22+rVWD0dVH6+eXz2h+uTq8l2p\nDgAAWCqHquPj+jOqI4srZUd8R9PnuvUGpz+juqH6j9UPbuN971K9po1voTvctAvgrasbt/G+\n6/mZw4cPf+0555yzg2+xu44ePdqNN97Y+eefv+hS5uraa6/tnHPO6fDh/bOR96Mf/Wi3utWt\n8v1bfr5/e4Pv397h+7d37Mfv3/XXX99NN930s9XXLbqWJXek+u7a/7vYXVOdWV1c/d0Gpr+0\naavaNdt833c1bbXa6Pw91FTjToajqu+66aabXnDttdfu8NvsqsPVna+99tq3L7qQObvs+uuv\nf1d186ILmaOLjh071rXXXvv3iy5kjnz/9g7fv73D929v8P3bW65cdAF7zfFxObLgOnbCPZo+\n2y+0/lak86orqmPV3Xe4LgAAYHkcaeSi/b4F6Q3VT1RPrR5a/XpTgr66aVe6s6o7VPeuHlXd\nvvqB6qpFFAsAACzeft6CVNPua99Y/U0nP+tql6uqr15QjQAAwOIc6YBsQarpgz6zelZ1r6bd\n7i5uGtr749X7q9dXb1pUgQAAwHI4CAHphONNQej1iy4EAABYTvv9PEgAAAAbJiABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAyHF10AbNNXVz+36CIAgH3ja6rnLboIFkdAYq/7UHV99U8X\nXQjr+u7x9xkLrYKNeFX1HdWrF10Ia/r86gfS/+0F+r+941VN6xYcYAISe93x6lj1Z4suhHWd\nWOBoq+V3rHpr2mrZXZL+b6/Q/+0dx5rWLTjAHIMEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAw/J/27j5IkrI+4Pj3joPjOOA47uAOBO5ACOSIp0ggItR5YhCkQKIQNGIA\nwRAtwRgsEiysuFHwJYpEMVUCIi8lEBPUBAR5MQKCFgQ4lBQgIt7xKm/H8X5wy+3mj98zNbO9\nPbvTs7PdMzvfT9XUzHb39jz9dPczz6/7eZ42QJIkSZKkxABJkiRJkpIZVSdAmqB16aXu537q\nHZ5XvcH91DvcT73D80oADKfXQMXpkNoxHVhcdSLUkrnppe63GFsY9ALLv95h+dc7FmP5168G\nSHGRd5DU64aAVVUnQi1ZU3UC1LJVVSdALbH86x2Wf71jVdUJUPWMkCVJkiQpMUCSJEmSpMQA\nSZIkSZISAyRJkiRJSgyQJEmSJCkxQJIkSZKkxABJkiRJkhIDJEmSJElKDJAkSZIkKTFAkiRJ\nkqTEAEmSJEmSEgMkSZIkSUoMkCRJkiQpMUCSJEmSpGRG1QmQOmgO8EZgLbASeLXa5GgMGwBv\nB14B7qw4LRppPrAT8BpwH7Cu2uRoDFsAbwEeAR6sOC1qbibx2zQT+D3wfLXJ0RjmATsCLwKr\niHJQfWo4vQYqTofUrh2Ay6kfy8NEofZ1YJMK06V8OwK3EPvpjorTorr5wA+A9dTPozXASVUm\nSk3tTwRGw8DXKk6L8m0M/Atx0a7x9+m/gcXVJUs53grcwMj99ArwVWI/qj8MUN//BkjqaZsT\nV7lfB84E3g28D7iROK4vrixlynMM8AJwFzCIAVK3mAbcTARHXwOWAYemacPAR6pLmjJmEvto\nCLgdA6Rudgmxf64A3gscBJyTpj0AbFRd0tRgZ+KO0fPAZ4iLD0cANxH76oLqkqaSDWCApCni\nY+Qfv7OAR4lK+OyS06R884h99U2ikvcqBkjd4lBi35yZmT6bOI8eI5pFqnqHAy8DxwNvwwCp\nW+1G7JsbiAsQjX6Y5h1YdqKU62xifxyRmT4LeJxokTKz7ESpEgOkuMhBGtTrfgOcBpyXmb4W\nWEH0s9u67EQp1zriKuonsV13t3lfej83M/1l4FJgW2CfUlOkZlYCewLnV50QjWk98A/AZ0lX\noxvckt63LTVFauYi4Cjgysz0tcC9xJ2+WWUnStVykAb1uhvTK88iooL3h7ISozG9yOgfIHWH\ntwAvAffnzLujYZlbcuarXCuqToBa8gDRfyXP4oZlVL07yG/NMI8o934HPFdqilQ5AyRNVR8G\nlgL/iqPZSePZjuYXEh5P79uXlBZpKtuN6NO3AvhFxWnRaH8CvAHYBTiRaB55fKUpUiUMkDQV\n7U80FVpBNL+TNLZNgCeazFub3u3LJ03MDsQIdq8TTbqyTe9UvdOBw9LnO4Cjgf+tLjmqin2Q\n1AuuJfoaNb6adRg/DrgGuJsY0e6VMhIoABYwej9dUmmK1KrXaX7BrDbd5yFJ7dsLuI14dtW7\niPJR3edLwAeAU4h6xi/xQmtf8g6SesEzjD+CzHTieROfJp6JdDT1K98qxxCj70I8W0VCVNhq\nYG6TeVumd/el1J4PEkNFPwgcQjyAVN3ptvQCOIu44PoF4DpiWH31EYf51lRwHnEcn8HoIVXV\nnRzmu3tcTQS4c3LmnUycW4eXmiK1wmG+u9/RxLl1DbBZxWlRvk1oPqLg8cQ5dnJ5yVGFBnCY\nb00hXwQ+StwSPw3bdUtF/ZS4sPCenHmHEk3wflZqiqTedzDwXaLf0SHESJ7qPncSw+fnBbAL\n0rtNjPuQd5DUy/Ylrs75pOve4x2k7jEfeIFoArRdw/TjiN8Hn7nTnbyD1L3mAE8B9+AzdLrd\nPxPn0SWMHIxmKfA0cYFolwrSpfINkOIi+yCp151CXPneG7i1yTJfAK4qLUVq5q+BTzT8vREx\n5G3jfjsCeLTMRAmIfn7HEQ+FfYBoa78lsDvwa6Jvn7rDWdQf2rtpev8QsF/6/BTxQGZV6yPA\nVsRDsW9ossxVxO+TqnU68HbiPDqYGEBjU2AJUb84BZ9Z1XcMkNTrVgE3jbPM+hLSofGtZ+Qz\nqX6es4zNI6tzOXAfcAKwK3Hl9Byif5/PEuseg9T3x6uMLv9eKzc5auI5xv9tGiwjIRrXIDHq\n7SFEM+NFxKA01xF3lXw4c5+yiZ0kSZKkfjaAgzRIkiRJ0kgGSJIkSZKUGCBJkiRJUmKAJEmS\nJEmJAZIkSZIkJQZIkiRJkpQYIEmSJElSYoAkSZIkSYkBkiRJkiQlBkiSJEmSlBggSZIkSVJi\ngCRJkiRJiQGSJEmSJCUGSJIkSZKUGCBJkiRJUmKAJEmSJEmJAZIkSZIkJQZIkiRJkpQYIEmS\nJElSYoAkSZIkSYkBkiRJkiQlBkiSJEmSlBggSZIkSVJigCRJkiRJiQGSJEmSJCUGSJIkSZKU\nGCBJkiRJUmKAJEmSJEmJAZIkSZIkJQZIkiRJkpQYIEmSJElSYoAkSZIkSYkBktSflgF7Vp2I\niv07MAwsbGHZ14FbW1xvdtna92xXKHVTS5E8KJLXvaLM7f9m+q5h4NsTWE9ZJnJ+WI5JmhQG\nSFJ/uho4u+pEVOxS4DPAi1UnpEOmAdcAe1edkB4wVfNqG+Ak4LfAPsCXqk3OpLMckzQpDJCk\n/vQSUycwaNcVwJeBl6tOSIfsAhwIbFl1QnrAVM2rHdL71cRdqIcqTEsZLMckTYoZVSdAUiWa\nVSw2BBYB84EngEeA9U3WsQWwK/A88Js0bW9gCLgjZ/mdiOZsteWbrbcVS4CtgJuIuwFLgNnA\n/Wn9NbsCm6Xp2e1dAmwN/BJY1zB9LvBHafn7iOY/zRRZNk+n8uRNwPvT56XAq8BdjMwLiMBg\nqw58X1a76y2af63m1zwiWJhOBAnPNMxrNa+KKGv7x7KU+h2xBcBy4HHiblKj8fKwE+dWTZHy\nJM94aW01QPozYFaTeS8CdxZI01jHVqNpwG7A5sBK4Kkx1jne8dO4TzYn9vVK4LHMcp0sY6W+\nV2urPFBxOiSV51fAhZlpfwc8Sb1MGAZWAe/N+f+vAIMNy/2K+JF/Erg9s+xy4N7MelcDn5xA\n+i9K69kduIcIcIaBV4BjiYrCXQ3T1wLHZ9aR1wfpi5ntegDYI03L9gtpddm8PhbL6Wye/Diz\nrmFgv4b5hwC/z8x/ltjnE9HqevPyoEheL6e1/FoEXEUE6bXlhtK0rdIy4+VVEWVtfyuuYfR2\nNfZBWk5rediJcwtaL08mcn7klWN5fsfovKm98i7m5Gnl2Ko5mNjWxu+5kmgC2ajo8fNmYE36\nfETD/OV0voyV+tEA9XPIAEnqQzsB2zb8/X6iHLgReAdxVftg4urzIHEltOaEtOwK4od5F+B0\nojL1MiMrd3sArxGVkAOA7Ym+ET9J6/jbNtN/fvr/W9N6pxN3BlYTV09vIyoQM4DFRCXkNeKK\nfU02QDqWeoVp37RdnyCukGcrrUWWzVYAJyNPZlMv2A8n7u5tkObtS3T8v59oVrYdsd9uT8uf\n0Mb3FV1vNg+OpfX8K5JfNxB3hP6GOGZ3A04kKvfXp2XGyqtu3P5WzQYOSus9i9iu2l2TInnY\niXOrSHkykfMjW441swOwc+Z1SVrfGS38P7R2bEHcxRskAt7DiUEkPk0cK3dS79pQ5PipBa0/\nJY7dZdTLrckqY6V+NIABkqQG7yauaO+cmf4Bonw4tWHaCqICkL0a+h3qFauaK4mgaUFm2VnA\no7TfR6L2Xadlpl+Ypmc7bp+epv95w7RsgHQ70STlDZn//XtGb1eRZbMVwMnKk1PT9xyUmX5d\nmv6mzPS5RBOllW1+X5H1ZvOgSP4Vya9BolKedSRRSa0FQs3yqoiytr+I/dL/fzkzvUgeduLc\nKlKelHV+NHoXcffnNlrvatDqsVW7y7RjZrl/S9OXpb+LHD+1fXJ+zveXkV9SvxggxUX2QZIE\n8WN9HTAH2IvoWzCd+o/u1ul9JtHM4y7gD5l1nMvIpjYbEpWmx4B35nznI8DbiKu7D7eZ7psy\nfz8+zvS55JtJXIm9h9Ht+v8L+Hqby2aVkSfZ71tGXM3+v8y8NcDNRJCwiGIVqYmst0j+Fc2v\nR4E/Ja7IX9uw3H+0sE1FlLX9nUprO8fcRM6tVsuTTqW1iHnAxUQQ8iHiLk4rWjm2ZgD7E/s2\ne+HhU8QIg0O0f/z8MLNs2eWJ1DcMkCRBjOb1baJpzAZE/4JB6s1Bau8L0+dHctbx68zf2wAb\nA28ELhvjuxfS/o/3k5m/140zvVlTqoVpXrbCCqPTVmTZrDLyJPt9M4lmUHlqla/tKRYgTWS9\nRfKvaH6dAFxO9Md5DPgfoqnRFURTqE4pa/s7od1jbiLnVqvlSafSWsT5RLO8Y4AHG6YvYHTw\ndydwVPrcyrG1bUr/oznfO9jwud3jJ7vesssTqW84zLckiOYzf0n0XVhI/HhvSlwNbbRReh9k\ntNcYOWrShun9ZqK5R7NXdlCHIoYLTm+mlta87ap1ym5n2WbfM5l5kvd965rMr23DzBLX205e\nt5pf1xP9Uj5FjAp3JFFxfAQ4tOnWFFfW9ndCu8fcRM6tC2mtPOlUWlv1ceAw4pi4ODNviBhp\nr/H1bMP8Vo6tWvrHuyvV7vGTfSRB2eWJ1De8gyRpC2I0pbuBUzLz5mf+fim9b5aznq0YeRV5\ndXpfSHRu7ma1oYLn5MybRwzZ286yWWXnSa2CN6/J/NpzgFY3mT8Z6y2Sf+3k12rgG+m1MdFR\n/mzge0RTo4kM511T1vZ3QtnHXJHyJGsy0/rHwJnE6HIfz5n/NDFIwljGO7bGOy5qOnVe9lIZ\nK/UU7yBJmkNUyvKaexye+fsJojnJkpxlD8z8/RwxvO7OxChdWQcwupN6VZ4EXiC2K1tB3WcC\ny2aVnSdriL4QS8m/m7EXUbG6r8T1Fsm/Ivk1LS0zu2H+q8RoZWcTz4/JdohvV1nb3wllH3NF\nypOsyUrrTOJuz0ZEk7miQXKrx9YaIgBbyujnLh1ANNFbRufOy14qY6WeYoAk6TGiedwe1JvQ\nAfxVmgb1DtjDwM+Iq6VHNiy7NTEy1VBm3d8hKhdnMPLu0j5E2/1zJ578jvkJcYW78erypsRo\nXtntKrJs1mTlSe0KcvaZLBektJ2amX4MUam6jNj/RU1kvUXyr9X82o8YRvrzmf+fBrw1fa4N\nLNIsr4ooa/s7oczzsEh5kmcy0voVYnCZzxMPhi6qyLF1ARFIfa5huU2I0f4Oox44duq87KUy\nVuopDvMt6UyiHLgbOAe4hegcvJhoDvIKcB5RqduTeDjkIFHRu5honnISrX1FGwAAA1FJREFU\nUfFsHKJ4Q+rP47iPqBRcS7TRX0V0Lm5Hbdjb7DDCA+Q/+POjafoHG6Zlh/nejbiyPJS24QfE\nHbMzie27reF/iyybHcZ4svLkHWmdTxND//5Fmj6TeIbLMNFX4RyiP8UQMYLWeM2emimy3mwe\nFMm/Ivl1WVrut8ToYv9J/SGh32hYrlledeP2F9FsmO8iediJc6tIeTLZ58fORD6vJ46P7+W8\nWtHqsbUxcTwME8fBj4l9O0Q8N6mmyPHTbJ/A5JUnUj8aIMVFG1APjG4if4x/SVPf9cSV3zlE\n+/dfEA9EfJyo5Myn/jT4lcSVyQ2pP7Pjn4hKw+eIH+UL0nqHiIrFvcTV0m2J5iUXAB9j9FDh\nrdqVuDr9fep9OiAqYHOBHwFPNUzfhmhqcjX14XeXEHfRLyUCvmeIJjDTUlrXAt8CvkoEhQ+n\n7afgsrXvuYyoGE5WnjxE9EnYJK3vBmLUq/VEJfBB4k7fdkQl9VvEw0lfaPP7iqw3mwdF8q9I\nfv2IGIJ+I+I4nk48QPNkokJe0yyvunH7i5iTvuvnxAhsNUXysBPnVpHyZCcm9/zYkrh79DDR\nd3LznNeFLayn1WPrdeK4eCitexZx1+pEYhj3miLHT7N9ApNXnkj9aDkNfRG9gySpqBmM7j+x\nI1GWjDXcrCRJUjcaIMVF9kGSVNRniSveRzVMm070n4C4kixJktSTHOZbUlEXEs1lLgKOI5pw\nvBnYnWgLf2nB9S2g2Ohdt5P/kM2ppOw86fd90I3b341pkqS+YRM7SUXNI55x8n3gOqIt/YcZ\nOYpSqw4m2u23+joyfzVTStl50u/7oBu3vxvTJElT2QD1uMgASZIkSVJfG8A+SJIkSZI0kgGS\nJEmSJCUGSJIkSZKUGCBJkiRJUmKAJEmSJEmJAZIkSZIkJQZIkiRJkpQYIEmSJElSYoAkSZIk\nSYkBkiRJkiQlBkiSJEmSlBggSZIkSVJigCRJkiRJiQGSJEmSJCUGSJIkSZKUGCBJkiRJUmKA\nJEmSJEmJAZIkSZIkJQZIkiRJkpQYIEmSJElSYoAkSZIkSYkBkiRJkiQlBkiSJEmSlMxo+Lwv\n8I9VJUSSJEmSKrJv7cM0YLjChEiSJElS17CJnSRJkiQl/w9yrVuC83FQ+AAAAABJRU5ErkJg\ngg==",
"text/plain": [
"Plot with title “'age_middle_to_oldest_old_female' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZxsd13n/9c1uSQESCBiAio7uASNARKRRUVkE4aoLCMggwMyMw4/fi4j\n+lPUMSqOzogyo47jwiCboiIuYVhEFpVlUIwiGZBF1ihJDISd5Gb9/XG+Pbdu07dvL9Vdnern\n8/E4j6qu861Tn65z+t561znncw5U1wcAAECft+gCAAAA9orjZ+6/sXrDogoBAABYkPtW91n5\n4foxnbeoagAAABbovEYucogdAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwHD8ogsAWOXs\n6qbj/vurD87MO6e6ybj/vupDu1jXPGpY77lbnXdDsd56XQaLWEc7tS0C7HvXj+m8BdcBLI+b\nVfcb09du8rlv7fC/Sz+6at7/mZn3Q9uqcOu2U8N6z93qvHnbzrpbz3rrdRksYtvcqW0RYD86\nr/Hvoj1IwE64Y/W6cf/y6vMXWMt+8MXVnat/rt6xzWVZd2zVPLdDgIURkICd8Kmj3N+uR1Y3\nHvc/PMfl7pat1n+s5z2relT1u9VjtlzdZKfW3bK7oW2bO1HvPLdDgIURkICdsFMfst81x2Ut\nwlbrX+95N60etsXlrkVA2pob2rY573rnvR0CLIyABOyET8/c/+RRxhyovqS6RdMJ4hv5Fnuj\nJ5bfqrrteI1/qi6urj3Gsr+gun11sLpkLH8zbj9e95/Xee5WT4xf63k3q+5R3afDewJOazp3\nqKZzTL5iZhkXtHbgOau6+bh/2araj7bu1rOV9braHarTq6uri5re06O5d3Wjcf9vmmo+rvrS\n6oTqPR25PVZ9YdP2cUn1gWPUstHtYr11u1aNVbdpOiztn6v3HqOOzdjIcuf1t3Ss7fAN1TVr\nLHcz63jF7LZ10ain6i7VF437F3Xk77zWe3/rpkMBP9TnNgvZ6Pre6e0OWDBNGoCdcHXTvy2v\nXGPew5o6mV0/M72m6YPd37T1Jg1PbPpm/PpV0yXVMzr8gXDWw6u/XeM5H6i+Y43xszU8rfrq\n6m2rnvuW6oxjPHe7TRrOXqPm2em21Wdmfn7KGvUc33Se0cqY7x2Pr7fu1rPV9Vp1YvUfmwLV\n6t/l/7T2uqjpQ+7KuAc3ffB/z8xjn6r+3zH25OqPVy37VR0OiLO2s12sXn+ra7xT9cZVy/2b\n6suP8jsezexrfv8mlzuvv6VjbYez7+1W13FN6+MDq57zZ03b+W/NPPYzq553UUe+99/VFNhW\nb4ebXd87td0Bi3Neh/9GBSRgR7yy6dvjZ6x6/P4d/gC+enpHW+9i96OrlnVdddWqx97UkXvO\nn7Bq/meavvWdfezfrVPDf1tj/Mr04erUTdS/2Xn3aPqgd92q3/maMZ1SPW9m3mv7XPefmX91\n0zf/dfR1t57trNebVn95lOfOTr+6xuu+c2b+U6qPrvG865r2cJx/lOX+7qplbne7WL3+Zmt8\nckd+aF/9YfykNX7Ho1n9mptZ7rz+ljayHdb21vEDOxxqVk9/X/3pzM8/vuq5s+/9d1dXzPy8\nsh1uZX3vxHYHLNZ5Hf77/L93zltcPcA+cmGH/925uPq6pkNSvrr6h478ALHRgHRih/eWXFv9\niw4HoS/ryD08jx+PH2w6rGfl8V8fzzlQ/deZxz/SkaFqtoarmr4Z/tKmw4Wevqr+/7TB+rcz\n71dn5v3OqnlfOzPvmqbDh2bN/p7/q+3Zznr9zZl5n2paRyc3HQb1y6ue+22rnjv73vxT016F\nh1Y/uep5F1ZXNu0le2RHfts/+97MY7tYb/1dVL27emz1rdXrV9X5r9q41b/7est9wjrP3e7f\nUq2/Hdb81vFHmvbY3KRp+14dCtf7N+M9TQHpt5u+3PjW5rO+57HdAYt3XgISsABf2fofBh/a\nxj/szH6ou8PM459o+pA366ymw2Qe2HQeQE17d542M91uZvydVtVx16PU8LEOn3ex4qUd+YFs\nI/VvZ96xPpjOftP9b1fNe9/MvEev8dyN2s56vU1H7h1Y61DAl8/M/6tV82bfm091eI9Ffe43\n9/9hZt79V8170Hh8HtvFeuvvqqbtdcXJo+6V+b+8xu9/NNtZ7jz/lmr97XA76/jMjnzPn7zq\neY9YNX+9fzOur75h1fx5rO95bHfA4p3X+NvUpAHYTWev+vnlq35+ZdOHslPanIurzzYdRnRy\n0wesFzWdj/GWpsO73rrqOZdXzxz3P7/p+j+3b/rm+Karxh7tXIE/avpGetZLm751r+kD1k37\n3JO1d9Ozq58b9x/Z9A15TaFm5QP1x5s+1G3VdtbrNzad3L5irZD3kuqbxv17NK3jtRpInD9e\nZ8WfN51bsuKFM/f/ouk/wgPj55XDIeexXaznpU3naa34ZNN2+uDx8y23sMx5Lncrf0vHsp11\nfI9V4/541c/nNwWUm22gjr/o8DW+Vsxjfc9juwP2EAEJ2E23nrn/mabj9mdd13S4ymYD0pXV\nT4+ppg//XznuX9V0vsTvVM+tDs0875ymw2jufYzlHzjK4x9Y47HZbmAHms7rWWRAel7ToX4H\nm769PrXpQ+G5M2N+tyPfl83aznq948z9y8e02mwnsc9r6tC21oVIV3ds+8jM/U91ZKe0a5o+\n1K586J39/3C728V63rnGY5fM3N/q/8vzWu5W/5bWs511vHrbumzV866p/rGNNbj426M8vt31\nPa/tDtgj/GECu+lGM/evOsqYK7e47P/U1LL3hzqyvfWNmloO36/p0J77N32A/7Kmb5NXunFd\n1NTI4NPjOf9mA6+5Vtvsq1f9vOh/Zy9r+ob7kaOWb6me03TY24rnb/M1trNeZw/hOtpzV7+n\nJxxl3GdX/XztOvNWz18xj+1iPWttM2u1wV7kcjf7t3Qs21nHG9m21lq3a1mrlfg81vc8tjtg\nD1n0f9zA/jJ7WNTNmg67Wf1h4VbbWP5vjem21X2bvhl+YIfPHTiz+qmmD3ff2+EPRf9Y3a3D\nH/ZOb2MfjE5f47HPX/XzJ9YYs9ue3RSQqr65+v2m5gk1NVB40zaXv531Ovtt+y2a9h5ct2rM\n6hPZV+9FmKd5bBfLYDN/S8eynXU8G/y2+2/G6tcs6xtYw+ctugBgX/mHmfvHN33ImnXnjjyk\nZis+r+kwt9+uvq/pG/CnzcxfOYxm9pvx/92R34SftcHXWuuQnNlzJj5eXbrBZc3D0Q4BelWH\nD/37xqZzPVa+INvu3qPa3nqdPSH/hD73nJOaWiWvuLjpg+xOmcd2sSw2+re02urtcDvrePW2\n9VWrnnfnjmwWsVnWN/A5BCRgN72+Iw+l+cFV85/e1s7reFz11017Mn5ijfkXztxfaaowe7jO\nF83cv1H1Y6uef7Rzou47phWnN11gc8WrjvK8eZo9jOpORxlzXdNhdTV9W/4j4/711QvmUMN2\n1uvrO7K5wE915An9d+nIzmXP3VqJGzaP7eKGbCt/S7X+driddbx62/rhjtyWtvpvxor9vr6B\nNTjEDthNH2vq6LQSIh7T9O3vXzYdwnOvpgusrnwjvNEvcS5o+rb3uKYP/1/e1GnrUNMhQo+d\nGbvSQeuNHW75e+/ql5racj9+PP9Pmw4pqukD/22aWhnPfrD7cPUnY5mfqh7V4UOFrq+etcH6\nt+ODM/fv0XQ9o39s6sw1++37c6r/2PSerpx0/xet3Whis7azXq9tOkzrZePxBzedTP+qpoYS\nj+pwh7J3Vz87h3rXs9XtYlls5W+pjr0dbnUdX960B+s7xs+Pqt7ctG3dvelQ0Yvb+p7n/b6+\ngaNwHSRgN92iIy8qujJdW31X9eqZx3561XPXu9bMI5u+0V693JXpuqZrwax8OD+1Iy/auDJ9\npqnD28PWmFdHXvT0u5tO6F7rtVbvRTlW/Vudd5sOX9hzdlrdervqFavGPHGNMVu1nfVa0wff\nj6/x/JXpTU2dzVZb7715/My8S/pcH5mZv3LR061uF1tdfzWdI7Yy//fXmH8021nuPP+WamPb\n4VbX8akdfdt6atOhcSuPbfTaabPLnvf63sp2ByzeebkOErAgH2v61ve7qq9vaj/9D03nwlzQ\n1BZ75d+mD6967ls6fML3h1bNe0nTN8v/sulE69ObPsB9rOnD1Us6sjX05U17N57StIej6u1N\n1wlaaTn85KYPSQdHbVV/1+HzI/6u+h9NH3Ie3BQS3t/UWvt/r/G7r1f/Vudd1PR+fk/TRS4/\nNX7P9/e5/rB6yLj/2Tb3YfxYtrNeG7W8umkPxX3G+Cub1sXLO/rhiuu9N5c2XZOm1m4t/cYO\nHzZ16cy4rWwXW11/Ve+aqfPta8w/mu0sd55/S7Wx7XCr6/jysex/19RB72BTa+3nNx0O+J0z\nY1e3Hj/We7QT63sr2x2wx9iDBLA//FGH/81/7mJLgbk4kD0ywHyc1/i3RJMGgP3hYU0tvqtd\nOz8K5uHXmg6/u6jPPQftUR1urX9dU1MHgG1xiB3A8jqrekbTIVJ3n3n8+U2HB8INwWc7fPjb\nDzadp/TWphbfs+fRvaAjm0UAbJlD7ACW0/363BPML0i7Ym5YTmw6f+5ozR2ur/6gOmlRBQJL\n4bw0aQBYehc3fbA8uelk8Nc3dTa7Zr0nwR5zZfWtTReJ/bbq9k3t9D9dvbP646amEgBzISAB\nLK93VY9YdBEwJ3+XQ0OBXaBJAwAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDMcvugCAHXb36tQdXP5l1d/t4PIBgF0kIAHL7s0nnXTSweOOO27uC77mmmu64oorPlHdfO4L\nBwAWQkAClt3xz3jGMzrrrLPmvuA3v/nNPf3pT/fvKAAsEecgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwHD8ogvYZSdXX1adVp1YXVFd\nXL2z+uwC6wIAAPaA/RKQHlb9YHWf6rg15l9d/Wn109WbdrEuAABgD9kPAemHqp+pDlWvqd5e\nXTZ+PqG6VXVW9eDqIdW/qZ6zkEoBAICFWvaAdIfqGdVrq8dW/3yMsb9X/ffqFU2H3gEAAPvI\nsjdpeFDTIXVPbP1wVPX+6l81nZv0TTtcFwAAsActe0A6ten8og9tcPy7quuq03esIgAAYM9a\n9oB0cXWwuusGx9+96T358I5VBAAA7FnLHpBe0dTK+4XVGccYe8/qt6tPVS/b4boAAIA9aNmb\nNFxaPaV6dlP3und2uIvdVU1d7E6vzqzu2NTZ7nHVRxZRLAAAsFjLHpCqnlu9rfr+plbej1xj\nzCVNIernqnfvWmUAAMCesh8CUtXfVN8+7p9endbUre7KpnB02YLqAgAA9pD9EpBmXTqmtRyo\nbld9fEwAAMA+suxNGqpuXP10dWHTtY5+p/qKo4w9YYz53t0pDQAA2Ev2Q0B6fvX0plB0avVt\n1QVNF4UFAAD4v5Y9IH1V9ajqT5rOOzqlqd33W6vnVY9dXGkAAMBes+znIN1j3D6lw40Y/r76\nuuoPmjrcXVS9YQde+zZNF6ndqIPVu3agDgAAYIOWPSB9QXV99cFVjx9qOtTuDU1B6Wuq983x\nde9Uvaep6cNmHF9dO8c6AACATVj2gPTBppByZvW3q+Z9ujq3+qvqFdXXN7/Ode+tvqipQcRG\n3L16cXVcAhIAACzMsgekP6s+W/1G9eimDnWzPlT9i+pV1RurJ87xtS/exNhbzfF1AQCALVr2\nJg2XVD/WdC7S+6p7rTHmr5v2Hp1Y/fnulQYAAOw1yx6Qqn6hqZPda6qPHmXMhU0d734zh7gB\nAMC+teyH2K14yZjW85HqSWMCAAD2of2wB2kzDlR3brqgLAAAsM8ISEc6oak993cvuhAAAGD3\nCUgAAACDgAQAADAse5OGfzumjTqwU4UAAAB737IHpNObroF0VXX9gmsBAAD2uGU/xO5/VpeP\n2xM3MN18MWUCAAB7wbIHpA9X/67699W3LrgWAABgj1v2gFT1+9XzmvYi3WbBtQAAAHvYsp+D\ntOLJTYfPffoY466ufrh6w45XBAAA7Dn7JSBdU31kA+OurX52h2sBAAD2qP1wiB0AAMCGCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwHL/oAnbRN1QPre5anVadWF1RXVy9rTq/+quFVQcA\nACzcfghIt6teXJ0z89hV1aHqhOrs6uHVj1SvrB5ffXSXawQAAPaAZT/E7mD18uqs6lnVvatT\nmoLRyeP21Or+1XOqB1cvbfnfFwAAYA3LvgfpQdUZ1ROqFxxlzMeq143prdUvVverXrsL9QEA\nAHvIsu8pOaO6tnrRBsf/RnV9dbcdqwgAANizlj0gXdv0Ox7c4PiD1YGmkAQAAOwzyx6QLmgK\nPE/Z4PinjVvd7AAAYB9a9nOQXl+9sXpmdc/qJdXbq8uaOtmdUJ1enVk9rnpI9arxHAAAYJ9Z\n9oB0XXVu9ezq0WNab+xzq6fmEDsAANiXlj0gVV1ePaK6S9MeojM6fKHYK6tLqgurl1UXLahG\nAABgD9gPAWnFe8YEAACwpv0UkL6hemh11w7vQbqiurh6W3V+mjMAAMC+th8C0u2qF1fnzDx2\nVXWoqUnD2dXDqx+pXlk9vvroLtcIAADsAcve5vtg9fLqrOpZ1b2rU5qC0cnj9tTq/tVzqgdX\nL2353xcAAGANy74H6UFNTRmeUL3gKGM+Vr1uTG+tfrG6X/XaXagPAADYQ5Y9IJ1RXVu9aIPj\nf6P6b9Xd2l5AukX1jDb+/p6+jdcCAADmZNkPJbu26Xc8uMHxB6sDbf86SAfGBAAA3IAs+x6k\nC5qCylOqn9/A+KeN2+12s7t8vOZG3bv65m2+JgAAsE3LHpBeX72xemZ1z+ol1dury5o62Z3Q\ndHjbmdXjmi4k+6rxHAAAYJ9Z9oB0XXVu9ezq0WNab+xzq6e2/UPsAACAG6BlD0g1He72iOou\nTXuIzujwhWKvrC6pLqxeVl20oBoBAIA9YD8EpBXvGRMAAMCalr2L3WYdrF7YtMcJAADYZwSk\nIx1XfXtT0wYAAGCfEZAAAACGZT8H6UvGtFEbvaAsAACwhJY9ID2u+vFFFwEAANwwLHtA+vtx\n+wfVWzYw/vjqp3auHAAAYC9b9oD0u9W/rM6pnlx97BjjT0xAAgCAfWs/NGn4t01B8NmLLgQA\nANjb9kNA+mj1mOrijt2w4frqUHXNThcFAADsPct+iN2KvxjTsRxqOswOAADYh/bDHiQAAIAN\nEZAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGA4ftEFwD5x6+oLd3D5V1Tv\n2MHlAwDsCwIS7I4/rO65w69xu+pDO/waAABLTUCC3XGj7/zO7+zcc8+d+4Ivv/zynvjEJ1ad\nMPeFAwDsMwIS7JITTjihm93sZnNf7qFDh+a+TACA/Wo/BaRvqB5a3bU6rTqx6byNi6u3VedX\nf7Ww6gAAgIXbDwHpdtWLq3NmHruqOtR0SNLZ1cOrH6leWT2++ugu1wgAAOwBy97m+2D18uqs\n6lnVvatTmoLRyeP21Or+1XOqB1cvbfnfFwAAYA3LvgfpQdUZ1ROqFxxlzMeq143prdUvVver\nXrsL9QEAAHvIsu8pOaO6tnrRBsf/RnV9dbcdqwgAANizlj0gXdv0Ox7c4PiD1YGmkAQAAOwz\nyx6QLmgKPE/Z4PinjVvd7AAAYB9a9nOQXl+9sXpmdc/qJdXbq8uaOtmdUJ1enVk9rnpI9arx\nHAAAYJ9Z9oB0XXVu9ezq0WNab+xzq6fmEDsAANiXlj0gVV1ePaK6S9MeojM6fKHYK6tLqgur\nl1UXzfF1T66O2+DYm83xdQEAgC3aDwFpxXvGtBvuNF7rwC69HgAAMAf7JSDdqulisFc2Xe/o\nY+Pxr2xq4HCH6uLq+WP+dr13LHOje5DuXr14Dq8LAABsw34ISOc2XQfppPHzx6tvqa5uCkM3\nmhn7r6v/p/qVObzuBzcx9lZzeD0AAGCblr3N942rX60+Uf1k9cPVPzQ1Y/jx6q+r+1S3q76p\nelv189UtF1ArAACwYMu+B+mBTXtnvqJ6x3jsF5rOD/r6Dh9aV/WhpvD0nupB1W/vaqUAAMDC\nLfsepDtW/9ThcFTT9Y/+vCkIXbxq/D80dbW77a5UBwAA7CnLHpCua+3f8UYdfe/ZjcbzAACA\nfWbZA9K7qy+szp557POrBzTtXfqSVeO/ujq1aU8SAACwzyz7OUivbmq5/erqhdWh6lFNbb7/\ntHp59R+rD1R3bWrc8PHqVQuoFQAAWLBlD0jXVE+o/qipfXfVP1bf1hSS3lz91qrxj6k+vYs1\nAgAAe8SyB6SqN1W3r+7VtAfpLeO26surJ1V3ri5tul7SO3e/RAAAYC/YDwGp6rPVa9Z4/PLq\nmbtcCwAAsEcte5MGAACADROQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAACG4xddALvq86pTdnD511af3MHlAwDAjhKQ9pdfqL5n\nh1/jgdWrd/g1AABgRwhI+8sp97rXvfqO7/iOHVn40572tD796U/ffEcWDgAAu0BA2mdOOeWU\nvuRLvmRHln3cccftyHIBAGC3bKZJwxOqX93A8j5UPWzLFQEAACzIZgLSHauvOcaYk6rTqi/d\nckUAAAALspFD7N48br+4usXMz6sdqO5QnVBdvv3SAAAAdtdGAtLLq3Oqu1Q3rs5aZ+wnqxdU\nv7390gAAAHbXRgLST47b86pvaf2ABAAAcIO1mS52v1793k4VAgAAsGibCUgfHtOtqjOrmzWd\nd7SWd4wJAADgBmOz10H6L9X3d+zudz/RdEgeAADADcZmAtJXVz9QXVi9tPpodd1Rxh6t0x0A\nAMCetdmAdFFTR7tDO1MOAADA4mzmQrEnVm9POAIAAJbUZgLSBdWXdfTGDAAAADdomwlIf9YU\nkn6uOmFHqgEAAFigzZyD9HXVB6onV4+v3lp95Chj/2BMAAAANxibCUjf0NTiu+qU6sHrjP2H\nBCQAAOAGZjMB6Zeq36yu3cDYT26tHAAAgMXZTED66JgAAACW0mYC0m3HdCzHVf9YvXdLFQEA\nACzIZgLSk6of3+DYn6jO23Q1AAAAC7SZgPQX1U8fZd4XVF9d3aF6RvWabdYFAACw6zYTkF47\npvV8T/XI6llbrggAAGBBNnOh2I34b017kx445+UCAADsuHkHpKoPVmfuwHIBAAB21LwD0s2r\nu1WfmPNyAQAAdtxmzkF6yJjWcqA6tXpA9fnVG7ZZFwAAwK7bTED6mqYmDOv5ZPV91du3XBEA\nAMCCbCYg/Xr1v44y7/rq09X7qqu3WxQAAMAibCYgfXhMAAAAS2kzAWnFrarHN10Y9rTx2MXV\nG6sXVh+fT2kAAAC7a7MB6WHVi6qbrTHvMdWPVt9c/eU26wIAANh1m2nzfUrTHsVQYDIAACAA\nSURBVKLPVE+tvrI6fUxfVX1/dVz1+9WJ8y0TAABg521mD9KDm65zdHZ1wap5/1y9rfqL6i3V\ng6rz51EgAADAbtnMHqQ7Np1rtDoczfrr6kPVl22nKAAAgEXYTEC6tjppg8u8bmvlAAAALM5m\nAtLbm85DesQ6Yx5cfXEuFAsAANwAbeYcpD+t3tvUqOHXq9c2XRfpQPWF1QOqJ1fvrl493zIB\nAAB23mYC0tXVudUfVd8zptX+vvqWMRYAAOAGZbPXQXpHddfqodW9q1tX1zc1b3h99SfVNfMs\nEAAAYLdsJiAdaApDV1d/PKYVN2oKRpozAAAAN1gbbdLw1U3XN/qCo8z/3urPqzvNo6gddHLT\n7/IvqkdVD6vu3sa68wEAAEtuI3uQvqqpIcNNqvtWf7jGmJtX9xnjzmm6cOxe8rDqB5tqPG6N\n+Vc3NaH46epNu1gXAACwh2wkIP3P6sbVY1o7HFU9vam19wuq/149ei7VzccPVT9THape01Tn\nZePnE6pbVWc1tSh/SPVvqucspFIAAGChjhWQvrK6R/VL1e8eY+xvVd9YPaG6TXXRtqvbvjtU\nz2jas/XY1t+zdYfq95oC3iuaGk8AAAD7yLHOQbrbuH3hBpf3nKZD2O695Yrm60FN9TyxYx/2\n9/7qX1UnVt+0w3UBAAB70LEC0q3H7fs2uLz3jtvbbq2cuTu16fyiD21w/LuaOvGdvmMVAQAA\ne9axAtLKBV9P2ODybjJuP7u1cubu4upg07WbNuLuTe/Jh3esIgAAYM86VkB6/7j9mg0u737j\n9oNbqmb+XlFd0XSI4BnHGHvP6rerT1Uv2+G6AACAPehYTRr+rKnb2/9Xnd/hPUprOaX64eoT\nTd3i9oJLq6dUz27qXvfODnexu6ppz9jp1ZnVHZt+18dVH1lEsQAAwGIdKyB9rPq16rurF1ff\nWX10jXF3btr7csemawldMccat+u51duq729q5f3INcZc0hSifq56965VBgAA7CkbuQ7SD1Vn\nV99cPaD6X9Vbq083NUG4Z1PwOK7pYqvn7USh2/Q31beP+6dXpzV1q7uyKRxdNufXO7npwrQb\neX+rvmjOrw8AAGzBRj7AX1Hdv/rJpsPVvm1Msy6rnlX9l+raeRa4Ay4dU01h6c5N1236++a3\n5+uE6k5NoXEjPn/cHpjT6wMAAFuw0T0cK+ch/WR1n+ouTR3rLmtqAf6G9m4wOrF6elONrxqP\n3bb6jabrJK04NB77wbYflC5rujDtRt27KYRev83XBQAAtmGjAWnFZ5pCxquONXAP+cPqIdUP\nNNV94+q1TXt4/qa6oClEfV311KbD3R6xkEoBAICF2mxAuqG5b1M4+s/Vz4/HHtMUjn64+tmZ\nsTdqaujw2Oqc6i27ViUAALAnHOs6SDd092g6bO2nOnz42plNbbz/86qxVzV1uqvpkDcAAGCf\nWfaAdLC6rin8rLiiqXPdWuf7XNp0LtWJO18aAACw1yx7QPrbpk5yT5h57HVNh9idusb4bx7j\n37nzpQEAAHvNsgek11Vvqv5HUwe+L2q6VtOLmy5se7sx7guq76ueX723euWuVwoAACzcsjdp\nuK5pr9DvVD82pn9qOsTuq6oPNB1+d6Mx/v3VuU0tvwEAgH1m2QNSTQ0ZHlB9Y/Xopg51t286\n1+jQmH9h9dKmPUhXLqRKAABg4fZDQFrxmjEBAACsadnPQQIAANgwAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgOH7RBeyib6geWt21Oq06sbqiurh6W3V+9VcLqw4AAFi4/RCQ\nble9uDpn5rGrqkPVCdXZ1cOrH6leWT2++ugu1wjA5jyoekY7dyTEddWPVq/aoeUDsEcte0A6\nWL28ukv1rKag9PbqkzNjblGd1RSMnli9tLpv03+OAOxNZ59++unnnHvuuTuy8PPPP79LL730\n7AQkgH1n2QPSg6ozqidULzjKmI9VrxvTW6tfrO5XvXYX6gNgi255y1v22Mc+dkeW/aY3valL\nL710R5YNwN627E0azqiurV60wfG/UV1f3W3HKgIAAPasZQ9I1zb9jgc3OP5gdaApJAEAAPvM\nsgekC5oCz1M2OP5p41Y3OwAA2IeW/Ryk11dvrJ5Z3bN6SVOThsuaOtmdUJ1enVk9rnpI0wm5\nb1xEsQAAwGIte0C6rjq3enb16DGtN/a51VNziB0AAOxLyx6Qqi6vHtHU6vshTY0bVi4Ue2V1\nSXVh9bLqogXVCAAA7AH7ISCteM+Y1nJ88z0f607VO9v8+3tgjjUAAACbtJ8C0np+telisWfP\naXnvHcva6Pt7ZvWcHNoHAAALtewB6eQxHctJTS2+v3j8/MkxbcffbWLsCdt8LQAAYA6WPSD9\nh+rHNzF+5Rykn6jOm3s1AADAnrbsAekT4/bK6nerjx9l3AOqL6heNH5+8w7XBQAA7EHLHpCe\n1dTF7ueb2n3/QPU/1xj37KZzkL5390oDAAD2mnl2bturnld9efWKpiD0uqaW3wAAAEfYDwGp\n6rLq26uHVneo3lY9vakxAwAAQLV/AtKKV1R3bWrr/VPVBdU5C60IAADYM/ZbQKr6TPV91ddU\n11Vvqh680IoAAIA9YT8GpBVvabqY649Vt1xwLQAAwB6wnwNS1TXVz1Y3r752wbUAAAALtuxt\nvjfq0KILAAAAFm+/70ECAAD4vwQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIDh+EUXsAAHqptUJ1ZX\nVJ9ZbDkAAMBesV/2IN2q+onqLdWnq09Vl437n6zeUP1AdfKiCgQAABZvP+xBelD1+9XNmvYW\nvaspHB2qTmgKT+dU96m+v3p4U5ACAAD2mWUPSDevfqf6ePX46uXVNWuMO7F6dPUL1R9WX5pD\n7wAAYN9Z9kPsHlbdovqX1fmtHY6qrqxeUD2u+qLqm3alOgAAYE9Z9oB02+rq6s0bHP/a6rrq\nzjtWEQAAsGcte0D6ZHWwOm2D42/d9J58cscqAgAA9qxlD0ivG7fPqm50jLE3qf57dX316p0s\nCgAA2JuWvUnDO6pfqZ5SfX310urtTV3srmrqYnd6dWZ1bnXL6meqdy+iWAAAYLGWPSBVPbWp\ntfcPVN+1zrj3VE+rnrcbRQEAAHvPfghI11e/WP1S9RXVGU3nJJ3Y1L3ukurC6p1zfM2Tqn/f\nxt/f283xtQEAgC3aDwFpxfVNQejCXXitU6oHVsdtYnzVgZ0pBwAA2Ij9EpAe2HSO0U2rv6ye\n27T3aLUTmg7H+69j2qqLq4dsYvy9qzc2hTgAAGBB9kNA+tHqp2Z+/tdN5yN9S5+7N+lA0+Fu\nN9+VygAAgD1l2dt8f3FTQHpf9ejq7k0d7W5R/Xn1lYsrDQAA2GuWfQ/S1zYdNvf46n+Px/62\n+pMxvaK6Z/VPC6kOAADYU5Z9D9Jtms7recuqx99XPay6cfXHTV3nAACAfW7ZA9JHms4ruvUa\n895dParpIrEvavn3pgEAAMew7AHpL5v2IP2n1m65/bqmi8c+vHpJdfLulQYAAOw1yx6Q3l79\nVtM5SO+q7rrGmOdU31E9tN25RhIAALBHLXtAqnpS9UvV6R39wq0vqO5ffWK3igIAAPae/XDe\nzdXVdzdd++i6dca9vjqj+prqH3ehLgAAYI/ZDwFpxaENjLmmesNOFwIAAOxN++EQOwAAgA0R\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAIbjF10AAHCDcrC66Q4u//rq4zu4fIB1CUgA\nwGb8SvXkHX6Nr6tev8OvAbAmAQkA2IybPeABD+iJT3zijiz8SU96UocOHTp5RxYOsAECEgCw\nKSeddFK3vvWtd2TZBw4c2JHlAmyUJg0AAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAADD8YsuAACAPeGm1cEdXP5nq0M7uHyYCwEJ\nAIAvrD5UHbeDr/Hn1f12cPkwFwISAAA3qY775V/+5W5xi1vMfeGveMUreuELX3jy3BcMO0BA\nAgCgqtNOO61b3vKWc1/uySfLRtxwaNIAAAAwCEgAAACDgAQAADAISAAAAIOABAAAMOzHLnYH\nmlpZnlhdUX1mseUAALCP3bj6pnb2GlR/VX1wB5e/VPZLQLpV9e+rh1ZnVCfNzPtU9bbqj6tf\nqz6569UB8P+3d+dhktT1Hcffszt7D7ssh4Art7BoiOABckTFI0ER8VwiiEFEkwiP5IlE1AfR\n8Ubw4eEB8UBQDKDGGBfwAA1R8SYIGBCRa1EE5BCQvefYnfzx/dYzvb3dO70zXVPbPe/X8/RT\n01XVVd+t2e6pT/9+9StJmqpe3tPT8199fX2lbHzNmjUMDw9/ETixlB10oakQkP4O+AawFdFa\ndAfwKDAAzCLC0wHAocCpwKuAGyqpVJIkSVPN9Pnz57N06dJSNn7WWWdxzTXXeFnNZuj2gLQ1\n8DXgL8BxwHeB4QbrzQaWAOcAS4HF2PVOkiRJmnK6PU2+ElgIHA1cReNwBLAWuBQ4FlhE9AOV\nJEmSNMX0ACP584eA/upKKcX7iH/XzBbXnw4MAqcDZ05gv7sD19N6C10v0QVwJjA0gf2O5aLe\n3t4T58yZU8rGV6xYAbCScv4N04A+yrtGbBbx+19d0va3mjVrVu/Mma3+V2zd+vXrWbVqFcCT\nwPq27wBmEMdnZQnbhrg4dT3R7bUMC+fOncv06e2/9nVwcJCBgYERopW6DLOJz+k1JW2/j/iC\nqNmXRxNR9nt29vTp0+fMnTt37DXHYeXKlYyMjKwhjk8Z5hPvqTLes73E/52y3rPzZsyYMXP2\n7NmlbLzkvyXTiYGayvxbMo1y37MDlPd3dsG8efOYNq3935+vXbuWoaGhYeLa7zLMJT7LBkva\nfpnv2Rk9PT19JV+DdDHwtlJ20D36gQ9C93exW06c3D0FeKSF9XciPiAm+sH5B6LVqtXj20PU\nWGY4AjhjeHj4a/nHpwy7A3+knJOtHmBP4O4Stg0RUOcBD5W0/acNDAw8PjAwUFYA2wu4q6Rt\nzwJ2AO4raftPIf7gP1nS9vdcvXr1vZR3IroLsKyEbUO0gPcS102WYVfgT5RzQlH2e3beunXr\nFqxYseLBkrb/VOL/ZFndrZ8O3MPol5TtNJP4e1bWiFXbDw0NDQ8NDT1R0vb3ID5vygruuxPH\nvgwLiM/MVs45xmMX4GHK+0Jpr1WrVpX1t2QusA1wf0nb35F4v5Z1klPme7Z3ZGRk5xUrVtxb\nwrYLt5W47a40ko/+iusowzOJf9vljN2KNI8YyW49sHfJdUmSJEnacvSTuajbW5B+C3wGOAl4\nEfAtIkE/SnxjWnwz/izgKGA74BPAnVUUK0mSJKl63dyCBNHN4xSi69fIJh53AsdXVKMkSZKk\n6vQzRVqQIP6h5wHnA/sS3e6eQlzAupa45uRW4HdVFShJkiRpyzAVAlJhhAhCt1ZdiCRJkqQt\nU7ffB0mSJEmSWmZAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRA\nkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKk\nZECSJEmSpNRbdQFSi14KXFt1EZIkSR3ol8DBVRfRKQxI6hSrcnoIMFhlIWq7c4D7gHOrLkRt\ntRfwVeAlwPKKa1F7fZz4nZ5ZdSFqq12AbwJHAI9UXIva64PAiqqL6CQGJHWam4G1VRehtnoS\neBi4sepC1FZDOf0/4PEqC1HbPUH8Tn3Pdpfii4xbgAeqLERt91jVBXQar0GSJEmSpGRAkiRJ\nkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKk1Ft1\nAVKLBoF1+VB3GcyHussgMAIMVV2I2s73bHcarJuqe/g7HYeRfPRXXIc0lj2qLkCl2B7Yquoi\nVArfs91pW2BB1UWoFL5nu9PCfGjT+slcZAuSOsmyqgtQKR6tugCVxvdsd3qs6gJUGt+z3emJ\nqgvoNF6DJEmSJEnJgCRJkiRJyYAkSZIkScmAJEmSJEnJgCRJkiRJyYAkSZIkScmAJEmSJEnJ\ngCRJkiRJyYAkSZIkScmAJEmSJEnJgCRJkiRJyYAkSZIkScmAJEmSJEnJgCRJkiRJqbfqAqRx\n2i0ftwKPVVqJJmIusBiYDtwFPFltOWqj6cAhwGrgxoprUfvMAvbM6TJ8z3aLHmBRPv4EPACs\nq7QileF5QB/wC2Cg4lq2eCP56K+4DqkVPcA7gTXE/9sjqy1H4zQN+DiwitHPoEHgQmB2hXWp\nPXYHfkr8Xn9VcS1qj9nAWYx+9haPK4kvq9S5jia+oKr9vT4AvK3KotR2BxGhdwR4WsW1bKn6\nGX0PGJDUMXYCrgGGgF9jQOpkHyN+f1cBLwdeDFyc875cYV2auOOB5cDNxHvVgNQdLmf0PXsU\n8b79fM67C5hZXWmagDcy+js8ETiMCEb35vzjK6tM7TSD6HFTnPMbkBrrx4CkDnQ+8aF9EPBe\nDEidajtgLXADG18HeQWwHnjmZBelttiWeF+eR3TBWosBqRvsQ/xef0i04tf6Zi47fLKLUlvc\nSnS1WlQ3fz/i93rdpFekMpxBfGH1XQxIm9JP5iIHaVAnuQbYH/hl1YVoQo4gTp4vIsJQrQuJ\nE7DXTXZRaotBonXhFOzf3k3WAacB7ye/Wa3x05w+dVIrUrucBrye6FJX6xbihHrBpFekdlsM\nnA6cC9xZcS0dw0Ea1Em+U3UBaov9c9rowv1f1a2jzrIC+FbVRajt7gLObrJst5p11HmubjL/\nhUS3rBsmsRa1Xw/xxeODwAeJa3/VAgOSpMlWNO0/2GDZo8AwsPPklSNpnPYBTgBuAn5WcS2a\nuL8BtgGeSwyGdAvwgUor0kS9nQi7hxMjiqpFBiRJk21uTtc2WDaS8+dNXjmSxmEXYgS7YeBN\nbNz1Tp3n24x2qfsq8G/EkN/qTDsBnwQuBb5fcS0dx4CkLclHgCV1804gxutX9xjOabPPn17i\nWhZJW6YDiNHspgEvBX5XbTlqkzcBC4lrVt4K3AYcQ1z/q85zPvH39l1VF9KJDEjakiwHHqqb\n54ly9ylu7LsQeKRu2VzifiuPT2pFklr1RuBLwD3EKKK/r7QatVPtdb6fJm6ncSnR5blRi7+2\nXK8mBt94M/DnimvpSAYkbUnOpvmFwOoed+R0cc3PhX1yevvklSOpRf8AXEJ011lCDMqhzrY1\ncS5YfxL9MHAtcBxx24WbJrkujV8vcAGjX14cV7Os+Bv7WuAJ4CtsPJqsMCBJmnzX5vQIoptO\nrVfl9HuTV46kFhwBfJG47mgJo11l1bl2JAbLuR44uMHyHXJqT47OMpvR+1pd2mSd83L6DWwd\nbMobxaoTeaPYzvZz4j45h9XM25/oZnkHfnnTLbxRbHdYQHSHvQ2YU3Etaq/riL+l/8KGNwE+\nlmhZ+D0b39BbW76+Jo8LiN/33vlcG+onc5EnIeok1xE3GIXRmxJ+irh5IcSFpP2TXJPG5y3A\nj4EfEPdDGgIOJLrsHIPfTneqNwMn1zyfSXTpqL258xuA+yezKE3YCcD2xJcaP2yyzneIgXbU\nWd5MDNF+LvBuIhAtIu5vtRw4HrtgdaKVTeYP5XT1JtYRfkurzjLA6FCyy/JRawh1ijuBfYGT\niBGxeoBPAJ+l8f2R1BnWsWF3jR83WMfhoDvPX4gvqDbFz9/OdB+wFxGEnk+Eo18DFxODcTxQ\nXWkqwd3Ee3mg6kI6gV3sJEmSJE1l/WQusl+pJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUD\nkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIk\nJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJ\nkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOS\nJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiR1v12Bw4Bt8vncfL53ifss9rF4M9bdu+75\n4ibLJUkq1Ug++iuuQ5LUul2I0LBtC+u+n/icf3k+3yeff66Uyjbcx0Wbse7n6p5f1GT5RG3O\nsZMkTQ39ZC6yBUmSOtPRwA+B547jtY8A7wOWtrWi8RurnkbLjwU+M879TeTYSZK6XG/VBUiS\nxmVlTleM47WPA2e2sZaJGqueRsuPBPYY5/4mcuwkSV3OgCRJnanZSX4P8AxgK+AuIlzUmwsc\nCDwI3FkzfwbR/Wz7fN0yYLjJ/rcDdia6IywDlo9R73zimqIh4Dd1221WT6PlfyJafg4G1hBd\n5Z4gWpkWA/cAf2ywjUXAXrn9VgPSDsSxbOZW4LExtlHYnGO7MGtdQfx7BpusN5+4Lms6cC9x\nDGoVx+1e4A9EV8XtgZ/UrTcvl/U22Y4kTTlegyRJnec1xGf3bjXz/gq4ndHP9SHgXOAMxr4G\n6WTgoZrXjhCB5IS6/e4CXAusr1lvPfBlYEHNerX7OA1YXbP+wzW1NKpnU9cgPa+uxpGs5xn5\n87c2OlLh8ly+H42PXSPHNdhX7ePIMV5faPXYzgP+nQhOxXqPNFivjzjeQ3Xb/EHdv6k4bh8B\nvpA//6Zm+WzgAmCAjY9n7XYkaSroZ/Rz0IAkSR2oD9iX0Z4AM4gWo3XAqcCewKHEtTb3sOmA\n9KJ8/n3gEKLr2gvz+Uhup3AL0aLxTiKQ7Qd8Mte7rGa9Yh+/AW4jwsSz8nVriVacHZvUs6mA\nNB3YOrdxQ/48L9f7GREadqg7VrOJFq6bmhy7ZvqAp9c9DiNarv4M7DTG62Hzju2VOe9TRAvZ\ny4BfEAH0NTXrXZ3rnUm0IC0G3k0Eq7uBObne7rne/wA3A0cBB9Vs5+vE8Xo/ETD3BP6JOFZ3\nEy1QkjRV9GNAkqSu8koaj/Q2h9HWi2YBqRjl7rC6124NfBR4fj7vA04HTmqw/9uJVqJi8J9i\nH8PEiXqt03PZvzapp5VR7NYCv6zb7gm53ql181+b809pUPfmmEYEzhHg1S2+ptVje0Cu96W6\n9XYkjuF/5/NDcr1vNNjXx3LZW/L50/L5OmKo91rPZTSM1XtnLqtvuZKkbtaPo9hJUlc5OKff\nr5u/BvjeGK8trtk5mbj+pfAX4gT/+ny+kjgJ/yxxjcwLiVaOlwGriDDWV7ftG4nrWmoV9Rw4\nRl2b6+vEdTvH180/mmgp+coEt/9eIuh8lmjtaUWrx/bwnH677vUPES1kf5vPX5bTbzbY11U5\nfVHd/JuIa5BqvSKnw8Ab6x4zc9kLGuxDkrqegzRIUndYlNMHGiy7b4zXfgV4HfAGomXkeqLF\nYikxEEGtJcA5jLZOrMnp7Fxe/8Xb3Q32d39Od2ywbCJWAV8F/pFoIbmRCG1HEtcm/XkC2z4A\n+BDwWzZuofoIcVxqnUB0j2v12BYj8t3PxgZqft4tp8sarFeEoJ3r5jfaZrG/9zRYVmj370eS\nOoItSJLUHWbkdKjBsnVjvHaIOHl/MdGtbRERBm4BrmD0mpYDgK/l+i8mWhrmEa1G1zbZ9kCD\neUWNZXxJV3TLK1qRXknUd8kEttlHBJ11wDFEKKy1nGjpqX0UI8+1emyL31+zke0KxXqNRrYr\njuusuvmrNrGdw7OGRo9WuxFKUlcxIElSdyiGrF7QYNl2LW7jR8T1RXsQWR59VQAABANJREFU\n1/38J3GS/N5cfgzxd+PUXLf2ZL7ZPhrVU8x7ssW6NscNRPg4mqh1CTFq3tUT2OaniQEaTstt\n1zub6HpX+7ixbp0fseljWwzHvu0YtWxqvW1y2srQ40Vr2nbE9VyNHo3CtiR1PQOSJHWHu3K6\nb4NlBzeYV2s+EQBq3UEMcz3M6EhrxTU09d27dgee3WTbz2kwr6jx9jHqGq+LiJHsjiC6113G\n2C0zzfw90Rr1XeC8cby+1WNbjLB3EBu7kAhpMBq8Gl2/dUBOb26hrl/l9BUNlu1IXOtkN3xJ\nU5IBSZK6Q9FCchIbti4cTQyvvSlLiRHh6kebexZxkvxgPi+CUe1J/ELi3j231zyvtSsxdHRh\nFvCu/LnVgQ4aWUvc9LSRy3L5BcRQ1ZeMcx+7Ap8nWqDGO6Jbq8f2CmLghpPZcMS51wNvZzSs\nXEHcGPdkNhxmvI+4nmiIDYdbb+ZKohVpCaPBCqLr3aeJ66QahVtJmhIc5luSusOFjN6I9Urg\nJ8RJ8Nk5v2gtqB82+0Ciu9saYhS8y4kT5AHiRqWLc72nEtfbDOQ6lxJdvj5AhJ4R4OdEi0tx\n49bLicEDfkzc3PSOnP8fNXWPZ5jvYrjtnxKj19Urbgx7Q+ND1ZJLcxu3EKGj/vG6FrbR6rGF\nGI58kBgt8GriWI4Qx6w2eB6Vr3+MCKeXEEFrPfCOmvWKgTSaBabDiaHZ1xJB7jLg94zeXFaS\nppJ+HOZbkrrOPwNvJULDTCIcPI+4Ueh1jF7zszqf35nP/xf4a2II7yeI61IeIloknk6coEOc\nhD8b+AJxvcsI0VXsw0RLy/m5j3XEif51RJA5MGvanmhpegdwbE3d9fUUz+9oshzgRCLAPMFo\n98JaRYvaFxssa9Ufcr+PE2Gj/jG/hW20emwhQsp+RNCFGCL8VGD/fG3hqtzmxbm9HYiQ+Bxi\nCPLCQNbfrCvj94gg+ymihWoh8B1ieO8zWvi3SVLXsgVJktRtriHCWv19mSRJaqQfW5AkSV3q\nRKL72DlEdzVJklrmCDWSpG5xLtHN7AVE98JPVluOJKkT2YIkSeoW04jrlT4KvIQYfECSpM1i\nC5IkqVucUnUBkqTOZwuSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIk\nJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJ\nkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOS\nJEmSJCUDkiRJkiSl3pqfDwXeU1UhkiRJklSRQ4sfeoCRCguRJEmSpC2GXewkSZIkKf0/Fp9J\nFc68KtMAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'disability' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebxsaV3f+8/peYSGRhoQ1AZpEKIgDuAQIJExXqYEDIgiEbhywavmStQk\nXm1QEi9JAAcU6DgkgDIpQUgEGaItMQpimCNjQ9uA0tBAD6fnPveP9WxPnd1777PHqn32fr9f\nr3rt2rXWqudXq1atWt9aaz3rQHUoAAAAOm7RBQAAAOwWJ8zc/x/VOxZVCAAAwIJ8Z/UdS/8c\nGrfzF1UNAADAAp3fyEUOsQMAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQGK/\n+/rqgeN2p4VWwl7w2OrQuF2z4Fp2m0XNm620++iZaW/Yhlp2Yn2z3TXuNotYbrbSpnUA7AEC\nEvvdc6r/Pm6PXnAtLMZ3Nm2wnrbgOtj7rG/YLOspmKMTFl0ALNgVq9xnf7hH9Sfj/tdVf7XA\nWtj7rG827i3VN477Ny2ykHXaiXqtp2DOBCT2Oxss+9sTFl0A+4r1zcZ9uXrPoovYgJ2o13oK\n5kxAYr+7cub+5WuMd2Z15+r06ovVR1v9eP87VOeN+5dV7xv3T6vuWp1Ufai6ah31fWV1x+r6\n6uNNX77bYbbGK6p3j/tnVl/bdPjt/64OHuV5Thzj37q6uvpIR87TldpbmifHV/cabf7xCtOs\n57Vvdl5/fXV29fiZx761ul11SfWxFdrais289xtZ5s6tvnrcv7z6y2XDb1P9vXH/UCvP70Z9\nd63OGm1e0tqfiyVbWU53et6s161GHUvL8bUbmHa9822965udqLG2Zz12m/Ecn6s+uWyak8c0\np1Tvb+1zcNa77viK6p7j/k3VheuocTPL1Hqs53nXqnfWepaZzaynNvvZOGvUc82Y5pqm9+g7\nZsb5k+rGcX+j6/StfFfU9i13sG5LJxOev+A6YBF+usOfgfutMPy+1R82bfgdmrldWf2n6qtW\nmOYHZ8b7n+Oxn2jaaFx6/OrqZ9eo64lNAWW2zeur13V4Q3grZmv8aNMXzItGXbOv8V+tMv2t\nql9r+kKfrfGG6lXV7ZeN/5SOnCe3bvriW+nE8o289s3O6zcue/7Z2wtXec3rMXuC9tIego2+\n95tZ5n5+Zrw/W2H40U7kv1P1io58/w81beC9uench5Vs5L1a1Lw52knzZ45pZ5/zC9X/XT2y\n7Z1vR1vfrGYrNdb2rMeOq35p2XP8aYc/64+r/nZm2Jer713heTe67ljr/duOde1KtrKsHm15\n28gys5H11Gbe46pbVi9bNt1l1Y82BabZ5zp5Zrr1rtM3+n7v1HIH63F+h5elv7tz/uLqgYX5\nnuod43bnZcO+t5t/2Sy/XdrhX+aXPH5m+Aer/2eN6Z+xQk3PXTbOZzryi/mSpl/st2K2xs9U\nL1+jxmctm/a0Dn8RLn2xf2H8XXrsI9UZq7T3geoXZ/6f/TLd6Gvf7Lx+/Wh3+Rf2DdV/WH22\nHdXsxtHfHqWeZ64w/WaXua0EpNs2zefZNq5d9v+N1SOWTbfR92pR82atDdYD1VvXeL7fmbm/\nHfNtrfXNarZSY23feuzZq0z7h017NZZ/npbqmX3ezaw71nr/trquXc1WltW16t3oMrPe9dRm\n3+MDTR2GrDbNLy37f9Z61ulb/a7YruUO1uv8Zpb3pTvnL64e2HXu1vTltvT5+P3x2C2rhzVt\n/M2uxGd7hJz9gvxi0y+QL6weXP1UR34hfnxZu39/Ztj11cPH48dVz58Z9uotvr7HdeSX1lVN\nX7JnV9/WdBLw0vArq1vMTPujy4Z93Xj8Lk2/PC4N+7GZaZZvcFxevbdpvvzGGGczr30r8/p2\nM8MOVXdfdW6t32w9Xz5KPZ9YNu1WlrmtBKSfmRn2xqb5UnVqR24YfnRmmq2+V/OcN2ttsP6T\nmWGHql9tOpTnVt08AG7HfNuMrdS4neuxy5o+04/u5hu9H2wKcY+q/v2ymn5p5jm3uu5Y/v5t\n5fO/lq0sq2vVu5ll5mjrqa28x7PfA4eq32z6UeMrxutda9lazzp9q+/3di13sF7nd3gZ+rs7\n5y+uHth1Xtrhz8Zfd+ShBTX9cjW7Mv5HM8Meu2zYBcumXf6L2G1mhr165vHfXjbdidVnO7xR\netuNv6xVa/zpZcPvt2z47EnC/0fTXqVndfOTh182M81r1mjvLeP1zNrMa9/KvN7pgLTReray\nzG0lIP2nmWErHVL5g9U/blomljau5v1ebdfncfkG6+/ODPtoN7/0xTvb3vm2GVupcTvXY8+Z\nGXafZcP+tmkjf8mFM8P+dObxra471gpIG12m1rKV512r3s0sM0dbT23lPf69mcc/2c3PS3/v\nzPC1AtJq6/Tt+K7YjuUO1uv8xjLkOkiwsofM3H9dNz8Z+p1Nv8wt+YdrPNfyX7L+YNn/s1+u\n95+5f23TL4BLt+9qOjyjpi+yb1+jzY16xbL//6zpy2fJfWbuv7Hp17oXVP+rw9fneGBHflmd\ntUZ7/6Zp43nWdrz2jczredhIPdu5zG3E7C/rP9P06+8Tmzp+aPz/e03LxFK3xfN+r3Zq3nzz\nzP03dfNumV+1xrSbmW+bsZUat3O+vWzm/l925An2v9t0Ts2S2RP0bz1zfzvWHWvZqc//dj3v\nTiwzW3mPv2nm/n/t5iFo+Y8fa1lpnb4d7/d2LHewYXqxg5s7viNPaF3tEJlPNPXcVaufAHuo\n+vCyx/5m2f8nzPw9Z+bxJ4/bar52jWEbcWP1qRUe/9RMPbN7q05s+pXl/2o6zGc1B9YY9r+W\n/b8dr30j83oeNlLPdi5zG/WS6mnjeU+u/tm41bRh9camw7rePx6b93u1k/PmdjP3V/oMXLzG\ntBudb5u12Rq3ez120bLHPt/hc0eWP/fnZ+7Pfua2Y92xmp36/G/n8273MrPV93h22Vr+/q72\n2GqWr9Nr6+/3di13sGEWILi5kztyhX3dKuPN/lq2/LCG2WmXT79aT1MnLfv/I02HKq3mC2sM\n24irW/nXytm6Zw+deHHToSA1fYG9qWkj7YamXwjvdZT2rq++tOyx7XjtG5nX87CRerZzmVvJ\nWhucf9t0GM6/bTq85fSZYXesnt60UffDTe/9vN+rnZo3BzpyuV7pedfqLnij820ztlLjdq/H\nlr8/N87cv3qNYbO2uu5Yy059/rfzebd7mdnKe7yeZetol3mYff7l6/Ta+vu9XcsdbJiABDd3\ncNxOG/+vdvjEV8zcv3Sb2r2uwxugv1H9f9vwvEdzRtPhDsu/bM6eub90XZvbd/gXz6qfrP7d\nzP+/1tG/9FYKY4t67bvFVpe5QzP3T+vmzlnhsVmfbdoL9ENNG3D3a+qs4yFNG3HHV7/cdAL4\nZ5rve7VTn8dDTYfrnDn+X+kX7tut8Nisjc63jdpKjYtaj61mO9Yde8F2LjNbeY8PNXXOs7Q3\nZjPL/5KV1uneb45pzkGClb1r5v5K51DcqsM98tR0nPd2mD204p6rjrX9vm3Z/7foyEOjPjL+\n3rMjf7H8r8umu/cWaljUa1+ymcN6ttNWlrnZcHvHbr5u/9Z1tH980/kLf9K0IfOPm86NWDrE\n5YSZ55n3e7VTn8fZC23eZ4Xh91/hseU2Mt82Yys1Lmo9tpKdXHcca7ayzCxfT23lPZ5dtmbP\nR1rygFVqWA/vN8c0AQlW9p9n7j+sm2+E/HyHD0+4snrtNrX7ezP3H9uRIeU21aebjif/0w4f\nU74dfqIj1wc/3pGHX7xl/F1+GMbsdW7+UUde/PKWG6xh3q99+aEbd9mG59yKrSxzs10N36qp\n17old231Cyee3HTew0VNV6g/e9nwSzvyfIulIDbv92qnPo9vn7n/8I68dsp5Ta9tJZudb5ux\n2RprceuxlezkuuNYsNll5mjrqa28x8uXrW+c+f/urb1sHc1+f7/ZA5a6RDx/wXXAbnJCR3YZ\nek3TF9G/a+phaLar0acvm/ZoV1K/47LpZzd4zmo6Rntp2OerX2k6Zv2imcdfucXXN1vjwabz\nRP6iel71hmX1vXlmujObDstYGvbhpuPln9/0hT7bJfH1TdcM+daOPk9qc699K/O6pg2GpWGf\nqV7UzS+MuxFbqWcry9ytm97H2ff0JU3vy+ebNoSWhi0/HGb2IsEXjfae1dTL1ux0n+lwz1Pz\nfq926vP4tU0bckvDv9h06M+vNl1/5RNt73zbjK3UuJPrsY+tMe0Pzwxb2kuxE+uOrX7+V7OV\n511r2s0uM2utp7byHp/XkcvW5U3XQvr1pnOKPjkzbK1uvleaRzv1XbHR5Q424vwOL0N/d+f8\nxdUDu9JZTb/4HVrldrBphbzcVr+079GRXwLLb69raxtcy2u8qnpkR15scPZL5iuXTfujK4x3\nqOnK5qc2HfIx+/j5rS8g1cZf+1bn9S+v0MYb16jvaLZaz2aXuZrOabhphWn+uOlwltnHZs8/\nPbPpYourtXmoqfe02e6ma/7v1U59Hn+o6eTu5c/3vqYLUM4+NrtXdbPzbTM2W2Pt3HzbzIbq\ndq87jrWAtNll5mjrqa2sN57eysvWB6rvm/l/owGpdua7QkBiJ53fWIZ00gCr+1LThe6+s2kj\n5LymlfoXqj+vfqcjrxW05NIOX49hpZ6Bru3I6zVctWz4h5o2Pr+n6ZoVd2j6gvtk0+ER230B\nvOOaTgi+d1MPSndvqvtPmvZCLK/vFzv85fmVTYeL/Nemi4feWP2Tposg3qXpkJE/qE5p7Xmy\nZKOvfavz+p83fZE+sOkQmM82bdhv1lbr2ewyV9N79cGmE8C/akzzlqZfrU9f1u7JHd7guaJ6\ncNPhOQ+u7ty0IXdt08bahU3zZPnGyrzfq536PL6kqYvip1Rf07SH5o+bLup5m2U1ndThHsE2\nO982Y7M11s7Ntz/v8PV1lncm8OmZaT898/h2rzu2ukytZivPu9a0m11mjrae2sp648VN1xf6\nwabzoL406vit6kHLXvOso82j2pnvis0sd7Aps8kd2B/Wu0cHgP3pR7JHhv3l/OxBgmPemW2u\nB7G1rlnD1ubrShfyBNiNHth07s+dms5jvFfTXp6a9kTOdtP9R/MsDBZNQIJj152qn97EdK9v\nOkSHlW1lvl6wzbUA7JSPNB2Wt3TB2v/Z1MHDoaaeMJe64r6m+g9zrw4WzCF2sP84xA6Ahzf9\nYLZaBw9faOqWG/aD83OIHexr6znBFoC97Q+aeuX7nqZrE92hqSfEzzbtUXplU/ffsO/YgwQA\nAOxn5zdy0XELLgQAAGDXEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAACGExZdAMAu\ndZ/q1nNu81D1juraObcLAAwCEsDK/vS00047+fjjj59bg1deeWWHDh36p9Wr59YoAHAEAQlg\nZSc85znP6T73uc/cGnzc4x7XF77wBetlAFgg5yABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwnLLqAOTq9emB1z+q21SnV1dVnq/dVF1bXLao4AABg8fZDQDqp\nem71zOrUNcb7UvUL1fOqQ3OoCwAA2GX2Q0B6ZfWY6i+r11YfrC6trq1Orm5X3bt6fFNAOrd6\n+kIqBQAAFmqvB6T7NoWj51fPavU9Q6+rfq56afVD1a9UH5hHgQAAwO6x1ztp+LamUPTsjn7Y\n3A3VT477D9zBmgAAgF1qrwekk6sbqyvXOf4Xq5uaOnQAAAD2mb0ekD7adBjhw9Y5/mOa5slf\n7VhFAADArrXXA9Kbqkuql1fPqM5ZZbw7NR1e95vVx8d0AADAPrPXO2k4WD26en31onH7QlMv\ndtc1HYJ3TnXWGP8j1aOaergDAAD2mb0ekKreXZ1XPbHpULt7dPhCsddUn6neXL2henV1/WLK\nBAAAFm0/BKSa9iRdMG7zcOfqQ017qNbrxg53KgEAACzAfglIVXdo2mN02cxjpzQdUndu9dmm\nvUiX3XzSDbuoekh10jrHv2f1wur4BCQAAFiY/RCQzqteWX3j+P/C6nubrov0jqZwtOSL1SPH\n41txaLSzXge32B4AALAN9kNA+p3qXk2B5erq25sC0yeqW1T/uqmnu3s09XT36qbQpKMGAADY\nZ/Z6QHpAdZ/qsdXvjse+pnrfePz+TZ04LPnD6m3Vg6s3zq1KAABgV9jr10H6uurzHQ5HVZ9s\n6rXuMx0ZjqreXn2puvs8igMAAHaXvR6QzqyuWOHxq6orV5nmYOvvXAEAANhD9npA+mR1p+r2\nM4+d0HQe0nkdvkDskq8c4356HsUBAAC7y14PSG9t2lv0+03nIT2i6XC721T/q/rPTd1/V921\nekV105gOAADYZ/Z6Jw1frH6ienH1mvHYoeoHq4ubOmX4dHVdhw+r+zfZgwQAAPvSXg9IVS9t\n2lv0yKauu19fvX8M+67qX1RfW/1t0x6lX19AjQAAwC6wHwJS1bvGbbk/HjcAAIA9fw4SAADA\nuglIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAwwmLLoC5elD1uAW0\n++bq9xbQLgAAbIiAtL888Xa3u92T73a3u82twYsuuqiLL774TglIAAAcAwSkfebe9753P/ET\nPzG39i644IIuvvjiubUHAABb4RwkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIDhhEUXMEenVw+s7lnd\ntjqlurr6bPW+6sLqukUVBwAALN5+CEgnVc+tnlmdusZ4X6p+oXpedWgOdQEAALvMfghIr6we\nU/1l9drqg9Wl1bXVydXtqntXj28KSOdWT19IpQAAwELt9YB036Zw9PzqWa2+Z+h11c9VL61+\nqPqV6gPzKBAAANg99nonDd/WFIqe3dEPm7uh+slx/4E7WBMAALBL7fWAdHJ1Y3XlOsf/YnVT\nU4cOAADAPrPXA9JHmw4jfNg6x39M0zz5qx2rCAAA2LX2ekB6U3VJ9fLqGdU5q4x3p6bD636z\n+viYDgAA2Gf2eicNB6tHV6+vXjRuX2jqxe66pkPwzqnOGuN/pHpUUw93AADAPrPXA1LVu6vz\nqic2HWp3jw5fKPaa6jPVm6s3VK+url9MmQAAwKLth4BU056kC8ZtHu7cdL2lUzY43YEdqAUA\nAFin/RKQqo5v6tFuyRnVdzeFmWur91R/1NSL3VZdVD20Ommd49+zemFH74ocAADYQfshIJ1b\n/aemvUcvG489pPrt6uxl476vqSe7T2yxzUPVhRsY/+AW2wMAALbBXu/F7sTqbdV9O7z36A7V\n71WnVS9oOjfpKdUrq69vOhdpPwRHAABgmb0eBL67aQ/SP23qgKHq8U0Xgv2u6u0z4/5G9RfV\nv2/aw/Tf5lcmAACwG+z1PUh3bdpz9Lszj31N9amODEdLXtp0eNw9d7wyAABg19nrAemaps4Z\nzpx57HOtfp2jG5sC0g07XBcAALAL7fWA9N/H35+beex1TXuR7rHC+D/eNE/etbNlAQAAu9Fe\nPwfpA9VLqh+uvmHcf2f1U9Xrq5+vPlLdsfq+6pHVW6p3LKJYAABgsfZ6QKp6RnVJUyh6xbJh\nv7Xs/1dWT5tDTQAAwC60HwLSTU17in65enj1LdVXN10o9obq89X7qzdWH15QjQAAwC6wHwLS\nki837SF65aILAQAAdqe93kkDAADAuglIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAMNGAtKTqhev4/ku\nrr570xUBAAAsyEYC0p2r+x1lnNOq21Z323RFAAAAC3LCOsb5s/H3jtWtZv5f7kB1bnVyddnW\nSwMAAJiv9QSk/1Z9S3XX6tTq3muMe3n1suq3t14aAADAfK0nID1n/D2/enRrByQAAIBj1noC\n0pKXVq/eqUIAAAAWbSMB6TPjdrvqG6ozm847WsmHxg0AAOCYsZGAVPW86sc7eu93z246JA8A\nAOCYsZGA9K3Vv6jeX72h+kJ10yrjrtbTHQAAwK610YD010092l27M+UAAAAszkYuFHtK9cGE\nIwAAYI/aSEB6d3X3Vu+YAQAA4Ji2kYD0R00h6d9VJ+9INQAAAAu0kXOQ7l99snpq9X3Ve6rP\nrzLu740bAADAMWMjAekfNHXxXXXL6qFrjPuxBCQAAOAYs5GA9MvVb1Y3rmPcyzdXDgAAwOJs\nJCB9YdwAAAD2pI0EpK8at6M5vrqk+vimKgIAAFiQjQSkH6x+dp3jPrs6f8PVAAAALNBGAtKF\n1XNXGfYV1bdW51Y/X71ti3UBAADM3UYC0tvHbS0/Wv2T6gWbrggAAGBBNnKh2PX4xaa9SQ/e\n5ucFAADYcdsdkKo+VX3DDjwvAADAjtrugHRW9Y3Vl7f5eQEAAHbcRs5Beti4reRAdevqQdXZ\n1Tu2WBcAAMDcbSQg3a+pE4a1XF798+qDm64IAABgQTYSkF5avXGVYYeqK6tPVNdvtSgAAIBF\n2EhA+sy4AQAA7EkbCUhLbld9X9OFYW87Hvts9T+ql1df2p7SAAAA5mujAem7q9+pzlxh2OOr\nn64eVf35FusCAACYu410833Lpj1EV1U/XH19dc643av68er46rXVKdtbJgAAwM7byB6khzZd\n5+ibq3cvG/a56n3VhdW7qodUv78dBQIAAMzLRvYg3bnpXKPl4WjWX1QXV3ffSlEAAACLsJGA\ndGN12jqf86bNlQMAALA4GwlIH2w6D+kfrzHOQ6s75kKxAADAMWgj5yC9pfp4U0cNL63e3nRd\npAPVHaoHVU+tPlK9dXvLBAAA2HkbCUjXV4+s/kv1o+O23P+uHj3GBQAAOKZs9DpIH6ruWf2j\n6tur21eHmjpv+JPqzdUN21kgAADAvGwkIB1oCkPXV68ftyUnNQUjnTMAAADHrPV20vCtTdc3\n+opVhv9Y9cfVXbajKAAAgEVYT0C6V1OHDN9Ufecq45xVfccY77bbUxoAAMB8rScg/Xp1avX4\n6nWrjPOvqu+v7lS9aHtKAwAAmK+jBaSvb9pz9KLqVUcZ9xXVb1WPaQpKAAAAx5SjBaRvHH9f\nvs7n+43q+KYe7gAAAI4pRwtItx9/P7HO5/v4+PtVmysHAABgcY4WkJYu+HryOqyXkagAACAA\nSURBVJ/v9PH34ObKAQAAWJyjBaSLxt/7rfP5Hjj+fmpT1QAAACzQ0QLSH1XXVj9ZnXiUcW9Z\n/cvqy9XbtlwZAADAnB0tIH2xekn1LdVrqrNXGe9rq7dUd65+pbp6uwoEAACYlxPWMc5PVd9c\nPap6UPXG6j3VldWtq/tWD23qve4t1fk7USgAAMBOW09Aurr6h9VzqmdU/3TcZl1avaB6XnXj\ndha4jU5vOkfqntVtq1OaXttnq/dVF1bXLao4AABg8dYTkOrweUjPqb6jumtT4Li0qQvwd7R7\ng9FJ1XOrZ1anrjHel6pfaAp5h+ZQFwAAsMusNyAtuar6w3E7Vryyekz1l9Vrqw82Bbtrm7ov\nv1117+rxTQHp3OrpC6kUAABYqI0GpGPNfZvC0fOrZ7X6nqHXVT9XvbT6oaaOJj4wjwIBAIDd\n42i92B3rvq0pFD27ox82d0PTYYR1+HpOAADAPrLXA9LJTedGXbnO8b9Y3dR0fhUAALDP7PWA\n9NGmwwgfts7xH9M0T/5qxyoCAAB2rb0ekN5UXVK9vKmL8nNWGe9OTYfX/Wb18TEdAACwz+z1\nThoOVo+uXl+9aNy+0NSL3XVNh+CdU501xv9I0wVxr517pQAAwMLt9YBU9e7qvOqJTYfa3aPD\nF4q9pvpM9ebqDdWrq+sXUyYAALBo+yEg1bQn6YJxm4c7N3UTvtaFaVdyYAdqAQAA1mm/BKSj\n+ZdNe5n+2TY930XVw6sT1zn+PasXdvSuyAEAgB0kIE3uUn39Nj7foeqPNzD+wW1sGwAA2KS9\nHpB+ZNyO5iuaOmz42Pj/l8YNAADYR/Z6QLpV096ha6oPH2W8Ezt8QdnrdrguAABgF9rrAemX\nq6+pnlxdVj2z+t8rjPcfq3tX3zyvwgAAgN1nr18o9rKmjhceVH1V9Z7q/OqkBdYEAADsUns9\nIC15W1MnDC+s/nVTUPrOhVYEAADsOvslIFVdXf1k9S3VVdWF1a9Vt1xkUQAAwO6xnwLSkvdU\n96ueVX1/9f7qGxZaEQAAsCvsx4BUdWP1/OrvVR9q2qsEAADsc3u9F7uj+WT1sOr+1U2LLQUA\nAFi0/R6Qlly46AIAAIDF26+H2AEAANyMgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAADDCYsuAICFelL1HXNu81D169W75twuAByVgASwv/3YXe5yl2+84x3vOLcG3//+93fZ\nZZd9MQEJgF1IQALY5x760If22Mc+dm7t/dRP/VTvfOc759YeAGyEc5AAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYDhh\n0QUAsL8cPHiw6t7V/znnpt9efWzObQJwjBGQAJirSy65pDPOOONhZ5555sPm1eaXv/zlDh48\n+BvVU+bVJgDHJgEJgLk6dOhQj3jEI3ra0542tzaf97zn9aY3vclh5QAclS8LAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABhOWHQBALDTPv3p\nT1c9pHrLnJv+g+r5c24TgC0QkADY8y677LLOO++8OzzgAQ+4w7zafOc739l73/ve6xOQAI4p\nAhIA+8Kd73znnvCEJ8ytvSuvvLL3vve9c2sPgO3hHCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIDhhEUXMEenVw+s7lndtjqlurr6bPW+6sLqukUVBwAALN5+CEgnVc+tnlmdusZ4X6p+\noXpedWgOdQEAALvMfghIr6weU/1l9drqg9Wl1bXVydXtqntXj28KSOdWT19IpQAAwELt9YB0\n36Zw9PzqWa2+Z+h11c9VL61+qPqV6gPzKBAAANg99nonDd/WFIqe3dEPm7uh+slx/4E7WBMA\nALBL7fWAdHJ1Y3XlOsf/YnVTU4cOAADAPrPXA9JHmw4jfNg6x39M0zz5qx2rCAAA2LX2ekB6\nU3VJ9fLqGdU5q4x3p6bD636z+viYDgAA2Gf2eicNB6tHV6+vXjRuX2jqxe66pkPwzqnOGuN/\npHpUUw93AADAPrPXA1LVu6vzqic2HWp3jw5fKPaa6jPVm6s3VK+url9MmQAAwKLth4BU056k\nC8ZtHs6t3lkdv87x98v7ALBvfPSjH616UHXZnJt+e/XYObcJsGfspw3zs6szqr9u6qluJcdX\n31+9Z9w261PV41r//L1n9cIttAfALnPw4MHudre7nfjUpz71VvNq88ILL+wNb3jDufNqD2Av\n2g8B6a7Vb1XfPv7/TNN1kV66wrgnNnXU8Oy2FpBuqv5oA+Mf3EJbAOxSt7zlLfumb/qmubX3\niU98Ym5tAexVe70XuwNN5xV9e/WB6vebLhj7kqbD7Q4srjQAAGC32et7kP5Bde/qeU3deNe0\nl+jfVz9SXVX92GJKAwAAdpu9HpDuPv7+wsxj11c/Wn2p+pmmi8m+aM51AQAAu9BeD0inNB1S\nt9I5Pj/bdH7SL+bisAAAQHv/HKSPNZ1n9OBVhv9g03WSXlP9/XkVBQAA7E57PSC9pfp0Uy92\nT65OXzb8muq7qw+PcX98jrUBAAC7zF4PSFc3BaOl7ru/YYVxPl/9w6ZuuX9+XoUBAAC7z14/\nB6nqrU092T2x+uQq41xePbzpIrFPWmM8AABgD9sPAanqoo6+d+hQ9Z/HDQAA2If2S0AC2PVu\nuOGGqvs2XY5gXs6aY1sAsOsJSAC7xBVXXNFZZ531I6eeeuqPzKvNv/mbv5lXUwBwTBCQAHaR\nZz7zmX3Xd33X3Np7+MMfPre2AOBYsNd7sQMAAFg3AQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAAhhMWXQAAsD2uv/76qjOrB8256Uuq\nv5pzmwA7QkACgD3iwx/+cNVdq7fMuemLq6+ec5sAO0JAAoA94sYbb+yud71rL3nJS+bW5tve\n9rae+9zn2p4A9gznIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAcMKiCwA4ihOqX63OmnO7fkACgH1IQAJ2u7Oqpz3gAQ/ozDPPnFujb3zj\nG+fWFgCwewhIwDHhSU96Uueee+7c2hOQAGB/cggJAADAICABAAAMAhIAAMDgHCRgI46rHlGd\nNMc259czA7Bh1113XdWp1ePm2OwJ1d2qD86xzaorqz+Yc5vAnAlIwEbcrfov55xzTscdN58d\n0DfccEOXXnrpXNoCNu5jH/tYxx133K3OOeecV8+rzauuuqrLL7+829/+9vNqcnZddHZ12dwa\nBuZOQAI24viqF7/4xd3ylrecS4MXX3xxT37yk+fSFrBxhw4d6la3ulWveMUr5tbmq171qi64\n4IK5tnnRRRf1lKc8pZyeAHueDzkAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADCcsugAAgGPIV1e3mGN711WXzLE92PcE\nJACAo/jc5z63dPcv5tnugQMHOnTo0F2qT8yzXdjPBCQAgKO4/vrrq3rZy17WLW4xnx1IX/7y\nl3vSk55UdepcGgQqAQkAYN3OOOOMzjzzzLm0deONN86lHeBIOmkAAAAYBCQAAIBBQAIAABic\ngwQAsAstdQxRvampu++5NV09ovroHNuEXUNAAgDYha6++uqqfuAHfuCOZ5999tzafcELXtCh\nQ4e+KgGJfUpAAgDYxe5///t37rnnzq29F77whR06dGhu7cFu4xwkAACAQUACAAAYBCQAAIDB\nOUgAAPydcf7RU6sHz7PZ6kXVJXNsE1YkIAEA8HcOHTrUve51r8efddZZc2vzz/7sz7r22mvf\nX/323BqFVQhIAAAc4fu///u7z33uM7f2Hve4x3XttdfOrT1Yi3OQAAAABgEJAABgEJAAAAAG\n5yDB9jip+o7q+Dm2eaC6U3XxHNv8mjm2BQB7zVdWX7eAdt9bXbqAdo9JAhJsj0dVr150EQDA\nrvZr1SMW0O5/rJ62gHaPSfsxIB2oTq9Oqa6urlpsOewRJ5599tm95jWvmVuDr3rVq7rgggt6\n61vfOrc23/GOd/QzP/Mzc2sPAPaYE57whCf0tKfNL6s873nP601vetN+3ObftP1yDtLtqmdX\n76qurK5o2s14ZXV59Y7qX1S3WFSBAADA4u2HNPmQ6rXVmU17iz7cFI6urU5uCk/f0nT+yI83\n7fZ810IqBQAAFmqvB6SzqldWX6q+r/pv1Q0rjHdK9bjq+dXrqrvl0DsAANh39vohdt9d3ar6\nnur3WzkcVV1Tvaz63qbeRR4+l+oAAIBd5UB1aNx/dnX+4krZEf+y6XWdtM7xj6+uq/519Qtb\naPfc6s9b/x66E5oOATypun4L7R7NfzzhhBOecuqpp+5gE0e6+uqru+GGG65vOt9rXk5smpfz\n3At40oEDB04/44wz5tbg9ddf3zXXXNOZZ5459zbPOOOMDhw4MJc2b7rppq666qpOO+20jj9+\nfr2oX3HFFQtp85RTTunEE0+ca5snn3xyJ5203tXk1l155ZWdeOKJnXzyyXNr86qrruq4445r\nnuu/gwcPduDAgbm2efXVV3fTTTd1+umnz63Na665phtuuCHrv+2339Z/Td/b182t0anTruva\n2W2v5c446aSTTpzn+m9si/169dS5NXpsOr/62dr7h9hd3rSxfNvqc+sY//ZNe9Uu32K7n2ra\na7Xe+Xugqcad/oD+vzfccMMrx0poXm5RnVr97RzbPK26dXXJHNs86dChQ7e/4oorPjXHNo+r\nzr3iiis+Psc2D1R3ufLKKz82xzarvvbgwYMf7/APOvNwl4MHD15U3TTHNr/6mmuu+ew111wz\nzw2EO1577bWXXXvttQfn2OY511133dXXXXfdVte1G3Hrm266qSuuuOKyObZ5i+rUK664Yu7r\nvyuuuGKu67/K+m/n7Jv1X/XZ5huQ7lhdVu319V/VB+fc3jHv0Lidv+A6dsI9ml7bKzr6XqTT\nq9c3rQzO2+G6AACA3eP8Ri7a63uQPlT9avWM6gHVG5oS9KVNv1CcXJ1TfUP1yOo21b+tPrKI\nYgEAgMXby3uQatol/iPVX3f4ta50+0j1AwuqEQAAWJzz2yd7kGp6ob9U/XL1/7d378G21QUd\nwL8IKMKRh+EbELRCgylLIRFFdCwlH/kuH2Ohjmbk1EiOTlqdMpkMNW0qFXsYGuM0ZOVkPiEM\nx0cgClgXVMQEEQREBbwX7r2c/vj91ux19t3n3rX22eesu8/9fGb2rLPXWnvt3++319pnffda\n67eOTTnt7r4pXXtvSXJ9ksuTXDFUAQEAgN3DnhCQGkspQejyoQsCAADsnjb6fZAAAAA6E5AA\nAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQ\nAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAAKp9hi4AbBC/m+TMoQsBADPynCQfGroQMAQBCWbj\nhiQ3Jjll6IIw1z6a5J1JPjZ0QZhbL0zy1CQvGrogzLX/TvLDoQsBQxGQYDa2J9ma5ItDF4S5\ntjXJ1bEeMb2Tkvwo1iFWZ6k+YI/kGiQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACo\nBCQAAIBKQAIAAKgEJAAAgEpAgtm4sz5gNaxHrJZ1iFmwHrHHW6qPxYHLAfNsnyRHDF0I5t4R\nKesSTGu/JA8cuhDMvaOS7DV0IWCdLabmIv+IYTa2JfnW0IVg7lmHWK0tSa4buhDMvauHLgAM\nySl2AAAAlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQA\nAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQ7TN0AWCDekSSg5NcmGT7wGVhPhya5CFJ7kiyKcmd\nwxaHOXVwyvfPNUmuGrgszKeDkjw0yeYkVyfZMmxxYBhL9bE4cDlgIzggyVkZbVcLwxaHOXBo\nkn9OCdLNenNLklcPWSjm0hNTgtFSkrcOXBbmzxFJzs3oe2gp5QebtyfZf8BywXpZzGjdF5Bg\nRo5P8tUkNyb5ZgQkdm2vjI4yvjXJSUmeXsctJTl1uKIxR+6Rsv7cleSiCEj0d2DKkettSd6W\n5BeTPCvJBSnr09mDlQzWz2IEJJi5y5Ocl+SBST4WAYlde3rKevK2sfEHJLk2ybeT7L3ehWLu\nPCfJ7UleluTREZDo7zcyeV/wninfRVtTvpdgI1tMzUU6aYDZeXOSX0hy3dAFYW48qw7PGht/\ne5JzUsL2CetaIubR1UkemeRvhy4Ic+uKJG9I8t6x8ZuTXJJyzfp917tQMBSdNMDsfHDoAjB3\nHpHktiRXTph2cWuez6xbiZhHlwxdAObeBfUxyYNTfrT5znoVBobmCBLAcA7LyjsdzZHIw9ep\nLADjXpzkp1OOLOnNjj2GgAQwnP2z8k7H5jp03j8whCemnP57Scrpd7DHcIoddPfxlFMN2o6J\n+xwxvW1Z+Xu4Ge9+SMB6e2mSd6eEo6cm+dGwxYH1JSBBdzeldKcLs3JzkkNWmHbvOvzeOpUF\n4G5J/izJ6Sn3RHpJRkezYY8hIEF3Lxq6AGw4VyZ5Ssqd638wNu3hdbhpXUsE7Mnek+TlSc5I\n8sbU+8HAnsY1SADD+VTKzWJPmTDt6Smn4J2/riUC9lRnpISj16ZccyQcsccSkACGc3aSW1Pu\noXVYa/xLk5xcp9+y/sUC9jAnJnl9kvfFTYbBKXYwI8dk+U0aH1aH5ye5q/59RpIPr2eh2O3d\nlBKGzknytSQXpVx7dEySS1OuA4Bd+fOMbii8UIcvTPLY+vd3kzxjvQvFXHltytHs45N8foV5\n3pTkI+tWIhiQgASzsZTl3TV/ecI8ertjknNTrjN6RZKjk9yYch2A+47Q1daM1pUtST49Nv2O\n9S0Oc+ib2XG9Ged/GHuUpfpYHLgcAAAAQ1hMzUWuQQIAAKgEJAAAgEpAAgAAqAQkAACASkAC\nAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpA\nAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBK\nQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAubFyUl+bOhC\nMBOHJVlK8oGhCzJja1Wvh9Xl/k2Hed9Y531Kz/c4IrYxgCQCEjA//jPJI4cuBEmSFyb566EL\nwUw9P7YxgCTJPkMXAKCHW4cuAEmSpyV5yNCFYKZuq0PbGLDHE5CAeTJp5+3AJD+ZZO8kVyf5\n7tj0/ZMcX6f9X33+8CRbknw9yR0rvNcBKac27bPCcvtYSPKoVhkOSfITSe5M8pUk21Z43aFJ\nDk85ZeobSX44Nn28bg9Lcp8kF/asS9c2ulfKEYYTkmxOOSXrliSX7qzyO7FUh/es73dHdv6Z\n7Oqzbsp3bV1O21FJHpzkS0l+0Bq/b8rpZfdJ8r2Udl7p8+i6Tsy6XivZqy7/Xkm+Vsu/kl3V\ns2tAul99z5VcnuTmXSyja5namm3m1iRXpWw7k/T9Pph2mwE2uKX6WBy4HAA7s5TkyNbzhST/\nkGRrRt9jS0nOH5vvqDr+jCSnpexgba7jbk7yzLH32S/JX6XszLaX+6mx5fZxbF3GmUnekrJz\nt62Ouz7Jk8fmP6K+312t97+r1veg1nzNtSlvSvLe+vdXpqhL1zZ61NhymmX11Vyr8/dJXpwS\nsprl3ZQdP5Oun3VTvndMeM8/qdMe2xp3Wkr7t5d5XZJTx17btR3Xql6TrkE6Jsmm1mu21nr/\nfna8BqlLPZ+ZHbexSV6cHdeB9uNpu3h9nzIlJaicndH2spQSVsbn69uWq91mgI1nMaNtXkAC\n5sKxWX7U+6Mp311/mvKL8dFJXpuyI/X1lF/vk9ERmP9Jcl5KGEiSn0pyQ0oYWGgt959SdrLe\nmPJL+UOTvDLl6M3XU36B7qvZKbuulvuIlF+4H5+ys3dbkge05r8sJUS9OmVH+GdSgtV4BwBN\nsDkv5cjIM5I8eoq6dG2jvZMcnHJk6aL69wFTtEcTJC5KOfLxvJTP99eS3F7L115u18+6T0B6\nfH3+iSSPSTll8KT6fCnJia3Xdm3HtarXeEDaty5/e5LTa3lOTLmG6KosD0hd67mQHbexSRaS\n/PjY4+SUQH1Tlq/HK+nT9v9Wx7015cjlk5J8LuUHg3bg7NqWs9pmgI1nMQISMMcek/K9de6E\naW+u0369Pm92Wm9LOZWm7R112kn1+SMz2hkb9+o6bfyX6y6aHdzNKafNtZ1Wp51eny8keUOS\n35ywnE1JfpRRBztN3bannD7W1qcufdooKQHp8xOW21XzfnemnDbV9p467XH1eZ/Puk9Aanp7\nO3lsvoPrvD9fn0/TjrOu13hAemp9/u6x190zo6MyTUDqWs9p3S0lmC0l+eWOr+lapuMyOiLX\ndv+U4PPJ+nya74PVbjPAxrOYmotcgwTMoyfV4YcmTPtwkt9L+ZX6fa3xFye5cWzea+uw6dr4\nlDrcluRXx+a9ex0+LjvusHV1ccqv7G3NtQ/H1eFtKTt1e6XsZD+g9d63p+wEL2T59UiXpFxP\n0TZNXbq00Sx9IeVISFtz7VATJKf5rLu4pg5PS7mG6pb6/PspO/CNadpxret1Qh1+Ymz85iQf\nT/KS1riu9ZzW61OCzrtSjvZ00bVMzamn/z72+utTjsQ113RN05az2maADUhAAubRkXX4jQnT\nmp2ew8fGXzdh3uaC8L3rsOmZ7XU7ee/776pwO3HNhHHX1+H9WuOel+TtGf3a3VwPtF+dPn6L\nhmuzo2nq0qWNZmlSe2wde78j67DPZ93FOUmeneS5KUc+vpByROJfUjoaaEzTjmtdrwfV4bcn\nTPvW2POu9ZzGcUn+KMn/ZnQEtPGmlPW47dSU0+P6tv2k9bvd4cWRddinLWe1zQAbkPsgAfNo\n3zqc1JNVsyN6j7Hxd/VY7pNTjtRMenQ9jWiSLRPGNeVqfrA6LskHU+rxhJRfrg9IOWq0UocI\nt08YN01durTRLPX5TPp81l1sTan/E1JOXXtQys7+ZUn+NaNrVtaqHVdTr33H5mvbPmFZXerZ\n10JK0Nme5AUpIb7thynhv/1o6tq37Vfq2a4xTVvOapsBNiBHkIB51HRnPOm0r3vXYdeuhtua\n098OzeQws1qHTBh3cB1+vw5fkPLj1elJLhibd/z6pZ1Z67qsl1l91gsrjL8go3Y+OqMjH69P\n8odZu3ZcTb2arrgPmjBtpXXkguy8nn39ZUoHDb+dEmzGnVkfO7OrMu2sjdpmtY5slG0GWCVH\nkIB59MU6PH7CtOZani9NsdyL6/CUCdPun3Ktw2p+WPq5CeOOrcNNddiEqPHThY5K8rM93mut\n67Je+nzWzWlXk3rWG793z4EpO/htV6Z0Y70to57U1qodV7MON9c3HTth2gljz7vWs49fSemZ\n7z+S/MUUr+9apkvq8NHZ0VkpIS2Z3ffBRtlmgBnQix0wbw5M+dX4uizvVngh5aLvO1O6501G\n1/G0u8du/E6d9tzW629M+fX4uNZ8+6b0kLWUyTthu9L0QrY9y3un2y/Jf2V572rNfWxe2Zrv\nkJTOHL5SpzXdcO+sbn3q0qeNknK066pJFe2oz/v1+awXUnawL0/p5KJxQkb30Wna+byUIwZH\nZbmmJ7yzW8tci3bsU6/xXuweXp9vyvKjJs/P6D5ATS92XevZ1YNTPv/rk9y352sbXct0UEoH\nDjdkeY9zz8nyXvxm9X2wVts/MB8Wo5tvYM49I+WIwc0pO1TvS9lBuivJq1rz9d35f3JKV9pb\nUi4a/0CSb2Z0c8lpNDu456ZcwH9hyk0tv1rHf7A17wNTrt+4I8k/Jnl/ys7fHyR5TZ3/sym/\n4O+sbn3q0reNmm6dP5Ny35i++r5f1886dfpSko+lXGz/rpQL9d+W5d2VH5/kBynXznwipa0/\nWd/nuymnfDXWqh271mvSjWLPquNuSOk97sKU0HFmHd8cBelTzy7eX5d/1lOPoQAAAj9JREFU\nWa3n+OPZHZbRp0zPSgk4t6Xc6+iz9f2vzPJTVmfxfZCszfYPzIfF1Fy0d0bB6NPZ8Xx3gN3V\nlSk753ul9GK1kHI05lVZ3i3wPVJ2yL6QUZfajcNSeo/7SEa9XV2VslN0R0pY2T/lxp+vSQk1\n0zg0yW+l7Ny9IOV0nYek7Ny+M+W+R0t13ltrve6ecvH67Un+OGXn+LIk90o5hezS2gYr1a1P\nXfq20YUZXduxKcn53Zph6vfr+lknpVvn61Pa+OiUnt5ekbLTe1id/zt1/DkpYfTAWp8bUnau\nT83yHv3Wqh271mv/lNMzP5eyDqW1nP3q49IkL0tZfw5POf3tmp717KK5V9Dmurzxx6YkX97F\nMvqU6YqM7m90n5QjPH+X5OUZXYuVzOb7IFmb7R+YDyendX82R5AA1takIwAAwO5jMTUX6aQB\nAACg0hsLQH+Pz+Quuye5NZNv6LmR9G2P89awLACwKgISQH9vSelxq4srkvxSynWeV65ZiYbV\ntz0mdU8NALsFAQmgv0n3ZdmVk2ddiN3INO0BALsl1yABAABUAhIAAEAlIAEAAFQCEgAAQCUg\nAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAl\nIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVPu0/j4x\nyeuGKggAAMBATmz+2CvJ0oAFAQAA2G04xQ4AAKD6f9jhmHvZ7beTAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title “'one_parent_households' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde5RlZ13n/3ebO0mUm0lQroEAgiCOIKAOIl5QQS6KioIgyixZeBe8MDpj\nABlZjD9FhPkpXnAQBBFluIw/FGXkpqMIZriJkVtIIAgkIJ10kk6n+/fHfmr6dKWquqqrqs/p\nqtdrrb3qnLOffc639t5dvT9nP/vZe6pDAQAA0OfNuwAAAIBFcfLM47dVb51XIQAAAHPyNdVX\nLz05NKYL51UNAADAHF3YyEW62AEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMJ8+7AGBH\nund11nj84eqSOdayaKybjdvp6+w+1Znj8Yeqjy74Z86jXoDj6tCYLpxzHcBiObt64Jj+/QaX\nvajDf1t+YUurOvHt5HWzmX1mLTt5nVW9p8O/38+dAJ85j3oBttuFjb9tziABqzm/+l/j8ZXV\nLeZYC9vn1tWdqk9W79vke9lnOFZbuR8CbIqABKxm7yqP2Vl+rXpU9UfVozf5XvaZY/Md1Rnj\n8cfnWcg6bUe9W7kfAmyKgASsxsHuzndW9ZAtfD/7zLH553kXsEFbXe9W74cAmyIgAau5aubx\n51Zps6e6c3Wzpgu1N/pt8mlj+bObutZ8YJV2X1WdOh6/u7piPD6/Oqf6RPWRbfq8d3b4979N\nU1egT1YfPMpnbXbdfGF1++qUpt/vQ1tY69nVV1Rf3eEzAec0XTtU9dbqwLJlzqtu2/R7fay6\nvLphWZv17DNr2ew6q7pDdW51fXVp0++/mpXW3UnVXZr2lX/pyN+p6oua1sN69rn1bsO1Bj3Y\nin1xI9bzvusdpOFo+8yx7Ie1sW28ZHbfunTUU3VB9cXj8aUd+TuvtO5v1dQV8KPdeLCQzfyb\n3cr9DtgCBmkAVnN909+H168w7yFNI4odmpn+qukA652tfVH9F1X/vdq3bPnLqv+wQvuPzrR5\nTPWA6p+WLfu3TQdAK9nM5z24umP1tmXLvrP6klU+bzPr5tuqf1y27KGmg6LHb1Gt917h/Wen\nm860fULTGYPlbT5R/VKHD5SXrLXPrGUz6+z06j83Barldb6nlddb3Xjd3afp4HTptb3Vj462\nn1+9etl7/0VHrqslG92Gaw16sNl9cTWzn/mUDb7v0QZpWO8+s5H98Fi3cU3b4yPLlvnrpsDx\n0pnXfnnZcpd25Lp/UlNgW74fbvbf7Fbtd8DmXNjhf2cCErCq1zd9i/tLy15/UIcPhJdP72vt\nUcdu1/Tt7dL8a5u+iT3Y6n+P3j8z79er61b57Eu78YHDZj/viR15oLT8AOgmW7huHres/dVN\n3yTPvvZDW1DrVzQd6M2ug4PjtQPVF4x2v7DsPQ5W+5e99jcd2RthtX1mLZtZZ2dVf7fKsrPT\nb67wubPr7slNZyaXL3ew6QzHa1Z53z9a9p7Hsg3XChyb2RfXsvwzN/K+a9W7kX1mvfvhZrbx\nN3Y41Cyf/ql6w8zzX1y27Oy6/7HqmpnnS/vhZv/NbtV+B2zehR3+N/Z/H1w4v3qAE8y7O/y3\n4/KmMzqnVV/Z1G1t9j/y5Qe0fzkz7/9r6mZTdbcOfzt8oLrHzDLv7cgDh9c2dUe5VfX0ZZ/3\nzC34vNkDwEuri6vvqR5ZvWXZ533fFq2bU5q6Ci3Ne2HTQeSe6rkzr3+6IwPJZmr9zZl5L182\n7/Smg71DTd2iHjrzuXet3jWz7GPbnM3sTy+ambd31PL5Td2gnr9s2e9etuzsuvtY01mFb62e\nsWy5dzcF659oGqBg9tv+A01dq2prtuHywLGZ7buW5b/7Wu/7uDWWna33WPeZtfbD2rpt/Omm\nMzZnNg1DvzwULt+3Zpf9l6aA9IdNX9I8sq3Z3lux3wFb48IEJOAY3aO1D8q+tdUPOu62bN7y\nLnE/MjPveTOvzx5Q/Fs37tb1+pn5sxeQb8Xn7W+65mHJ5zcdpC3Nf/7MvM2sm5tXT52Zbjcz\n747Llrv7FtRaax+Y3qEj1/npy+bfq6n70Dc2dWE8VptZZ7fpyLMDT17h/f9sZv7fL5s3u+72\ndviMRd34m/ufmpn3oGXzvmm8vhXbcK2AtNHtu5bNvO9q9R7rPrPWfriZbXzPjlznT1y23Lcv\nm79WQDpUfd2y+VuxvbdivwO2xoWNf18GaQA26t7Lnv/Zsuevbzo4+oJu7AEzj69vGmTh/JnX\nTlml7az/0fQt9axXN30zXNNF12c1dXPZis97bdO1MUs+13StxtLn3XJm3mbWzZXVr4zHtxh1\n3r7p2+izlrVd7fqDjdR6NJc3XbN1k6YD5r+vXjbe7+1N3d4u2sD7rWYz6+zrmy5uX7LS2Yc/\nqb5lPP6Kpt9lpQEkXjM+Z8mbmq4tWfKSmcdvbvpPdM94fvPxcyu24Vq2cvtux/tuxz6zmW38\nFcvavXrZ89c0BZSzO7o3d/geX0u2YntvxX4HbDEBCdioW808vrrDI8otOdjUbWSlA9pbzzw+\npanL22rutMrrK40M9ZGZx3uaup5ctUWf9/4VXvvEzOPZv6ObWTc1Xaz93KZRrtayZ5XXN1Lr\n0VxbPWtMNZ3pWeqGuL/pOpKXV7/fdE3YsdrMOpsNu1eOabnZ/eXzmvaJlW5EunzEtk/PPN7b\nkSOlHWg6qF066J1dr5vdhmvZyu27He+7HfvMZrbx8n3rU8uWO9A0UMt6Brj4x1Ve3+z23qr9\nDthC/nEBG3XqzOP9q7S5dp3L/u0an3Oo6WDn4LLXlw9/u1IdS2eGtuLzVrqfz0pDD6/0eStZ\nbd3ctekb6qXug5dWb2z6fU9t5dH2lttIrevxX5oGtPi56ktnXj+1aSjmBzZ1eXpQNw4267WZ\ndTbbhWu1Za9f9vy0VdrtW/b8hjXmLZ+/ZCu24Vq2evtux/tu9T6zmW28nn1rpW27kpWGEt+K\n7b0V+x2wxQQkYKNmuyed3dT9Zfl/2uetsuxnZh4f7PD9TjbinBVeu8Wy50tdVrbi8zZiM+vm\nJzp8oHVZ9eUdPoA8t80fXB+rl47pttXXNH1j/o0dvqbink0DY6x0bch6bGadzX7bfrNWDrjL\nL2RffhZhKy3qNjzetnKf2cw2ng1+G923llv+mWV7w471efMuADjhzN5c9eSmg51Zd+rIri2z\n3j3z+PSO7D6zXvdf4bXZaw3+rfrXLfy8jdjMupn9tv1vO/Lb9XttvrSjWqvL1+c13bvlD6uf\nbKr1qTPzj9a9aC2bWWezF+Sf1o2vOalpqOQllzcdyG6XeW/DRXKs+8zy/XAz23j5vvVly5a7\nU5sbYMT2hh1KQAI26i0d2aXlZ5bN/4+tfrD9xuqzM8+ftmz+M5rCzbta+YagNQ3P+zUzz89t\nujHlkjds8edtxGbWzWwXoC+eeXxq9Z+WtV3tGqaNmu1Gdcdl8763+oemMzxPX2HZ2fB5zSZq\n2Mw6e0tHDi7wzI68oP+Cjhy57PePrcR1m8c2XCTHus+stR9uZhsv37ee1pH70lr71nrs9u0N\nO5YudsBGfaZpZKWlUPLopm9h/66pK839m+4vtPTN7OwXMfuaDnD+n/H8iU1ndd7WNAT3dzUd\nsNysaXSnlXys6U7yL2vq6/+ojuxi82tb/HkbsZl187YODyP8VdVvNN335LFNF5G/oambUk0h\n4jatfGPMjbhk5vFXVK9r+vb9V6p3NH0LflL186OGi5ourr9t0z1zlqw0sth6bWad3dDUTet/\njtcf3HQx/V80jfD1qA6PUHZx9exN1Lke89iGi+RY95m19sMPdOzb+MqmM1iPH88fVf3vpn3r\n3zXdZ+vyVj9DeTS7fXvDjuY+SMBG3awjb+65NN1QPakjb876rGXL7ql+ebRdvvzS/VMevGyZ\n2fuG/HzThdHLlzvYje8hsxWft9J7/s7M/Fcum3es6+bmHXkjyKXp6uph1UNWmLfZWm/T4Rt7\nzk5LQ29/R9M3/Sutt6V1/vw23xthM/tTTQe+n12jzr/pyBENl6y17h47M+8T3dinZ+Yv3fR0\nO7bhZrbvWjbzvmsteyz7zNH2wzr2bXzzVt+3fqSpa9zSa2vdB2mldbQd2/tY9jtga1zY+Pfl\nDBJwLD7T9O3rk6qvbRo17gPVi5u+RT6nw2eoP75s2UNNXV1e3PSN8j2a7pvy8bHsH3TkfUGW\nO9B0g8THjp83b+qC8+Kmg6TljuXz3t7hi8M/usJ7/nPT/Uqq3rts3rGumyubzpg8ucPXWb23\nemGHhzF+YtOB1ynjvTZb66Wj1h9vusnl3qbhkT885v9J0zfu39V0Afq5TQe2n2k66PyTVh4y\ne6M2sz/VdAD/l03b96tH+2ub1tufNZ1tWMla6+5fO7zeVhpa+m0d7jb1rzPttnobbmb7rmUz\n77vWsseyzxxtP6xj38ZXjvf+oaZBWk5pGlr7xU3dAX9wpu3yocePto62Y3sfy34HbIOlbyIu\nnHMdAKs52je5ABu1J2dkgMMubPw9MEgDALBT/VbTmeVLu/E1aI/q8C0CDjYN6gBgkAYAYMfa\n1+Hubz/TdJ3SRU1DfM+OfvkHHTlYBLCLCUgAwE71tOr21SOautQ9ZkyzXtWx3+gY2IEEJOBE\ncLSLpQFWcm31yKabxH53U1j6wqZbBLy/enXToBIA/5eABJwInnD0JgCr+j9jAjgqgzQAAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMBw8rwLAGBH2lP9++rUeReyoPZXb6kO\nzbsQAI4kIAGwHb6ketNZZ53Vnj175l3LQjl06FBXXXVV1d2r9825HACWEZAA2A4nV730pS/t\n7LPPnnctC2Xv3r09/OEPL/8HAywk1yABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwnz7uA4+jM6oHV3atzqtOra6rLq3dVb672z6s4AABg/nZDQDq1elb1w9UZ\na7T7bPXs6jnVoeNQFwAAsGB2Q0B6efXI6p3VK6v3Vp+qrqtOq86r7lU9uikg3aF60lwqBQAA\n5mqnB6T7NoWjX62e2upnhl5VPbN6YfVD1fOr9xyPAgEAgMWx0wdpuH9TKHp6R+82d6D62fH4\ngdtYEwAAsKB2ekA6rbqhumqd7T9THWwa0AEAANhldnpA+pemboTfvM72j2xaJ+/ftooAAICF\ntdMD0uury6qXVE+uzl2l3W2aute9qPrgWA4AANhldvogDfuqR1Svrl4wpiuaRrHb39QF79zq\npqP9xdXDm0a4AwAAdpmdHpCq3lHduXpMU1e7u3X4RrHXVh+v/rx6bfWK6vr5lAkAAMzbbghI\nNZ1J+u0xHQ/nV+9rOkO1Xjd0eFAJAABgDnZLQKr6oqYzRlfOvHZ6U5e6O1SXN51FuvLGi27Y\nh6tvqk5dZ/u7V8+tTkpAAgCAudkNAenO1curLx/P31x9b9N9kd7aFI6WfKZ62Hh9Mw6Nz1mv\nfZv8PAAAYAvshoD0surLmgLLNdVXNQWmD1WfX/1800h3d2sa6e4VTaHJQA0AALDL7PSA9LXV\nv6seVf3JeO321bvG6w9oGsRhyV9Uf1V9Y/W641YlAACwEHb6fZC+pPp0h8NR1UeaRq37eEeG\no6o3Vp+t7no8igMAABbLTg9IZ1d7V3j96uqqVZbZ1/oHVwAAAHaQnR6QPlLdprrVzGsnN12H\ndOcO3yB2yRePth87HsUBAACLZacHpL9sOlv0mqbrkL6tqbvdLat/rF7cNPx31QXVS6uDYzkA\nAGCX2emDNHym+pnqN6s/Hq8dqn6g+mjToAwfq/Z3uFvdf8kZJAAA2JV2ekCqemHT2aKHNQ3d\n/erq3WPe11c/Xd2p+temM0q/O4caAQCABbAbAlLV28e03JvGBAAAsOOvQQIAAFg3AQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAAhpPnXQAA7CbXX3/90sP/We2fYymL6obq26v3zLsQ\nYHcSkADgOLruuuuqetzjHnfrW97ylnOuZvE873nP68CBA7dNQALmREACgDl4wAMe0Pnnnz/v\nMhbOC17wgg4cODDvMoBdzDVIAAAAg4AEAAAwCEgAAACDa5B2l2+ovnPeRSywN1SvnHcRAADM\nj4C0uzzmvPPO+/673OUu865j4XzkIx/pkksuOT8BCQBgVxOQdpl73ete/czP/My8y1g4v/d7\nv9cll1wy7zIAAJiz3RSQzqweWN29Oqc6vbqmurx6V/Xm3LAPAAB2td0QkE6tnlX9cHXGGu0+\nWz27ek516DjUBQAALJjdEJBeXj2yemfT9SXvrT5VXVedVp1X3at6dFNAukP1pLlUCgAAzNVO\nD0j3bQpHv1o9tdXPDL2qemb1wuqHqudX7zkeBQIAAItjp98H6f5NoejpHb3b3IHqZ8fjB25j\nTQAAwILa6QHptOqG6qp1tv9MdbBpQAcAAGCX2ekB6V+auhF+8zrbP7Jpnbx/2yoCAAAW1k4P\nSK+vLqteUj25OneVdrdp6l73ouqDYzkAAGCX2emDNOyrHlG9unrBmK5oGsVuf1MXvHOrm472\nF1cPbxrhDgAA2GV2ekCqekd15+oxTV3t7tbhG8VeW328+vPqtdUrquvnUyYAADBvuyEg1XQm\n6bfHdDyc33S/pdM3uNyebagFAABYp90SkKpOahrRbslZ1UOawsx11UXVXzeNYrdZH64eXJ26\nzvZ3r57b0YciBwAAttFuCEh3qP5709mjPxivfVP1h9UtlrV9V9NIdh/a5Gceqt68gfb7Nvl5\nAADAFtjpo9idUv1Vdd8Onz36oupPq5tUv9Z0bdIPVi+v7tF0LdJuCI4AAMAyOz0IPKTpDNJ3\nNw3AUPXophvBfn31xpm2v1f9Q/UrTWeY/uz4lQkAACyCnX4G6YKmM0d/MvPa7atLOjIcLXlh\nU/e4u297ZQAAwMLZ6QHp2qbBGc6eee2TrX6foxuaAtKBba4LAABYQDs9IP2v8fOZM6+9quks\n0t1WaP+UpnXy9u0tCwAAWEQ7/Rqk91S/Vf1Idc/x+O+rn6teXf1SdXF16+qx1cOqN1RvnUex\nAADAfO30gFT15OqyplD00mXzfn/Z85dX/+E41AQAACyg3RCQDjadKfqN6luq+1S3a7pR7IHq\n09W7q9dV/zynGgEAgAWwGwLSkn9rOkP08nkXAgAALKadPkgDAADAuglIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAw8nzLgDg\nBPal1Z9WJ827kAV06rwLAIBjISABHLvbnXLKKRf86I/+6LzrWDgXX3xxr3vd6+ZdBgBsmIAE\nsAknnXRSD33oQ+ddxsJ505veJCABcEJyDRIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMCwkYD0uOo31/F+H60ecswVAQAAzMlGAtL51f2O0uYm1TnV\nXY65IgAAgDk5eR1t/vf4eevqZjPPl9tT3aE6rbpy86UBAAAcX+sJSH9W3ae6oDqjutcabT9X\n/UH1h5svDQAA4PhaT0B6xvh5YfWI1g5IAAAAJ6z1BKQlL6xesV2FAAAAzNtGAtLHx3Redc/q\n7KbrjlbyvjEBAACcMDYSkKqeUz2lo49+9/SmLnkAAAAnjI0EpK+sfrp6d/Xa6orq4CptVxvp\nDgAAYGFtNCBd2jSi3XXbUw4AAMD8bORGsadX7004AgAAdqiNBKR3VHdt9YEZAAAATmgbCUh/\n3RSS/mt12rZUAwAAMEcbuQbpAdVHqidWj60uqj69Sts/HRMAAMAJYyMB6euahviu+oLqwWu0\n/UACEgAAcILZSED6jepF1Q3raPu5YysHAABgfjYSkK4YEwAAwI60kYB02zEdzUnVZdUHj6ki\nAACAOdlIQPqB6hfX2fbp1YUbrgYAAGCONhKQ3lw9a5V5X1h9ZXWH6peqv9pkXQAAAMfdRgLS\nG8e0lh+vvqP6tWOuCAAAYE42cqPY9fj1prNJ37jF7wsAALDttjogVV1S3XMb3hcAAGBbbXVA\numn15dW/bfH7AgAAbLuNXIP0zWNayZ7q5tU3VLeo3rrJugAAAI67jQSk+zUNwrCWz1U/Wb33\nmCsCAACYk40EpBdWr1tl3qHqqupD1fWbLQoAAGAeNhKQPj4mAACAHWkjAWnJedVjm24Me854\n7fLqbdVLqs9uTWkAAADH10YD0kOql1VnrzDv0dUvVA+v/m6TdQEAABx3Gxnm+wuazhBdXf1I\ndY/q3DF9WfWU6qTqldXpW1smAADA9tvIGaQHN93n6N7VO5bN+2T1rurN1durb6pesxUFAgAA\nHC8bOYN0ftO1RsvD0ax/qD5a3XUzRQEAAMzDRgLSDdVN1vmeB4+tHAAAgPnZSEB6b9N1SN++\nRpsHV7fOjWIBAIAT0EauQXpD9cGmgRpeWL2x6b5Ie6ovqr6hemJ1cfWXW1smAADA9ttIQLq+\nelj1P6ofH9Ny/1Q9YrQFAAA4oWz0Pkjvq+5efWv1VdWtqkNNgze8pfrz6sBWFggAAHC8bCQg\n7WkKQ9dXrx7TklObgpHBGQAAgBPWegdp+Mqm+xt94Srzf6J6U3XHrSgKAABgHtYTkL6saUCG\nr6i+ZpU2N62+erQ7Z2tKAwAAOL7WE5B+tzqjenT1qlXa/Mfq+6rbVC/YmtIAAACOr6MFpHs0\nnTl6QfVHR2n70ur3q0c2BSUAAIATytEC0pePny9Z5/v9XnVS0wh3AAAAJ5SjBaRbjZ8fWuf7\nfXD8vO2xlQMAADA/RwtISzd8PW2d73fm+Lnv2MoBAACYn6MFpA+Pn/db5/s9cPy85JiqAQAA\nmKOjBaS/rq6rfrY65Shtv6B6WvVv1V9tujIAAIDj7GgB6TPVb1X3qf64usUq7e5UvaE6v3p+\ndc1WFQgAAHC8nLyONj9X3bt6ePUN1euqi6qrqptX960e3DR63RuqC7ejUAAAgO22noB0TfWg\n6hnVk6vvHtOsT1W/Vj2numErC9xCZzZdI3X36pzq9Kbf7fLqXdWbq/3zKg4AAJi/9QSkOnwd\n0jOqr64uaAocn2oaAvytLW4wOrV6VvXD1RlrtPts9eymkHfoONQFAAAsmPUGpCVXV38xphPF\ny6tHVu+sXlm9tynYXdc0fPl51b2qRzcFpDtUT5pLpQAAwFxtNCCdaO7bFI5+tZQPe+oAAB0C\nSURBVHpqq58ZelX1zOqF1Q81DTTxnuNRIAAAsDiONordie7+TaHo6R2929yBpm6Edfh+TgAA\nwC6y0wPSaU3XRl21zvafqQ42XV8FAADsMjs9IP1LUzfCb15n+0c2rZP3b1tFAADAwtrpAen1\n1WXVS5qGKD93lXa3aepe96Lqg2M5AABgl9npgzTsqx5Rvbp6wZiuaBrFbn9TF7xzq5uO9hc3\n3RD3uuNeKQAAMHc7PSBVvaO6c/WYpq52d+vwjWKvrT5e/Xn12uoV1fXzKRMAAJi33RCQajqT\n9NtjOh7ObxomfK0b065kzzbUAgAArNNuCUhH87Sms0xP2KL3+3D1LdUp62x/9+q5HX0ocgAA\nYBsJSJM7VvfYwvc7VL1pA+33beFnAwAAx2inB6QfG9PRfGHTgA0fGM+fNyYAAGAX2ekB6WZN\nZ4eurf75KO1O6fANZfdvc10AAMAC2ukB6Teq21ffX11Z/XD1Tyu0+53qXtW9j1dhAADA4tnp\nN4q9smnghW+obltdVF1YnTrHmgAAgAW10wPSkr9qGoThudXPNwWlr5lrRQAAwMLZLQGp6prq\nZ6v7VFdXb67+3+oL5lkUAACwOHZTQFpyUXW/6qnV91Xvru4514oAAICFsBsDUtUN1a9WX1q9\nr+msEgAAsMvt9FHsjuYj1TdXD6gOzrcUAABg3nZ7QFry5nkXAAAAzN9u7WIHAABwIwISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMBw8rwLABbeg6rfyhcqK7nJvAsAALaWgAQczQU3u9nN7vSE\nJzxh3nUsnL/5m7/poosumncZAMAWEpCAozrrrLN66EMfOu8yFs4VV1whIAHADqPLDAAAwCAg\nAQAADAISAADA4BokAGBh3HDDDVVPqB4w51IW1W9XH5x3EbCTCUgAwMI4cOBA97jHPR5185vf\nfN6lLJy3v/3t7du370MJSLCtBCQAYKF8z/d8T/e73/3mXcbCefzjH9++ffv2zLsO2Ol2U0A6\ns3pgdffqnOr06prq8upd1Zur/fMqDgAAmL/dEJBOrZ5V/XB1xhrtPls9u3pOdeg41AUAACyY\n3RCQXl49snpn9crqvdWnquuq06rzqntVj24KSHeonjSXSgEAgLna6QHpvk3h6Ferp7b6maFX\nVc+sXlj9UPX86j3Ho0AAAGBx7PT7IN2/KRQ9vaN3mztQ/ex4/MBtrAkAAFhQOz0gnVbdUF21\nzvafqQ42DegAAADsMjs9IP1LUzfCb15n+0c2rZP3b1tFAADAwtrpAen11WXVS6onV+eu0u42\nTd3rXtR087XXH5fqAACAhbLTB2nYVz2ienX1gjFd0TSK3f6mLnjnVjcd7S+uHt40wh0AALDL\n7PSAVPWO6s7VY5q62t2twzeKvbb6ePXn1WurV1TXz6dMAABg3nZDQKrpTNJvj+l4uEP199VJ\n62y/W7YDAAAstN10YH6L6qzq0qaR6lZyUvV91UVjOlaXVN/Z+tfv3avnbuLzAACALbAbAtIF\n1e9XXzWef7zpvkgvXKHtKU0DNTy9zQWkg9Vfb6D9vk18FgAAsEV2+ih2e5quK/qq6j3Va5pu\nGPtbTd3t9syvNAAAYNHs9DNIX1fdq3pO0zDeNZ0l+pXqx6qrq5+YT2kAAMCi2ekB6a7j57Nn\nXru++vHqs9V/brqZ7AuOc10AAMAC2ukB6fSmLnUrXePzi03XJ/16bg4LAAC0869B+kDTdUbf\nuMr8H2i6T9IfV//+eBUFAAAspp0ekN5QfaxpFLvvr85cNv/a6iHVP4+2TzmOtQEAAAtmpwek\na5qC0dLw3fdcoc2nqwc1Dcv9S8erMAAAYPHs9GuQqv6yaSS7x1QfWaXN56pvabpJ7OPWaAcA\nAOxguyEgVX24o58dOlS9eEwAAMAutNO72AEAAKybgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADCcPO8C\nAAA4ugMHDlR9SfUNcy5lUf199bl5F8GJT0ACADgBfPrTn6768TFxY79YPWPeRXDiE5AAAE4A\nhw4d6id/8if7tm/7tnmXsnCe+tSn9s53vtNxLVvCNUgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMJw87wJgEXzyk5+sukf1ijmXsojOn3cB\nALCWK664ouo7qrvOuZRF9bLqVfMu4kQhIEF1+eWXd8tb3vLc+93vft8571oWzT/+4z/OuwQA\nWNOVV17ZBRdccLe73OUud5t3LYvmoosu6rLLLrs6AWndBCQYbne72/VTP/VT8y5j4TzrWc/q\n4osvnncZALCm+973vv3AD/zAvMtYOM95znO67LLL5l3GCcU1SAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAMPJ8y5gDvZUZ1anV9dUV8+3HAAA\nYFHsljNI51VPr95eXVXtrT41Hn+uemv109Xnz6tAAABg/nbDGaRvql5Znd10tuifm8LRddVp\nTeHpPtVXV0+pvq0pSAEAALvMTg9IN61eXn22emz1Z9WBFdqdXn1n9avVq6q7pOsdAADsOju9\ni91DqptV31W9ppXDUdW11R9U31t9cfUtx6U6AABgoeypDo3HT68unF8p2+JpTb/Xqetsf1K1\nv/r56tmb+Nw7VH/X+s/QndzUBfDU6vpNfO7R/M7JJ5/8g2ecccY2fsSJad++fe3Zsyfr5sau\nueaaDh482JlnnjnvUhbOdddd1/XXX99ZZ50171IWzvXXX9+1117bWWed1Z49e+ZdzkI5ePBg\nV199dTe5yU066aST5l3Owtm7d29nnHFGJ5+80zu5bNzevXs77bTTOvXU9R7W7B5XXXVVp5xy\nSqeddtq8S1k411xzTQcOHPjd6onzrmXBXVj9Yu38Lnafq06pzqk+uY72t2o6q/a5TX7uJU1n\nrda7fvc01bid4ajqPx04cODle/fu3eaPOSGdXZ25d+/eT8y7kAV0WnXO3r17L513IQvo5Oq2\ne/fu/dC8C1lAe6o7XnXVVR+YdyEL6k779u37YIe/pOSw86+55ppLqhvmXcgCuu111133r9dd\nd9118y5kAZ23f//+q/fv3+8gZ2XvnXcBJ5pDY7pwznVsh7s1/W4v7ehnkc6sXl0drO68zXUB\nAACL48JGLtrpZ5DeV/236snV11avbUrQn2rqSndadW51z+ph1S2rX64unkexAADA/O3kM0g1\ndfP4serSDv+uK00XV4+fU40AAMD8XNguOYNU0y/6vOo3qi9t6nZ3TtPQ3tdWn6jeXb1/XgUC\nAACLYTcEpCWHmoLQu+ddCAAAsJh2+n2QAAAA1k1AAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYTp53ARxXf1vdb95FAABsg1dU3z3vIjjxCUi7y4eqT1VPn3chnFC+vXpM9R3zLoQTygXV\ny6oHVZ+bcy2cWN5SPa1667wL4YTy36oPz7sIdgYBaXfZX11RvWPehXBCuXd1bfYbNub68fP/\nVFfOsxBOOAerD+RvDhvzuQ7/3YFNcQ0SAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMBw8rwL4LjaP+8COCHtz77Dxu2vDuXO9mycvzkci/35e8MWOjSm\nC+dcB9vvZmOCjTi1uvW8i+CEdP68C+CEdPv0cGHjzq3OnHcRnNAubOQiZ5B2l8/8/+3de7Ak\nVX3A8e/N7rLLc1kWXBaXp4BrUAIaMNQSRAyRGDQ+iCFapdEyGiNJhJSBqvyRWyRYUUMMBbFE\nRdDCAnwg8pCXsBJ8xMAqhYrCyu7CIoqwLIjAwj5u/vj9uqZv35l7Z+a6t6fvfD9VUzP39Jkz\nv+7p6tu/OadP1x2AGul54KG6g1Ajrak7ADXSuroDUCM9UncAmj38hUaSJEmSkgmSJEmSJCUT\nJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmS\nJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSmlt3AKrNEmB/4FfAemBrveGoQY4Adgdu\nx/1GnR0ALAU2APfVG4oaxmOMejUfeFE+rwGerDcczQZj+RitOQ7NjGOBVbS+9zHgEeB9dQal\nRtgZ+BSt/WaXesPRgDoC+D7jjzE/A15dZ1BqBI8x6tUC4KPAs4w/5nyN+JFG6sUorX3IBGmI\nHAE8DTwGnAGcALwbWEvsA++uLzQNuKOJXoBHgXV48qL2lhL7yEbgNGAF8A6il/oZ4LD6QtOA\n8xijfnyB2FeuBt4AnARcmGWrgR3qC00NNIoJ0lC6nPiuj6+UH57l353pgNQYPwRuAfYBbsCT\nF7V3LrFvvL5SfkSWXzHjEakpPMaoV8uJ/WQlMFJZdmUue+1MB6VGGyXzIq9BGi7XAncB36yU\n3w08Rfxjkto5B/gisK3uQDTQ3gT8gjjWlN0F3AGcTPyi+/wMx6XB5zFGvdoK/BPwHfIX/5Jv\nEccjz2vUFxOk4XJph/LFxC91/zeDsahZLq87AA283YADgeuYeLICcCdwFHAo8KMZjEvN4DFG\nvVoNfKzDsgNKdaSeOc23AP6d6J4+v+5AJDXWsnx+uMPyonzfGYhF0vBaDryLmCzm2zXHooYy\nQdKZwHuATxKzvkhSP3bK500dlj+bzzvPQCyShtN+xLnMFuDttO/NlqbkELvZZQlwW6VsFXGQ\nqJoLXEBM730h8IHtG5oG3I3EfbHKDsN7kKh7W/K50/+VotzrjyRtD0cRs9n9DvAa4Kf1hqMm\nM0GaXbYBv6yUPd6m3iLgy8RsdmcBH9m+YakBHiNusCf1a0M+L+qwfI98bndMkqTpOBW4GLif\nmAxmXa3RaFZwmu/hspDoVXoaeGPNsaiZnIJX7YwAvyHG/bdzNbHfLJ6xiNRUHmPUi3cQPxDf\nAOxacyxqtlEyL/IapOEyF7iGuIDxT4Cr6g1H0iwyBtxK3FdtWWXZrkSP9SpaPU2SNF2vAz5L\nXHd0MnHLEmnaTJCGy4eAPwT+FvifmmORNPtcAMwBPgEsyLI5wHlEknReTXFJmn0WApcA9wJv\no3UdpDRtXoM0XM7M5/fno53iRo9S4TDgotLfy/P5Vlo3dfwwMYRKw+0m4OPA6cCDwI+BQ4AX\nAp+j873YNNw8xqgf7wL2Ap4DVnaocx3wrzMWkWYNE6ThclcXdZwSU1VjjJ+6ud1+5Gx3KpxB\nJEqnAkuJE5crga/WGZQGmscY9eMJJs7cW7V5JgLR7OQkDZIkSZKG2ShO0iBJkiRJ45kgSZIk\nSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkg\nSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIk\nKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAk\nSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJLUHK8C\nXl53ENvJbF43SVKDmCBJUr2OA17RZd1bgE9sx1jq1JR16+X7kiQ1kAmSJNXr68D5dQcxREaA\nG4Cj+3y/35ckzXImSJJUr98AT9UdxBA5BHgtsEef7/f7kqRZbm7dAUjSkOt0wr0IODSX/QQY\nm6Kdg4C9gSeBnwJbK8tfCiwGbiN6UV6cn7EO+MU02v1dYK9sF+BA4AXAA8AvO7TZy7rNA/YH\n9sz21k8jhpcBb87XhwObgB/kuhUWA/sRPyA+ADxW+axuE6RXAjt2WPYUsKqLNrqNqTACLAd2\nA9YCv5qkzUOIbdbN97obsb3WAj+v1Jtq/5CkRhrLx2jNcUjSMLoLuKRS9mFgM63j82rgyCz7\n30rd44F7SnXHgA3A31fqfTmXvZLWiewYsA24AljQZ7ufy2UHAbdnjFuy7Cpgl2ms2z8Aj1Ri\nWAe8oc8Yrq20NQYcm8v2B67L7VEs25Zle5U+q9331c7P2nxW8bizi/f3EhPA64htU/6ca4Cl\nlXonA2sq9R4ntnXZ5bns94CN+fqU0vLj6W7/kKSmGKV1PDNBkqQaHQTsU/r7r2idRK8gfun/\nAHAvE5OII4Hnsu6JwL7AMcD12cb7SnWLE941wKlEz8xi4MIsP7fPdi/KslXAO4lEa4dsbwz4\nlz7X7c1Z95vEDHeHEknAfVl3eR8x7EzrH+BbgN2BOblsJdGj9NfZ9nLgNOAZ4ObSZ1W/r072\nAw6uPL6Qn31OF+/vJaajiW2yOtfrFcA/EkniKlrD6Vdk2b3EMMNlRKJzR8b13lKbRdL5DWKb\nHUf0FEFv+4ckNcUoJkiSNJDuIHp3XlgpP504VpeTiGuAp4Ellbo7Ag8Rw7EKRYL0H5W6c4kh\ndhtpDbvupd3PZLsfrdRdlOW39rluf0z0Nh1cqfsXWfesPmM4K8tOqtTdTCRjVW8lko05bZb1\n4jVE78/36H54e7cxFb1MB1bq/XeWH5d/30Ss+8sq9RYRQwfXlsqKbXpRm8/vZf+QpKYYJfMi\nr0GSpMExn/h1/sdMvNbjKuA/S3/PA/4o6726TVvrgT8gejIeLJVfX6m3Bfgu8CYiGbm/z3a/\nXqm3kTiJXtzHukGczN8ELASOAnYlekKKk/IXtIltqhgm8xDw+0TPyo2l8i928d6pLAY+TyQh\nbyO2eTe6iWkucAKxXcsJDsAHgb8jkqR5RKK0Gvhhpd5GYmjiScSwvnKCc2Wlbr/7nSQ1hgmS\nJA2OvYlegWoCARNPNpcSQ8leBFw2RZvl965vU6eYyGAJMXyrn3YfblNnC61ejl7WDWKWuU8S\nQ+3mAM8TPSrFcLF2s7BOFcNk3ktcp3VDxngLkUxeTWyT6biIGJb3TiIBLSyhNbFEYRXw9h5i\n2of4vh5q87mbS6+XEknqmg4xFknRvoxPkKrt9rvfSVJjOM23JA2Oefm8uc2y4kL9at3biaFN\nnR53VNrZ1KFtiB/N+m13G5PrZd0gJkL4c+DjxMn2fGKyhRMm+YypYpjMzcT1RR8kZtZ7K5EA\nrAdeP4123w/8Wbb1+cqybURyWn483mNMxXadqleqqPd8h+XF9zK/Uv50h3Z63T8kqTHsQZKk\nwVFMH72wzbLFxDTOhQ35vDftk55OFjHxl/3d8/mJabQ7lV7WbXditrW7gQ9V6u75W4ypagNw\nXj4WEBMenA9cSgwZe7LzW9t6CTFRxDoiUap6lJgkYToxFQnVVMMIp6pX3BdqQ4flVJb/tvcP\nSRoY9iBJ0uB4BPg1cQ+akcqyYyp/P0FMJX0wMRtc1YlMnAwB4OVtyl5K9GbcN412p9LLui3M\nOu2Gg72lj8+eygixrjuXyjYRs86dT9wHqDqxwVTmE709OxBD5npNrrqNaSORgB3OxPsunUgM\n0Tsu663NetVeIojrvDYRPVWT2V77hyQNDBMkSRos1xO9JOUeh12Af2biELLPECfS5zD+Optj\niOtUPtWm/dMZfw+dPyXudbOSVi9PP+12o9t1+zkxjfSRRIJR+Mssg+gJ60fR61HeBscSyeHZ\nlbojtBLKyW6m285HiO16NvCdHt/ba0wXE4lUeUr1nYB/I4b3rSnV24XxMwBCXBt1CJHQPddF\nbNtr/5CkgeE035I0OJYTvQ3biGmvv0Jcm3IuMSTre6W682jde+YnxAnwjcT1KOuIC+kLxTTf\n/5XtXUFM1/wccZ1JuWepl3aL6aCr03FD9Db8qM91K+5hdDdxr6ZvEZMHHEAMF3sG+DSRcPUS\nw6uy7qO5/m/M8suy/D5ilrgv0brZ63lt2p3MwbmOW7PdS9s8utFtTAuIa4LGiBnqriW26zbi\nvkmF+UQiPJb1LySuc9qW7ysPX5xsm/ayf0hSU4ySedEcWonRbbS/34IkaeY8RgyLGiF+7X8W\nuAD4GHED0AeJE3uIE9vLgHuy7j7EUKqLgb9hfK/HKcRQulOA7xPXx+xKzIz2HsZP/dxLuy8m\nenmuoNUDVTiWmFb6a32s281ET9JC4vqYbxM3TH2YSJr2JP6RXUNMTd1tDA8Q19HslOu0kpip\n7avAD7KdPYgRFncCZxCJWC/2IHqPHiS28W5tHpd00U63MW0hkq4Hsu0diV6r04gp1Atbs979\nxDTpy4hk8wLihr2/LtWd7HvtZf+QpKY4ntJ1ofYgSdLsV/QgLas7EEmSBtAomRd5DZIkSZIk\nJRMkSZIkSUomSJI0HO4hrjXtZpYySZKGlgmSJA2Hs4mLTx+tOQ5JkgaaCZIkSZIkJRMkSZIk\nSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMk\nSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIk\nJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSWlu6fUK4My6ApEk\nSZKkmqwoXowAYzUGIkmSJEkDwyF2kiRJkpT+H1/4+rF4S2x3AAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title “'dependants' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZxld13n/1eTFUJYEkwIsoVFHZBFNhVUNCogjLiBgiKMiL/xxzjq/HDB\nUaHB9cE4Mq4PRUYRFJBlFFDMsGQUYUZZlAFBCIuBIAESEkhn6SSd7t8f51v27Zuq6qruqr7V\nVc/n43Eede895577ufece+u8z/me79lVHQgAAIButugCAAAAtooTZ26/rXrrogoBAABYkK+q\nHrZ058AYdi+qGgAAgAXa3chFmtgBAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADCcuugCA\n48SDq9PG7Y9WH19gLRyZB1W3HLf/ufrYAmvZDItYR4/mNX2ngC3rwBh2L7gOYGOcXn3tGL56\noZVsL//Ywd/LZy64lu1us9bhd3dwGf7MBs53q1jEOno0r+k7BWwluxu/SY4gwfZzt+p/jduX\nV2cusBZYzR2re1Sfqd4/87h1mCO10joFsGYCEmw/e1a4DVvN86vHVX9SPWHmcevwkfmO6ubj\n9icXWcgabUa9K61TAGsmIMH2Y+OS48Etq8esMM46fGQ+uOgC1mmj611tnQJYMwEJtp+rZm5f\nOXN7V/XwmfvvaWq+NGu1k9gfWp08bv/9zLzv1NSs5TPVR9ZQ3ynVFzWdZ/KZ6sMrTLfc651Q\nffGYx4c69L1W3aG6c/Wp6qLDzPO91WfH7btVZ63yvPU6tzq7uqG6uOl9zrtNdf+Z++9q+TBw\n/zFt1aXV+9qcz2bW0SyjWn2dOL16YPWwDh49OKvpfKOqt7byOrxWu0b9t2068f9Ijk6sZRku\n2ezl8QXVXauTxvQfXWG61To92Kjv71qtZb5r7aTh9k2f1a7qX6pLqhtnxq9lndq3zHzXs4yX\nzK5bF496qu5ZfeG4fXGHvuflPvtzmpoCfrybdhay1uW92esd7Gg6aYDt54am7/X5M4+d2MHv\n+4HqUcs8b7WT2D8+M+6R1d2rt83N8++rf7NCTXeo/rC6Zu45n6h+YJnp51/vwU3/8Jce21P9\nxzHtrarXzM33DR0MFsvN83uqr6n+ae55/6dpA2je4U4oP7V6VtPG+IG54R+rp8xNf+vq6plp\nnr7MPE9sCrFL0/zoMu9joz6bOvpltJZ14kHd9POZHZbqWm4dXovHNIX72Xm+uWmD/e9nHluu\nk4b1LsMlm7U8vrn6h2VquWiFWlZbR4/2+7uS2dd8xjrne7jv1Pc1HWWaf/+fqn6+g+FqretU\nHfkyrml5XDT3nL9qChx/PPPYL8097+IO/ex/sCmwza+H613em7XewU61u4Pfj3+9sXtx9QAb\n7PymvaY/P/PY0QakD8yMe1qH/tOf/2d+i7nn3qVpT+vSNHub9prub+XfoNnXe3rT0Z7519rf\ntNf4tSvU8ierzPPXqutWeN7F3XTDYbWNuVtWf7fCvGaH35l73h/OjLugmzpvZvwNTXvFN+uz\nOdpltNZ14oFNG4ez890/HtvXFBxr+XX4cM7rYLCaH97f6uv3kS7D+c9ho5bHk+fGX910NGD2\nsX8/95zV1tGj+f6uZv411zPf1er9mW76+V0/99j/bvpdW+s6dTTL+Bs7GGrmh3+q3jhz/9lz\nz5397H+4unbm/tJ6eCTLezPWO9jJdnfwu7HiPz5geznagDS7MXNxdWH1xOrbqr+Zm/f3zj33\nTTPj/rKpSUzVvTq4J3dfdZ8VXu9fmvbUPrp67txrvbdpY/5Hm076nt2Duq+pucqS93XohsPr\nmpqjnFM9Z26+P7fK+5/fmPuDmXF7qic17bG9R/Wbc/P9rpnnffUqtVb9t5nxf77Jn83RLqP1\nrhO/MzPu5W2M987M85KmI4SnVA9paiY4W8/8+n2ky7A2fnmc1NTca2ncC5q+v7s6dJ24rEOb\nyq+2jh7NslrN/Htfbb5PXuW5s/We2sGjqzdW/3bmfX5JU/Pgpec9aeZ5h1unNmoZX9Z0xOa0\npu/wfChc7bfzQ00B6aVNO2m+rY1Z3hv1OwA72e4EJNhxNjIgXd/Ufn/JrZo2OJbG/+bMuHvN\nve5887Ufmhn36yu83p4O7gWum+4N/f9mxp03N+4RK8zz8x1sorPk/Jnx8yeQr7Qxd6cO3bO8\nXFO518+Mf/vcuNm9wP/P3LiPzox7/Aq1bMRnsxHLaD3rRG18QLrP3HuY38h/9Nz42fX7aJfh\nRi+PM6ofmxnuMvOcu889594r1LFaQFrvslrN0cx3pXrPnXn8802Badb9m5qcfWNTs9Alq61T\nR7OM79uhn/nT5p737XPjV/vtPFB93dz4jVjeG/UbCTvZ7sb34mYLLgQ4Pr2u6TyPJVc2nXew\n5HYzt79m5vYNTR0iPGpmOGmFaWe9tmlDaclfz43/o5nbb2ns/RnOWGGef9a0l3rWa2Zu37OD\nHVas5uubToxestzG/qtnbj+wacNxyQtnbn/HzO37dHBj83NNn8FyNuKz2YhltJ51YjM8aO7+\n6+fun9+hn9Oso12GszZieVxe/coY/qCpaeXDmzodmD+X50jOIdmsZbVR872k6Ty4mj7nt1c/\n1bTu3bxpR84fNjVrW2sHHEezjB84N91r5u6/trX3tviWDl7ja8lGLO/N+I2EHUsvdsCR+MAy\nj31q5vbsb8sdZ26f1NR8ayX3WOHx+V6wLpu5vadDe5/a17ShsLQhsdLv3HI9Q100c3tXU9OT\n+V6g5t1t5vbl3bRnwPnXulnTZ7J0Ecs/rH6x6bM5r2lj5fLqsTPP+ZOm86WWsxGfzUYso/Ws\nE5vhnJnbV3ewh8Il+5uaId26mzraZThro9bVBzc1r3roMq8xa9dhxi9ns5bVRs13b/ULY6hp\nZ8FS087rm849enn1olb+Xsw7mmU8v25dOve8fU0dmaylg4t/WOHxo13em/EbCTuWLwUwa60b\nW8vtLV2uG9062A1tTRs3/2eV+R5o2jDZP/f4NXP3b1xl3Pz4lSwXfK6fu3/SMtPMm23+M//8\nJTfM3T9l5valTXt/v6PpN/lbq99vahK25MWrvP5GfDYbsYzWs05shvn3sJy9Kzx+tMtw1kYs\njy9pOsqw1AT04qZOPK5qep/L9Si4Hpu1rDZyvr/Y1EnIM6svnXn85KYjK1/b1EzuvG4ahpdz\nNMt4LevWcst2Oct1Jb4Ry3szfiNhxxKQYOc4MHd/uZ6qzt6E171i5vb+Dl6bZNHOWuaxM+fu\nr9Qka9bsntrbtnx4mD8Jen4P9As72LzuW6pXNXUsUFPnAv97DXUcja26jNZj9npJpzc1p5rf\nCLz9Cs/diGW4kX60gxvLn6i+rIMh4OyOPiAdL/54DHeuvqrpKMs3dvA8nPs2daay3PlE845m\nGc8Gv/WuW/PmX7Msb9hynIMEO8eNHbqH9M5z4+/S8qHhaL135vapHdrUZZG+cpnHZs81+Hz1\n6TXMZ/Zk7lO66fkKNXWzu+SSpo2gWW/o4EUyv776pg7uwFrt6NFGWfQyOpJmYvNmL2Z7YtPG\n86x7dGhTqVkbsQw30uwRk//ToUdI7t/OcrOm78ZLq//U9Nn82Mz4lZqkza9TR7OM59et+809\n7x4d2lnEelnesMUISLCzzLax/94ObUL27DZmQ3XeBU2dDCz5qbnxz20KIu9p+Yt3bpavbtor\nveTspgtTLnnjGufzNx16YvrPdejJ4Pfs0F6vXrTMPPY3NauraU/yT4/bB6qXrLGOo7GIZTTb\n9OruGzC/v+nQHQA/MTf+P7fy+r0Ry3AjzTbj+sKZ2ydXPzs37XLnVB3vvrt6Z9NRwecsM342\n0F87c3u1depolvH8uvVTHbourbZurcVOX96w5WhiBzvLn1U/OW4/oKmHqTc19QD25U1XvH/A\nGL9RO1CuadoY+a/j/tOajlC8rak76e9s2ri4bSv31LYZ/qXpyM3Lmtr6P65Dm9g8f43zubGp\nic9fNH1mj2w6EfsNTR0uPK6D1xS6sPrlFebz+9WzxjyWTkh/S4d2HLFZFrGMPjZz+4FN13n6\nRFNPXh9e9hmru6Kpp66lkPuEpr36f9fUNOsrm3o8W9rTP7t+b9Qy3Chv62BX0A+tfqPp2jVP\nauoI4I1NTc1qCoJ3avmLmx6v3tV05OSEpp0F/6ap57rrmo58P3Fm2tne6A63Th3pMr686QjW\nU8b9x1V/27RuPaCpOewlrXyE8nB2+vKGLWmpH/zdC64D2Hy3buqV6cDcsLfpHJiXzjz283PP\nXe0aKzWdR7M0/lVz43ZVv9S0ITr/2kvXOnnkOl7vSTPjPtVNXTYzfvZCkrPz/OmmE6Pna9m/\nwvs73Pt/XNNRmOXe34Gm84juuMzzZv3l3HO+b4XpNuOz2ehlVKuvE3fq4MVAZ4f57rrX47Yd\nerHYpeHG6gc79GK4v7DM8490GW708jijQy/muTRc3dS74WOWGXe4Oo5mWa3maOa72nO/o+no\n0ErLYn/TdZVmg+5a1qkjXcZntPK69UNNTeOWHlvtOkjLfUabsbyP9HcAdrLdje+FI0iws3y+\n6UjRDzY1Lzux6YKoL2wKTnfu4B72S+ae+44Onuj88W7qgx289sb75sYdaGqW8uKmvb/3aeok\n4pNNe4tf0k07RFjt9T4981rLddf7tg42RVnpPKJ9TRdIfNL4e0ZTE5wXt3ynCId7/69q2gB/\nYtO5DGc1Bc+PNl2T5w0r1DHrTzt4Ad9rWnlDdTM+m41eRrX6OnFx0573H2k6/21P0zr4z8vM\nZ62uGPP8wabryJzUdOTgxeM9nNXBlhPLXT/nSJfhRi+Py5uOej29g+fKva96QQebyT6taeP5\npPHeDlfH0Syr1RzNfFd77qubjtJ8Z1OnBWc3haErmoLKq7tpN+trWaeOdBlfPub975s6MTmp\nqWvtFzc1B/z+mWnnux4/3Ge0Gct7I34jYUdb2oOwe8F1AGy2w+3JXbQ/62B9L1psKcAa7coR\nGdgOdje+xzppANgaHtPUxXdNP9BrPQcK2Hy/23Rk+eJueg7a4zp4iYD9TZ06AMcxTewAFuf+\nTed6nd3BzjFqarbzfxdSEbCcazrY/O0nms5TendTF9+z5wq+pEM7iwCOU5rYATvFVmti97Xd\n9OTrd6UrX9hqTm06R3Clzh0OVP+j5S/ADRwfdqeTBmAHOtzJ0sfaJU0bXbdqOlH6b5o6zNi3\n2pOAY25v9W1NF4n9ruquTZcFuKr6QPWapk4lgG3CESQAAGAn251OGgAAAA4lIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwnLroAAP7VvatzFl3EMfIP1WcXXQQAzBOQALaO1596\n6ql3PumkkxZdx6a69tpr27dv3y9WP73oWgBgnoAEsHWc+IxnPKOv//qvX3Qdm+qZz3xmb3/7\n209YdB0AsBznIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAcOKiCziGvq56dHXv6qzq1Ora6pLq\nPdVrq7cvrDoAAGDhdkJAukv1yurBM49dX11XnVI9qPrm6qer86snVZ89xjUCAABbwHZvYndS\n9frq/tXzq4dWt24KRrcaf8+ozqt+v3pk9bq2/+cCAAAsY7sfQXpEda/qydVLVpjmiup/jeHd\n1a9XX1tdcAzqAwAAtpDtfqTkXtWN1cvWOP3vVQeqL9u0igAAgC1ruwekG5ve40lrnP6kaldT\nSAIAAHaY7R6Q3tUUeJ6+xul/bPzVmx0AAOxA2/0cpL+p3lb9SvXl1aur91WXNvVkd0p1dnXf\n6rurR1VvGM8BAAB2mO0ekPZXj61eWD1+DKtN+6Lqh9LEDgAAdqTtHpCqLq++vbpn0xGie3Xw\nQrF7q09V763+orp4A1/3zq3v8z21ev8Gvj4AALBOOyEgLfnQGI6Fu4/X2rXO551U7dv4cgAA\ngLXYKQHp9k0Xg93bdL2jK8bj92nqwOHc6pLqxWP80fpIdZvqhDVO/5Dq/LZ/pxkAALCl7YSA\n9Nim6yDdYtz/XPWt1Q1NYejkmWn/XfUfqt/egNe9ch3T7tmA1wMAAI7Sdj9icfPqd6rPV8+t\nfqr6cFNnDM+u3lk9rLpL9U3Ve6r/Wt1uAbUCAAALtt2PIH1jU/O6L+1gBwi/2nR+0MM72LSu\n6uNN4elD1SOqlx7TSgEAgIXb7keQ7lb9S4f2Dnd99ddNQeiSuek/3NSr3Z2PSXUAAMCWst0D\n0v6Wf48nt/LRs5PH8wAAgB1muwekC6s7VA+aeezM6huaji590dz0D6nOaDqSBAAA7DDb/Ryk\nNzV1uf2m6o+q66rHNXXz/cbq9dWzqouqezd13PC56g0LqBUAAFiw7R6Q9lVPrv6sqfvuqk9U\n39UUkv62+uO56Z9QXXUMawQAALaI7R6Qqv53ddfqK5uOIL1j/K36N9VTq3tUn266XtIHjn2J\nAADAVrATAlLVNdWbl3n88upXjnEtAADAFrXdO2kAAABYMwEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYDhx0QUArMFp1cmLLuIYsNMKABZMQAK2ultWl1WnLLoQAGD7E5CAre7U\n6pRnPetZ3eEOd1h0LZvq6U9/+qJLAIAdT0ACjgt3uctdOvfccxddBgCwzWnvDgAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAMOJiy6AY+prqkcvuohj5B+qP1l0EQAAHF8EpJ3l\n+84888x/d9e73nXRdWyqT3/6033iE58QkAAAWDcBaYd58IMf3E/8xE8suoxN9apXvarf/u3f\nXnQZAAAch3ZiQNpVnVadWl1bXb3YcgAAgK1ip3TScPvqOdU7qquqPdWl4/aV1VurH69utagC\nAQCAxdsJR5AeUb2qOr3paNEHm8LRddUpTeHpwdXDqmdU39wUpAAAgB1muwek21Qvrz5XPal6\nfbVvmelOrR5f/Wr1p9UXp+kdAADsONu9id1jqttW31m9tuXDUdXe6iXVd1dfWH3TMakOAADY\nUrZ7QLpzdUP1t2uc/oJqf3WPTasIAADYsrZ7QLqyOqk6a43Tn9P0mVy5aRUBAABb1nYPSP9r\n/H1+dfJhpj2t+q3qQPWmzSwKAADYmrZ7Jw3vr367enr18Op11fuaerG7vqkXu7Or+1aPrW5X\n/VJ14SKKBQAAFmu7B6SqH2rq2vvHqx9cZboPVT9W/eGxKAoAANh6dkJAOlD9evUb1ZdW92o6\nJ+nUpt7rPlW9t/rABr7miU3XU1rr5/vFG/jaAADAEdoJAWnJgaYg9N5j8Fp3qH65tX++p46/\nuzanHAAAYC12SkA6r+m8o6VwdFJTc7onV3errqveXf1a9eoNeL2Pt76jQg+t3tYU4gAAgAXZ\n7r3YVT23enP1iHF/V/Vn1S9Wd68+Vn2u+qrqVdXPLKBGAABgC9juAemLqp+u/mf18vHYo8fw\nP5que/RFTReUvXfTUaRnV3c91oUCAACLt90D0tc1vcenVv8yHvua6urqKdVnZ6b9p/HYiR08\n2gQAAOwg2z0g3bbaV31y5rETq49WVy0z/XurG6szN780AABgq9nuAekjTYHoa2Ye+4fqji3f\nQcV9qxM6eLQJAADYQbZ7QPqLprDz0qae7GrqiOHips4bZrvVfkD1smpP9fpjWCMAALBFbPdu\nvq+pvr3686ae7D5Uvb16R/Xj1RPGY3dsuoDsDdV3V5ctolgAAGCxtntAqikQfUn1n6rHV98z\nM+7cMVzZdPToF6t/PNYFAgAAW8NOCEhVl1c/O4bTq7tUt2zqwOGypmshuUgrAADscDslIM3a\nk6NEAADAMrZ7Jw0AAABrJiABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwHDiogsAYGfZs2dP1VdUP7ngUo6Ft1Vv\nXXQRAKydgATAMXXJJZd0xhlnPPx2t7vdwxddy2a67LLLuvzyy/+yevSiawFg7QQkAI6pAwcO\n9MhHPrIf+IEfWHQpm+r3fu/3etnLXrZr0XUAsD7OQQIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGNYTkJ5c/c4a5vfx6jFHXBEAAMCCrCcg3a36isNMc4vqrOqLj7giAACABTlxDdP87fh7\nx+q2M/fn7arOrU6pLj/60gAAAI6ttQSk11cPru5Z3by6/yrTXlm9pHrp0ZcGAABwbK0lID13\n/N1dfWurByQAAIDj1loC0pIXVK/YrEIAAAAWbT0B6ZNjuH113+r0pvOOlvP+MQAAABw31hOQ\nqp5XPaPD9373nKYmeQAAAMeN9QSkh1Q/Xr23el312Wr/CtOu1NMdAADAlrXegHRxU492121O\nOQAAAIuzngvFnlq9L+EIAADYptYTkN5VfUkrd8wAAABwXFtPQPqrppD0X6pTNqUaAACABVrP\nOUhfU11UPa16UvXu6rIVpv0fYwAAADhurCcgfV1TF99Vt64eucq0H05AAgAAjjPrCUi/Uf1B\ndeMapr3yyMoBAABYnPUEpM+OAQAAYFtaT0C68xgO54TqE9VHjqgiAACABVlPQHpq9ew1Tvuc\nave6qwEAAFig9QSkt1S/sMK4L6geUp1b/Xz15qOsCwAA4JhbT0C6YAyr+ZHqO6rnH3FFAAAA\nC7KeC8Wuxa81HU36xg2eLwAAwKbb6IBU9bHqvpswXwAAgE210QHpNtWXVZ/f4PkCAABsuvWc\ng/SoMSxnV3VG9Q3VmdVbj7IuAACAY249AekrmjphWM2V1X+q3nfEFQEAACzIegLSC6o/X2Hc\ngeqq6qPVDUdbFAAAwCKsJyB9cgwAAADb0noC0pLbV09qujDsWeOxS6q3VX9UfW5jSgMAADi2\n1huQHlO9rDp9mXFPqH6m+pbq746yLgAAgGNuPd1837rpCNHV1Q9V96nOHsP9qmdUJ1Svqk7d\n2DIBAAA233qOID2y6TpHD6reNTfuM9V7qrdU76geUb12IwoEAAA4VtZzBOluTecazYejWe+s\nPl59ydEUBQAAsAjrCUg3VrdY4zz3H1k5AAAAi7OegPS+pvOQvn2VaR5Z3TEXigUAAI5D6zkH\n6Y3VR5o6anhBdUHTdZF2VXeovqF6WnVh9aaNLRMAAGDzrScg3VA9tvqz6kfGMO+fqm8d0wIA\nABxX1nsdpPdX964eXT20Oqc60NR5w99U/7Pat5EFAgAAHCvrCUi7msLQDdVrxsH89oQAACAA\nSURBVLDk5KZgtNU7Z7hVUw97ZzVdq+napnD3geqaBdYFAABsAWvtpOEhTdc3+oIVxv9o9dfV\n3TeiqE3wmKb6Lq/+rnpd9crqz5u6Lf9c9RdNR8UAAIAdai1HkO7X1CHDadVXVX+6zDS3qR42\npntw04Vjt4pnVr9UXVe9uamHvUvH/VOq21f3b+qB71HVD1S/v5BKAQCAhVpLQPrv1c2rJ7R8\nOKr6z03B4yXVb1WP35Dqjt651c83BbcntnpwO7d6RVP9f9nU9A4AANhBDtfE7j7VA5tCw58c\nZto/rl5UfVt1p6OubGM8ojqh+r4Of1Trn6vvbTo36Zs2uS4AAGALOlxA+rLx94/WOL/fbwok\nW+VcnjOaOpX4+Bqn/2BTRxNnb1pFAADAlnW4gHTO+PvRNc7vI+PvnY+snA13SXVSU9fka/GA\nps/kk5tWEQAAsGUdLiAtXfD1lDXO77Txd6t0mf2XTV15/1F1r8NM++XVS6s9TT3aAQAAO8zh\nOmn45/H3K6pXr2F+Xzv+fuxIC9pgn66eXr2wqROJD3SwF7vrm4Lf2dV9q7s19Wz33dVliygW\nAABYrMMFpL9qCg0/Wb22g0eUlnPr6qeqzzd1p71VvKh6T/WMpq68v2OZaT7VFKL+S3XhMasM\nAADYUg4XkK6ofrf64aYLq35/9dllprtHU/O0u1W/0NSsbSv5++p7xu2zq7Oaeqvb2xSOLt3g\n17tV9ROtrRv1qi/c4NcHAACOwFo24J9ZPaj6luobqj+v3l1d1dRL3Jc3HZk5oXpjtXszCt1A\nnx7DrG+v7lD95ga9xilNYXGtAenM8XfXBr0+AABwBNayAX9tdV713Kbzeb5rDLMurZ5fPa+6\ncSMLPEYeXd2/jQtIlzady7RWD236jA9s0OsDAABHYK1HOJbOQ3pu9bDqnk091l3a1AX4W9ua\nweixYzicr2o6ivPCcf+1YwAAAHaQtQakJVdXbxjD8eABTedNrdXStJ9IQAIAgB3ncNdBOt69\ntvpgU2cMz2+68O1tlxle0nRe1dL9X15EsQAAwGJt94D099X9mrrv/qHqLdWXVZ+bG65vaiK4\ndH/vIooFAAAWa7sHpJrOn3pWUzC6rLqg+u9NR4oAAAD+1U4ISEve19QZw3+sHl/9UzftjQ8A\nANjBdlJAqtrf1JX3vaq3Vy+vXlN9wSKLAgAAtoadFpCWfKKp++/vrB7S2roCBwAAtrn1dvO9\n3byyemP1w9XnF1wLAACwYDs9INXUa91zF10EAACweDu1iR0AAMBNCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwuA4SAGyCiy++uOqh1TsXXMqx8H+r7190EQAbQUACgE1w+eWX\nd6c73elWj3rUox646Fo200c+8pEuuOCCcxZdB8BGEZAAYJOcc845PfGJT1x0GZvqzW9+cxdc\ncMGiywDYMM5BAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYTlx0AcfQadXXVveuzqpOra6tLqneU72lun5RxQEAAIu3EwLSydUvVP+h\nuvkq032u+uXqedWBY1AXAACwxeyEgPTy6tuqv69eVb2vurS6rjqlun11/+oJTQHp3OoHF1Ip\nAACwUNs9IH15Uzj61erHWvnI0J9WP1e9oPr31W9W/3gsCoSjcHL1b6sTFl3IJjt90QUAADvH\ndg9IX9kUip7T4ZvN7at+svq+pnOVBCS2uodWrz799O2dH/bv39/VV1+96DIAgB1iuwekU6ob\nq6vWOP0V1f6mDh1gqzvhZje7Wa95zWsWXcemuvjii3vKU56y6DIAgB1iu3fz/aGmEPioNU7/\nbU2fyQc2rSIAAGDL2u4B6fzqE9UfVU+vzl5hujs1Na/7g+oj43kAAMAOs92b2F1TfWv1muq3\nxvDZpl7srm9qgnd2dZsx/YXVtzT1cAcAAOww2z0gVb2r+qLqe5qa2t2rgxeK3Vt9svqf1euq\nV1Q3LKZMAABg0XZCQKrpSNLvjeFYOKf6/db++d56/N21OeUAAABrsVMCUtWZ1S2ri5t6qlvO\nCdX3Vu8ew5H6fPWm1v753qV6cIfvihwAANhEOyEg3bN6UdM1Y2pqUvecpovCzjupqaOG53R0\nAema6r+uY/qHVv/vUbweAACwAbZ7L3a7ms4remjThV9f23SU5nebmttp0gYAAPyr7X4E6euq\n+1fPa+rGu6ajRL9S/XB1dfWjiykNAADYarZ7QPqS8feXZx67ofqR6nPVs5ouJvtbx7guAABg\nC9ruAenUpiZ11ywz7tlN5yf9Wi4OCwAAtP3PQfpw03lG37jC+Kc2XSfpldVXH6uiAACArWm7\nB6Q3Vv/S1Ivdv6tOmxu/t3pM9cEx7TOOYW0AAMAWs90D0rVNwWip++77LjPNZdV51V9VP3+s\nCgMAALae7X4OUk0XbL1/9T3VRStMc2X1TU0XiX3yKtMBAADb2E4ISFX/3OGPDh2oXjwGAABg\nB9ruTewAAADWTEACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGE5cdAEAwPHrxhtvrDql+oYFl3IsfL56x6KLADaXgAQAHLELL7yw6szqjQsu\n5Vg5o7pi0UUAm0dAAgCO2P79+zvzzDN75StfuehSNtVFF13UU5/61LLtBNuec5AAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgOHHRBcBG\nu+6666puUz1+waVstvssugAAgO1GQGLbufDCC7vZzW527mmnnfaKRdeyma6//vpuuOGGRZcB\nALCtCEhsO/v37+/ud797v/u7v7voUjbVK17xil7wghcsugwAgG3FOUgAAACDgAQAADAISAAA\nAIOABAAAMOikAQCAWX9Q3XHRRRwDB6rnVG9bdCFsLQISAACzvve888474eyzz150HZvq/PPP\n74orrjg/AYk5AhIAAId49KMf3QMe8IBFl7Gp3vnOd3bFFVcsugy2IOcgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMBw4qILAADY6m644Yal\nmz9bXbPAUo6FHbEDfc+ePVWPqc5acCnHwl9Wf73oIo4XAhIAwGF85jOfqep+97vffzzxxO29\n+fSud71r0SUcE1dccUV3vOMdzzv77LPPW3Qtm+miiy7qs5/97NkJSGu2vb/hy9tVnVadWl1b\nXb3YcgCA48Xu3bu79a1vvegyNtV5523rvHCIxz72sT3ucY9bdBmb6nnPe17nn3/+oss4ruyI\nQ6jV7avnVO+orqr2VJeO21dWb61+vLrVogoEAAAWbyccQXpE9arq9KajRR9sCkfXVac0hacH\nVw+rnlF9c1OQAgAAdpjtHpBuU728+lz1pOr11b5lpju1enz1q9WfVl+cpncAALDjbPcmdo+p\nblt9Z/Xalg9HVXurl1TfXX1h9U3HpDoAAGBL2VUdGLefU+1eXCmb4qea3tfJa5z+hOr66qer\nXz6K1z23+rvWfoTuxKYmgCdXNxxm2qPxwhNPPPH7b37zm2/iSyzetdde2/79+zvttNMWXcqm\nuuGGG9q7d2+nn376okvZVPv37+/qq6/uFre4RSeccMKiy9lUe/bs6dRTT+2kk05adCmb6qqr\nruqkk07qlFNOWXQpm+qaa65p165dbfff3L1797Zv375uectbLrqUTbX0m3vLW96yXbt2Lbqc\nTbVnz54d85t7yimndPLJa91MPD5de+217du3779XT1t0LVvc7urZtf2b2F1ZndTUv/1n1jD9\nOU1H1a48ytf9WNNRq7V+vruaatzMcFT1s/v27Xv56Pd/O7tFdcaePXs+sehCNtnNqnP37Nnz\nkUUXcgzc45prrvlIB3fobFd32bt37yV79+69ftGFbLKzr7/++muvv/76o/2t3epuVd18z549\nn150IZvs5OqcPXv2fGzRhWyyXdXdr7rqqg8vupBj4O7XXHPNP1f7F13IJrvjddddd/l11123\n3a9rVfW+RRdwvDkwht0LrmMz3Kvpvf1xhz+KdFr1mqYfgy/a5LoAAICtY3cjF233I0jvr367\nenr18Op1TQn60qamdKdUZ1f3rR5b3a76perCRRQLAAAs3nY+glTTIfEfri7u4HtdbriwesqC\nagQAABZndzvkCFJNb/TXq9+ovrSp2d1ZTV17760+Vb23+sCiCgQAALaGnRCQlhxoCkLvXXQh\nAADA1rTdr4MEAACwZgISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAMD/397dB0lS1gcc/54cgtwKd3DhEORVCYcSpRAIiLzEQg0GYoiEJJjEACmt5AKxtCwgZeJS\ngBFBg4EkihqjAaKGiOILaEBEiMjLgQiCR+QIeDkP7+AOODjujc0fv1+7vb09e7O7s9Ozs99P\n1VRvP93T85vnmZ3p3zxPPyMlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRk\ngiRJkiRJyQRJkiRJktLspgNQV90GHNZ0EJIkST3iMuCMpoNQbzFBmlmWAiuBc5sORB1xKPHG\nfmjTgahjrgM+DlzfdCDqiDOAfYEzmw5EHfEK4IvAscCahmNRZ1wJPNZ0EOo9JkgzywbgCWBx\n04GoI+YCQ9ie/WQj8Ai2ab9YAeyM7dkv1ufyXmBVk4GoY54DNjUdhHqP1yBJkiRJUjJBkiRJ\nkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUprd\ndADqqg1NB6CO2oBt2m9s0/5ie/aXDcAQsLHpQNQx/o+qpaG8DTYch6bevLypP8wC9m46CHXU\nHvjFVT8ZAHZuOgh11D5NB6CO2hXYtukg1DMGybzID+KZZXXTAaijhoBHmg5CHfVY0wGoo9bm\nTf1jadMBqKOWNx2AepPXIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmS\nJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUT\nJEmSJElKs5sOQI1ZAOwJ/AL4GbC52XDUAQcCc4FbsD2no/nAPsB64EFgQ7PhqAP2ytt9wBON\nRqJO8HOzv+wE7A08A/wv8d4r/dJQ3gYbjkPd8QZgMcPtPgQ8Dry7yaA0KXOAyxluz4Fmw9E4\nzQf+kzjZKtpwNXBGk0FpUmYR7beOaM/jmw1Hk+TnZn85CLiJke35HHARsG2Dcal5gwy/JkyQ\nZpADgWeBVcB7gTcCpwGPEK+B05oLTRN0KPAQsJL4BswEaXqZxXCP38XAUcAJWTYEnNpcaJqg\nlwHXAxuBH2KCNN35udlfXkn0GD0FnEO050nAzUR7fra50NQDBjFBmpG+QLT1MZXy12T5bd0O\nSJN2H3AjsCtxUmaCNL2cQLTZRyvlc4BlwP8BW3U7KE3KpcTJ82HA2ZggTXd+bvaXS4l2O6lS\n/hJgOTHMbptuB6WeMUjmRU7SMLN8nfjG5LuV8h8R36js2u2ANGkXAG8i3tg1/ZyYy8sr5c8C\nVxH/k4d3NSJN1vVEr8MPmg5EHeHnZn/5HPAO4GuV8nXAA8CLiWRJM5yTNMwsV7Qo34nodbij\ni7GoM77QdACalAOBtcCSmm13lfa5tWsRabK+0XQA6ig/N/vLXQy/t5btRLzX/hRY09WI1JNM\nkATwYeJaiEubDkSaYV4O/LzFtqJXcPcuxSKpfX5uTn8HALsB+wJ/SbTn6Y1GpJ5hgqSzgD8D\nPgF8teFYpJlmO2BFi23rcjmnS7FIao+fm/3hfOBt+fddwJ9gj6CSCVJ/WUDMxFK2mBhvWzUb\nuIyYpvSTwKKpDU0T9C3idzfKXo2/v9EvNtH6fbgo9/eQpN7g52Z/+TviWs89gFOA7wMfJK7t\n1QxngtRfXmD0t9FP1uw3D7iamJXnbODCqQ1Lk7AKZ9TpZ08Q/491dsxl3f+wpO7yc7P/3J43\ngL8nJlg5D/g2cGdTQak3mCD1l5WMnoq0agfgBmAh8HbgK1MckyanrvdP/WMJ8JvE/+VTlW37\n5/LBrkYkqcrPzf6xHTCX0TO/biYmPToWOBITpBnPab5nltnE1JYLgePwTV5q2g3EhcHH1Ww7\ngRiC952uRiSpzM/N/rKY+J2yl9ZsW5BLhzUL8IdiZ5JziLZ+Z9OBaEr4Q7HTz3zgaeBhYka7\nwmlEW36miaDUMf5Q7PTn52Z/OZdozysZOQHOa4hROJuIWe00Mw2SedGs/APiRTPYUEDqjjXE\nUIHbx9jnRFpPO6ze8mpGnkAvJNr3TuJ6NIAPAdd2OS6Nz0nEhcKbibbbkWjbe4khs/4mx/Ry\nM8PXDe5KTNO+hOF2vB4/a6cTPzf7y9bAN4mhdGuAnxBfKr6K6M1/P/DRxqJT0waJiTq8BmmG\n+WEb+wxteRf1iCHg+dJ6Xfs6213vu5q4zuhdwH7Et5ifBD7FyPbV9LCe4ffRpXkr29jdcDRJ\nfm72l43Am4le3eOIWWKfJCZmuBK4u7nQ1GscYidJkiRpJhsk8yInaZAkSZKkZIIkSZIkSckE\nSZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIk\nSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIk\nSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKk\nZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZI6ZTvgGGC/\nhuOQJGnCTJAkqTP2IJKDnRqOo0l7ADcB7286kB7ja0OSphETJEnqjJOJ5OB1TQeiRp0C/FOl\nzNeGJE0js5sOQJL6xNpcPtNoFGra8cA+lTJfG5I0jZggSVJnVE+CX0r0GCwDflrZd29gT+Ae\n4Cni2p1DgUeAR3N9f+D5vO/6Fo85B1hIvJc/Avyisr163B2BXwVWA0tK++1AXDe0KvcdKm0b\nAA4uHWMesC+wAbgf2NQitqrt87G3qon1Zfn4DwM/q7nvbvmYDwFrOvCcysZbh63apmjvw4F1\nxJC61cC9tJ8gLchjt3If8MQWjlHYmhja9yvAk8BSWrdV0abPEG2wocV+Y7UhjK6rhfn4t1T2\n21KdS1LjhvI22HAckjSd/Q7xXrpXrh+c65fU7Ht+bntDru+d6x8CFhEnquuy7Ik8dtm2wD8S\nJ+dDpdsNpcevHvdvc/9NWXYbMBf463ysjVn+feKktnBAll8EXEicPBfHWAG8pbTvwiz/dKls\nAPhc6fjF7TulWPfPsq/V1BXAlbn9tR16TjCxOhyrbQ6uHKc4Fox+bbTyRzXHKN+O38L9C4uI\ntinfdzlwamW/OcDnGa6/ISJZqe7XThvCcPufB3wq/76/tL3dOpekJgwy/L5kgiRJHTBAJBNF\nz/x4EqTdc/3HwI3ESTnAq4DHiZPygdL9v0ScrH6ASC5eAbwbeJro1diuctwlRJIxD9gGuCzL\nbwGuI3ouZhOJxRDwkdJjFSe9y3PfPYgehKOJk+m1RA9Qed9ygnRdln2Y6H3Yj5jEYVPG+pLc\n77/zOS2o1NW2+bzu7uBzmkgdbqlttiKSs+eBO/PvOblv9bXRygDwysrtGCIhW8VwPY/l6Iz3\n28DrieF+R+X6EHBEad+vZtnFRM/XsUSS+QIjk/J227BIJm8kekd/GzisdJx261ySmjCICZIk\nTanxJEgvz/W1jO7puCS3HZXrr2P4pLbqjNxW9AAUx13NyARrryzfwMiT7m2Ik95bS2VF0rMO\nmF95vEW57X2VfYsE6fW5fnVNrBfktj/N9VMrxyqcmOVndvA5TaQO22kbiATpBzXHnYgXEZM7\nDAFva/M+H8j9j6mUzyVed7+e64fkfp+t7LcLUV//levjacOirjYTQ0jLxlPnktSEQTIvchY7\nSeoddwErK2XLcllMEX1cLjcBf1C5vTi3HVk5xmKGr4OB6A2CuKbn56Xy9cT1KvNaxLaqUlZc\nW3JIzf4QPRIAX67Zdm0uj87ll4jemHdW9juZ6HW4qlI+mec0kTpsp2067Wwi0flnorenHcU1\nXIsY+ZzXEMnT7bleDI38euX+K4ierzfl+njasHA3cQ1S2UTqXJIa4SQNktQ7lteUFRfWb5XL\nYoa0s8Y4zi6V9ccr6xtalBfbtqopr5s8YUUuq8PiCnvlcmnNtuIEevdcPgv8O/AuordhMTF0\n63ji2qRqcjaZ5zSROmynbTrpEOBc4AFG96qdB/xepexUYnjcVcDvAicRvU63E71B1xCTPBSK\nOljGaOVJQfbKZTttWKg75kTqXJIaYQ+SJPWOF9rYZ+tcvoVIIOpu1eFYrWZwa1Ve5/masiLe\nVl+2FbHWzYq2MZfblMqKoXlFL9JvEcPo/rXm/pN5ThOpw3baplMGiERnM/CHxPDGsqeJ5LR8\nK+p4IxH7bxD1uRuRaP0I+ArD1wsVdbClWQjH24YQyW6r44ynziWpEfYgSVL3DWx5l5aKnpT5\n1CctU6Vu2N3cXK5pcZ8nc1k3BG3HXJanrb6TOJE/GXgP0UvyODFJQCc1VYftuoyYoOGviPqo\nuihvY/lu3iAmVSh6nc4GPsjYbVM23jZspdfrXJJ+yR4kSZoaxTClOTXbxvqtmy25K5fH1Wzb\nhbhmZCq+/DqopuyAXD7Y4j6Lc3lozbbiuqV7KuWfJobsvZUYXncF7f/WUruaqsN2/D7Rg/ZN\n4B8mcP/tieSqbAkxhfgmhmexK2YFPIzRLieSNJhYG9bp5TqXpFGcxU6SOm+AOCG9D5hVKj+c\n4d+dqc5id0XNcd6T204qHXcl8S18eXKErYmZxoYYPpkd67jl3+kpWwb8pLRezEy3GfiLUvm2\nwPcqz6M6i932RA/EckbOLDdA/IDqBmKq57J5xJCyR/NYB1S2d+I5daoOq20D0Zv2cM2+7dgz\n778C2HmCx7iR6K3Zu1JezKr4+VzfgZgJ8HFGzjj39tzvE7k+njYcq67GU+eS1IRBMi/y2xpJ\nmhprietI/pgYInYTccH7W4GPA+9lYr34a4negGsY/s2fZ4kkZU9iKuc7Jhd6rWuAc4hrYpYS\nid6+wBcZOYV22dPEFND/Qfxg6DeIa3neTPQaLGJ0MrGamDHtFKLX4X46byrr8B5i5rlbiaTi\n5HHc93wicXkM+FjN9i9TP5tc2TnEpAwPEM9tJZFsHZV/X5D7PQWcRrTfj3PfHYh2fSiPAxNr\nwzpNvW4ladwcYidJU+dUotdlDTEV8lpiiNONwM0MX8y+Ptfrhqoty23lKaa/RQzTu5gYljSP\nOHE9Evib0n5jHfdmogeg6jbqT1RXE9/8f4+4juQB4M+Bd5T2eS6Pu6RUdi3wa8Bn8n4LiCm9\nDyKmr65TXHP0LzXbOvWcOlGHdW1zOvBvRH39T819xvJoHu9Jojemetu+jWPcQdT3BRnDfKJH\n6ixi6F25ba4BXksMqYOYqfB9wIF530K7bThWXUH7dS5JjXOInSSpleqwuW64nujhmMxkFpIk\njccg/lCsJKkHnU5MBf0xRv4QrCRJXeE1SJKkXnAJMWTrSGK67wubDUeSVDfBmAAAAPxJREFU\nNFPZgyRJGkvddUVT4UX5WOcDb8TfypEkNcQeJEnSWB4jZmWbamd24TEkSdoie5AkSZIkKZkg\nSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIk\nKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAk\nSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUqzS38fAZzV\nVCCSJEmS1JAjij9mAUMNBiJJkiRJPcMhdpIkSZKU/h8D9B9wcI0jmQAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “'unemployment' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde7xkZ13n+0+TTjpXSLwkRG6CBLlIRBFUgoAwgJIDyiiiyODoMEdejMfR\nI6AMXhrBy3GOlxEvjIOioggaL4CgIqIgjDoMikYuBgEhQICQAOkknUsnPX+sZ9vVm92977t2\n7/1+v17rtWvXWlX1q6pnrapvrWc9a091OAAAALrNvAsAAADYLvbOXH5z9aZ5FQIAADAnD64u\nWvjn8Jj2z6saAACAOdrfyEW62AEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIMHmeNiYvmK+ZWxLb6sOj+n7F837x5l537fFde0EO/n128rndlabsw4fr+3vBPNof+t5zJ28\nvgDrsHfeBcAO9efj79XVZ27A/d2xunv1seoda5gPO91GrgN3a+PXYXYH22LYAQQk2FwHNuh+\nfrr6+url1TeuYf6J4uuq08blD8+zkBPUTn79lntuG7kOHDjGZY7vRGt/m1HvTtkWw64mIMHm\n2ogvV2dWF69j/onkn+ZdwAluJ79+x3tuG70OCEhrc6K1v42udydti2FXE5Bgc11znHmfXX1u\ndXL1keq9i+afVd2/uqgjv3Ke23RcRNXfV194nPlvqg4tus991T3GfX+s+udj1Pag6pRx+W9n\nnsedmrqQfKx6z3GeW9We8VjnVB9oZb/QPqA6Y1x+77jdZtV0efWhcf0F1R3G5ctXcD/LPcZD\nZ/7/h6ZuWrO+pOnLVNX7qvfPzFvP81zq9TuvutfMMn9V3bjEbb+w6XWpuqq6dNH89bSd85u6\nHX2go59r1e2rOze9bh+qrqhuWeFzW24d+cfqC2bu460tHXjuV509Ll/Z0evi8dbhY1lL21/s\nrk3v3c1NbfJjx1l2qdf8pOrzm963d1fXLrrN5zS97h+p/mWZWpbbVi3Y7PV3Nda6vixluTa6\nXDtcaltcq3uPF6xlG7badXKl7/dmtzuYq4UDFPfPuQ7YSW5uWq/+eIl5j63+riPr3sL0L9W3\nzCz3JUssMzv9m2Xmnz1zX59T/Vp1/aJlPlj9xyVq/MDMMo+uPq9686Lb/m1Hf/GedXHTF//Z\n5f+s6UvL385ct5pBGtZb02ObXuPZ5f+i6cP6N2eu+7Fj3H6l9i56jK9aYpnjHay/nue51Ot3\nwaLbPu4YNV81s8x/mZm32rZz+aL6n9b05XDxc/3Wpl/wF7fbj1TP78gX1+M9t+XWkbtU1838\n//RjPPerZ5b5rnH98dbh41lr2686tfrBpkC1+Ln8Y0dvH2YtbjMPaPpyunDdger/GcvetnrF\novt+bUdvLxasdFu1YDPX32OZfczvWeX9LjdIw0rb6HLtcPa1Xet7XGvfhq10nVzt+71Z7Q7m\nZX9H2ue/Xtg/v3pgx/njpl8Nn7/o+qd09AfEdU2/sM1e9+1j2fs3fYjdOjPv1nHdoerhy8y/\n3bifuzT9yriwzA1NvxjO3m7/ojrfNTPvqR39Abv4g/P0Rbd9eEe+XC6e3tHaR7FbT02P7MgX\ngsXTO6s/nfn/h1qf9Qak9TzPY71+/3vm+hctUc8jZubf2tRmav1t5zurg0s81+9f9FxurW5a\ndN3/7OheDks9t+XWkds1hbuFea9f4rk/fGb+zU2//Nex1+HjWU/bP7P6m2PcdnZ64RKPO/ua\nP72jw+7s63JR9cpj3O/LF93narZVCzZr/T2exY+5EetLra6NrqQd1vre4/Vsw1ayTq7l/d6M\ndgfztL8jbfOYH3LAxjq5qQvFwjr3S00frnuqn5m5/uMd/cXwhTPzXrbE/S43/3Uz8/+oqTtI\n1b078ivmoeq+M7eZ/eJweXVZ9U3V46u/7OgPuH+36PEunZl3RfWQpu4WD2zqljV729UEpPXU\nNHvbjzf92nlG0xDOi79QrXf45fUGpI16nrOv3/fMXP/RPv0UDz8/M/8NM9evt+28u+nL2Eur\n/zaew6kd2atzS/V/daS937OpS+LC7Z+8gudWx18HvmJm3qGm7kOzZte9P2x91tP2Xzwz70DT\nc79tUzeon1t02ycuuu3sa/Ohpr0Kj6l+eNHtLm0Kud/VNEDB7K/9s6/NWrdVm7X+Hs/i5368\n+33KcW47W+9a2+hy2+KNeo9Xuw1bbp3ciPd7I9odzNv+jrTNf72wf371wK7wGdUzZqa7zMz7\nvI7+QLnPzLz1BKR7L7rfeyya/x0z83525vrZD76bmvrKL7ht04f7wvyfm5l330WPt/iLzmMW\nzV9rQFpNTRcuesynLrrff7tMTau1kQFpNc9z8W1nX787NH3RW5j35TPz9jR1l1uYt9BtbiPa\nzuHqKxfd7q4z8z7V9GV01v2auvM8sql733LPrZZfR2Z/6f6/F81778y8Jyxx25VaT9u/U0fv\nHViqK+BrZub/r0XzZl+bAx3ZY1Gf/sv9/zsz7+GL5j1qXL/WbdVmrL/L2Yz1Za1t9HjtcD3v\n8Xq3Ycutkxvxfm9Eu4N5299olwZpgK1zdfX/j8uf2XSulc9t+oJ65qJlN6pf9kNmLt88HvNu\nM9edfIxlZ72q6ZiKBdc09fF/9Pj/s2bmfcmi275m0f9/3PSF43atz2pquv+i275i0f+vbPpw\nP6vtZzXP83g+1PRr+kPH/49rGqyhpr0bCwd331j9zri8EW3njR05n9CCK5qOZzq96Qvs/6p+\nq+l5vaUpPL5tuSe0Si+q/uu4/HVNv5DXFGoWvlB/sqktrNV62v4jmg5uX7BUyPvd6qvH5fs3\nvXZLDSDxyvE4C97QdGzJgt+YufzGpi8De8b/nzH+bva2aqPa9Wbd72a00fW8xxu5DVtqndyI\n93sj2h1sGwISbK0HNHVZeNAyy+1ZZv5K3XHm8slN3aSO5e7HuP5dS1z3kZnLs9uR82cuX9fU\nJ33WrU1f1tcbkNZT05WLbneoaQ/Kag8O3wqreZ7L+a2OBKSvqZ49Lj9+ZplXNwWF2pi283dL\nXHdD9SNjqimkLHTRu6npuI6XVb/a0qPtrcWvVT/a9Dwe3vSF7OqOHrDi5et8vPW0/dngeXWf\nPuphHT2S2G2a3p+lTkS6eMS2j89cPtDRI6UdavpSu/Cld7Y9bea2aiPb9Wbc72a00fW8xxu5\nDVtqnaz1v98b1e5gW9AoYevcs+mXu4WRjy5vOmj82qahUpcaEWy9Tpm5fFNH9hos5XDTh/Kt\ni65faljkpYasXerxlnLDcWpYqY2u6fr1lbNqK/1SuZrnuZxLqhc0hYR7NYWaf+7ogPSSmcsb\n0XaONWzxjzYN9vB9HT0M9ylNQyM/rKkL0sP79KCxFlc2/cL9dU2fe19b/UpTt7cFv77Ox1hP\n25/twnWs29686P99x1hucVu+5TjzFs9fsNnbqo1s15t1vxvdRtfzHm/kNmypdXIj3u+NaHew\nbQhIsHW+qyMfQB+svqgjH6zntTkB6RMzl2/tyHk5Nstsl5+zmrqULP4gvP0m17DY7Jemrajp\n8KL/lxqR67wNfLyVuqpppKuFUPCYpkEYFo4turqju4VtRNtZHJhm/eaY7lw9uOkX7Ed25BiH\nC6vntfSxGmvxoqaAVNMetEuauhfWFBT/5zrvfz1tf/bX9nNaOmwuPpB98V6EjTSPbdV2tJFt\ndD3v8UZuw5ZaJ73fsMjikYyAzTP7K+RfdfSvjvdb4X0st+dh8fzZk32e2tHdPDbD7MlD9zZ9\ngZh1947uLrIVFtf0hYvm372jD7Rer1s6+pfgOy+af5eODCW91V46c/nRHX2MwO909K/TW9F2\nbtN0LpWXVt/dtI48Y2b+ct19lnKsdeS1HTkR6COajvVY+JFwvXuPan1tf/aA/H19+jEnNQ2V\nvOCKpi+ym2UjtlU7xVrb6OJ2uJ73eLO3Yd5vWERAgq0z++XzDjOXT6l+YNGys8cpzHYR+bwl\n7vd481/fkWNK6shxJwt+uGnY539o/aO31TQQwGw4eNai+f+ljTu+aqUW1/TsRTVsRk2zxxL8\nu44e0OCHNuHxVuoVHenu8tCODkgvWbTsZrWdJzWdl+ma6rlLzJ8NZgdXeJ/LrSM1/XL+K+Py\nGdVzxuXDffpzX4v1tP2/7OjBBZ7X0Qf0X9DRI5f96tpKXLG1bqt2irW20eO1w/W8x5u9Ddvt\n7zd8Gl3sYOu8uSPDqz6o6XiQdzedC+NeTd2fHjnmP6tpWNgXNvWDX3D/pnO1fLBp1KF/XsH8\n51U/OeY/tWlPwJubulZ9Q9MH6zmtbwSvBZ9oGq3oW8f/39j0y+bfNHVP+fKm8+cs/Nq5FT/S\nXN306++3jP+/vvrrUdMXN3WzuqKN3bP1B9X3jstf3PR6v65ppLMvrf52XF9b+0PVtU3t4xua\nQsLCL9bvGzXOur7NaTtvbfpV+qSmkHKvphHBbmza2/ZNM8suNdLXUpZbBxb8SvWDTa/5wkH3\nb2w6ieh6raft39LUTevV4/pHNx1M/9qmASW+viMjlF1W/fgG1Hs8a91W7RRrbaPLtcO1vseb\nvQ3b7e83LGlhHPr9c64DdrrP6OgT5C1M1zWNpnXxEvNq+jC6bol5X7LC+XuqH+vo8+DMTp/q\nyDC4C453PpOajudYmH/JonnndPQJMxemW6qndfTJR39k0W1Xeh6V1db0Gcep6TuaupUc6xwi\na3G7ptGnFj/eDU3Hwbx05rrnL7rtep7ncretaYCCxXU97xjLbkbbqek1OHiM+zzctLfn5zo6\nRBzvfpdbB2b90aJlvnWJZdZqPW2/pi++n1zi9gvT/+zo0QUXHO+1efLMvI/06T4+M3/hpKdr\n3VZt1vp7PJu1vqylja6kHa71PV7PNmy512gz3u+1tDuYt/2NdmkPEmydq5t+SX56R07U+fam\nc7IsdMl6atMH0slNv2LWNKLQA6v/3HT8yoGmL9/vW+H8w01dMn696ZfP+zYNHPDh8Rgv6ejz\nV9R0ro+Fg4o/0Kf7p6bzXCw8h1mfGPU8rakb18lNv57++ni8czuy9/rDq3jc9dR09ajp25sG\nGzi5aVjaX2/qSvMfZpbdiKGlP9W0p+hpTQd37x31vajpvblzR/YkXLHotut5nsvdtqaBGP60\no0fGOtYxOJvRdmo638tfN+2F+qKmA8Fv09R2Lh3zFw9hfbz7XW4dmPX7HTl57/Wt7sv4ctbT\n9hu1vK7ptb5oLH9D0/bhNU17G5ZyvNfmox1pL0sNLf3mjnSb+ujMcmvZVm3W+ns8m7W+rKWN\nrqQdrvU9Xs82bLnXaDPe77W0O9hWFhL8/jnXATAPe/Jr5m7yBx15r391vqXAhrANg42xP3uQ\ngF3kvzft/bhT07C9s91Bvr7p7PE1dZv5y3H5Xq3tgOS35Bwf29XFTUN81/Qh+NNzrAVWYy3b\nMGCNBCRgN7i+I11HntXUx/9tTcPjzh6D8pKOHGj9za1tiNsnNvXdZ3u4X9NxXud1ZGCMmrom\n/f1cKoLVW8s2DFgHXeyAne7UpmNPjnVg9OHq91r6pK6c2B7Wp7/Xb81wxZxYbMNg8+1PFztg\nF7mhenzTCRafWH1u01nrr63e1XR+oL+eV3Fsqiuavljetulg8L9sGizj0PFuBNuMbRhsMXuQ\nAACA3Wx/Ixdt5QkKAQAAtjUBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYNg77wKA\nE9aF1bnzLmIDvK36+LyLAAC2BwEJWKvXnXbaaZ+9d++Juxk5ePBghw4d+v+q75t3LQDA9nDi\nfrMB5m3vs5/97B784AfPu441e85zntNf/dVfnTTvOgCA7cMxSAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAw955F7CFzqgeVt2nOrc6tTpYXVH9Q/XG6qZ5FQcAAMzfbghIp1Q/Uv2n6rTj\nLPfJ6sern6gOb0FdAADANrMbAtLLqsdXf1tdUr29urK6sdpX3b66X/WNTQHprtXT5lIpAAAw\nVzs9IH1pUzj6qeoZHXvP0O9Xz6t+qfr26ueqf9yKAgEAgO1jpw/S8OVNoei5Ld9t7lD1vePy\nwzaxJgAAYJva6QFpX3VLde0Kl/9EdWvTgA4AAMAus9MD0rubuhF+1QqXf3zTa/KuTasIAADY\ntnZ6QPrj6oPVb1RPr847xnJ3aupe9+LqPeN2AADALrPTB2m4vvra6hXVz4/pqqZR7G5q6oJ3\nXnX2WP6y6muaRrgDAAB2mZ0ekKreWt2j+uamrnb37siJYm+oPlz9SfWq6rerm+dTJgAAMG+7\nISDVtCfpf4xpK9ytekfTHqqVuqUjg0oAAABzsFsCUtXnNO0xunrmulObutTdtbqiaS/S1Z9+\n01V7X/Wo6pQVLn+f6meqkxKQAABgbnZDQLpH9bLqi8b/b6ye1HRepDc1haMFn6geN65fj8Pj\ncVbq+nU+HgAAsAF2Q0D6reoLmwLLwepBTYHpvdVtq+c0jXR376aR7n67KTQZqAEAAHaZnR6Q\nHlp9cfX11e+O6z63+odx/UOaBnFY8Nrqz6pHVn+4ZVUCAADbwk4/D9K9qo93JBxV/UvTqHUf\n7uhwVPX66pPVPbeiOAAAYHvZ6QHprOrAEtdfV117jNtc38oHVwAAAHaQnR6Q/qW6U3X+zHV7\nm45DukdHThC74A5j2Q9tRXEAAMD2stMD0uua9ha9suk4pMc2dbf7rOrvql9vGv676oLqN6tb\nx+0AAIBdZqcP0vCJ6lnVC6vfGdcdrr6t+kDToAwfqm7qSLe6H80eJAAA2JV2ekCq+qWmvUWP\naxq6+xXVpWPeI6pnVnevPtq0R+mX51AjAACwDeyGgFT1ljEt9oYxAQAA7PhjkAAAAFZMQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAY9s67ANiFTqq+qTp93oWs0755FwAAsNEEJNh6F1QvOe+887rNbU7cnbhXXHHFvEsA\nANhwAhJsvdtU/eIv/mJnn332vGtZs0c84hHzLgEAYMOduD9fAwAAbDABCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYNg77wLYUvetHjPvIjbAP1R/NO8iAADYeQSk\n3eW7b3vb237r7W9/+3nXsWaf+tSn+uhHP3pZAhIAAJtAQNpd9jzoQQ/qWc961rzrWLNXv/rV\n/eRP/uSeedcBAMDO5BgkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABj2zruAOdhTnVGdWh2srptvOQAAwHaxW/Yg3b56bvWW6trqQHXluHxN9abqmdVt51Ug\nAAAwf7thD9Kjqkuqs5r2Fv1TUzi6sdrXFJ4eUF1UfU/12KYgBQAA7DI7PSCdXb2s+mT15Oo1\n1aEllju1ekL1U9XvV5+frncAALDr7PQudhdX51TfUL2ypcNR1Q3VS6onVXeovnpLqgMAALaV\nnR6Q7lzdXP31Cpd/fXVrdfdNqwgAANi2dnpAuqY6uTp3hcuf3/SaXLNpFQEAANvWTg9Ifz7+\n/nR1yjLLnlH9fHW4et1mFgUAAGxPO32QhndUv1A9vXpo9arq7U2j2N3UNIrdedWF1eOqz6p+\nrLpsHsUCAADztdMDUtV3NA3t/czqacdZ7t3VM6pf24qiAACA7Wc3BKTD1c9WL6i+oLp30zFJ\npzaNXveR6tLqXRv4mKc3hbGTV7j8XTbwsQEAgDXaDQFpweGmIHTpFjzW7arHV6etcPkzx989\nm1MOAACwErslID286bijhXB0clN3uqdUd6turN5W/bfqdzfg8a6ovmIVyz+oenNTiAMAAOZk\np49iV/XD1Z9Vjxr/76n+oPrR6vOq91efrB5cXVJ9/xxqBAAAtoGdHpDuUT2n+pPqZeO6x4zp\n95rOe3SPphPK3qdpL9IPVZ+71YUCAADzt9MD0lc2Pcdvqz40rntIdV31LdVVM8u+c1y3tyN7\nmwAAgF1kpwekc6pD1Ydnrttbvbe6donlL61uqT5z80sDAAC2m50ekN7TFIgeMnPd31V3bOkB\nKi6sTurI3iYAAGAX2ekB6dVNYeelTSPZ1TQQw+VNgzfMDqv9xdVvVQeq12xhjQAAwDax04f5\nvr76t9UfNo1k9+7qf1VvqZ5ZfeO47o5NJ5C9uXpS9fF5FAsAAMzXTg9INQWie1bfXT2h+uaZ\neXcd0zVNe49+tPrHrS4QAADYHnZDQKq6uvqBMZ1V3aU6s2kAh483nQvJSVoBAGCX2y0BadaB\n7CUCAACWsNMHaQAAAFgxAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAACG1QSkp1QvXMH9\nfaC6eM0VAQAAzMlqAtLdqi9bZpnTq3Orz19zRQAAAHOydwXL/PX4e8fqnJn/F9tT3bXaV129\n/tIAAAC21koC0muqB1QXVKdV9zvOstdUL6leuv7SAAAAttZKAtIPj7/7q6/t+AEJ4IRx6623\nVt2uqQvxiewj1fXzLgIAdoKVBKQFv1T99mYVArDV3vOe91T9xzGdyF5bPXreRQDATrCagPTh\nMd2+urA6q+m4o6W8Y0wA29Ytt9zSxRdf3JOe9KR5l7Jmr3zlK3v5y19+1rzrAICdYjUBqeon\nqu9p+dHvntvUJQ9gWzvjjDM6//zz513Gmp11lmwEABtpNQHpgdUzq0urV1VXVbceY9ljjXQH\nAACwba02IF3eNKLdjZtTDgAAwPys5kSxp1ZvTzgCAAB2qNUEpLdW9+zYAzMAAACc0FYTkP6i\nKST912rfplQDAAAwR6s5Bukh1b9UT62eXL2t+vgxlv29MQEAAJwwVhOQvrJpiO+azjx/vJMS\n/nMCEgAAcIJZTUB6QfXi6pYVLHvN2soBAACYn9UEpKvGBAAAsCOtJiDdeUzLOan6YPWeNVUE\nAAAwJ6sJSN9W/dAKl31utX/V1QAAAMzRagLSG6sfOca8z64eWN21en71Z+usCwAAYMutJiC9\nfkzH85+rr6t+es0VAQAAzMlqThS7Ev+taW/SIzf4fgEAADbdRgekqvdXF27C/QIAAGyqjQ5I\nZ1dfVH1qg+8XAABg063mGKSvGtNS9lSfUf2b6jOrN62zLgAAgC23moD0ZU2DMBzPNdV3V29f\nc0UAAABzspqA9EvVHx5j3uHq2uq91c3rLQoAAGAeVhOQPjwmAACAHWk1AWnB7Y/GJ0YAACAA\nSURBVKsnN50Y9txx3RXVm6vfqD65MaUBAABsrdUGpIur36rOWmLeN1bfX31N9TfrrGsznFE9\nrLpPU7A7tTrYFO7+oXpjddO8igMAAOZvNQHpdk17iK6rnl29ofrYmHf7phHsnl1dUl1Q3bBx\nZa7LKdWPVP+pOu04y32y+vHqJ5qOqQIAAHaZ1QSkRzed5+hLqrcumvexjuyFeUv1qOqVG1Hg\nBnhZ9fjqb5vC29urK6sbq31N4e5+TXvAfry6a/W0uVQKAADM1WoC0t2auqMtDkez/nf1geqe\nbY+A9KVN4einqmd07D1Dv189r2mkvm+vfq76x60oEAAA2D5us4plb6lOX+F93rq2cjbclzeF\noue2fLe5Q9X3jssP28SaAACAbWo1AentTcch/dvjLPPo6o5tnxPF7msKdteucPlPNIW7Mzat\nIgAAYNtaTRe7P63e0zRQwy9Vr286L9Ke6nOaBml4anVZ9bqNLXPN3t30HL+qes0Kln98U2h8\n12YWBQAAbE+rCUg3V4+r/qD6z2Na7J3V145lt4M/rj7YFOq+v/rd6qNLLHen6knVDzSFwD/e\nqgIBAIDtY7XnQXpH03mEHlM9qDq/6dieK6q/rP6k6Vie7eL6psD2iurnx3RV0yh2NzV1wTuv\naXS+mvZ+fU3TCHcAAMAus5qAtKcpDN3cFDheMTPvlKZgtF0GZ5j11uoe1Tc3dbW7d0dOFHtD\nUzfBP6leVf1222fvFwAAsMVWGpAeWP1C9dVNe18W+67qsdW/b+qitt1cX/2PMW2FuzUNE368\nE9MuZc8m1AIAAKzQSgLSFzYNyHBG9eCmcwYtdnZ10VjuAU0njj2RPLtpL9O3btD9va8pTJ68\nwuXvU/1Myw9FDgAAbKKVBKRfbtoT8o0tHY6q/kvT0N4vaTrO5wkbUt3W+bzqvht4f4erN6xi\n+es38LEBAIA1Wi4g3be6f/WC6uXLLPub1SOqpzSNCnf5uqtbv+8c03I+u2nAhn8e///smAAA\ngF1kuRPFftH4+xsrvL9fqU5qGuFuOzinae/QHZpOFnusaWGAiYX/b5pHsQAAwHwttwfp/PH3\nvSu8v4UBGu68tnI23Auqz20aPOLq6j81natpsRdV96u+ZKsKAwAAtp/l9iAtDHm9b4X3d8b4\nu12Oqbm6aeCFf9MU2t5W7W8alhwAAOAoywWk942/X7bC+3vY+Pv+NVWzef6s6Xiqn6me0xSU\nHjzXigAAgG1nuYD0F9WN1fe2/JDVt2saLvtTTYFkuznY9DweUF1XvbH6xaa6AQAAlg1In6j+\ne1Oo+J3qM4+x3N2rP206QerPNYWR7eptTXvEnlH9u+rS6sK5VgQAAGwLKzkP0vc1DV7wNU3H\n8vxhU8i4tvqM6kurRzeNXvenTcf4bHe3VD9V/V71wqb63zrXigAAgLlbSUA6WD28+uHq6dUT\nxzTryuqnq59oCh8nin+pvqp6SNMw3wAAwC62koBUR45D+uHqouqCphHrrmwaAvxNnVjBaLE3\nzrsAAABg/lYakBZcV712TAAAADvKcoM0AAAA7BoCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADHvnXQCsxq233lq1\nr7r/nEtZj7vNuwAAAJYmIHFCede73lV15+p/z7kUAAB2IAGJE8qhQ4c6//zze+ELXzjvUtbs\nLW95S89//vPnXQYAAEsQkDjhnHTSSZ111lnzLmPNTjvttHmXAADAMRikAQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGDY\nO+8CAFi7w4cPV+2r7jbnUtbrU9VV8y4CAAQkgBPYO9/5zqovrt4z51LW67rqrOrwvAsBYHcT\nkABOYDfffHMXXHBB+/fvn3cpa/bOd76z5z//+WdUexKQAJgzAQngBHfyySd3/vnnz7uMNbvy\nyivnXQIA/KvdGJD2VGdUp1YHm7p1AAAA7JpR7G5fPbd6S3VtdaC6cly+pnpT9czqtvMqEAAA\nmL/dsAfpUdUlTQf/Xlf9U1M4urFp5KfbVw+oLqq+p3psU5ACAAB2mZ0ekM6uXlZ9snpy9Zrq\n0BLLnVo9ofqp6verz0/XOwAA2HV2ehe7i6tzqm+oXtnS4ajqhuol1ZOqO1RfvSXVAQAA28pO\nD0h3rm6u/nqFy7++urW6+6ZVBAAAbFs7PSBdU51cnbvC5c9vek2u2bSKAACAbWunB6Q/H39/\nujplmWXPqH6+6SSFr9vMogAAgO1ppw/S8I7qF6qnVw+tXlW9vWkUu5uaRrE7r7qwelz1WdWP\nVZfNo1gAAGC+dnpAqvqOpqG9n1k97TjLvbt6RvVrW1EUAACw/eyGgHS4+tnqBdUXVPduOibp\n1KbR6z5SXVq9awMf87SmMLZct74Fd9nAxwYAANZoNwSkBYebgtClW/BY51Rf39SFbyXOHH/3\nbE45AADASuyWgPTIpmOMzqz+pvrVpr1Hi+1r6o73M2Naqw9XF61i+QdVb24KcQAAwJzshoD0\n/dXzZv7/903HI31tn743aU9Td7ezt6QyAABgW9npw3zfsSkgvbd6QvXFTSPanVO9obrv/EoD\nAAC2m52+B+krmrrNPbn6q3Hd31V/MqY/qr60+tBcqgMAALaVnb4H6U5Nx/W8ZdH1760ubhpt\n7hXV6VtcFwAAsA3t9ID08abjis5fYt5lTSPNXVj9Vjt/bxoAALCMnR6Q/qZpD9KPVictMf/P\nm85X9Njqd6vbbl1pAADAdrPTA9Lbq99sOgbpn6r7LLHMr1TfUj2mrTlHEgAAsE3t9IBU9W3V\nC6rzWnovUtVLqodXn9qqogAAgO1nNxx3c3P1nU3nPrr1OMv9ZXXv6suqD25BXQAAwDazGwLS\nghtXsMyh6k2bXQgAALA97YYudgAAACsiIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADHvnXQAA7BC/UZ037yI2wI9UfzHvIgDmRUACgPW7TfXNj3jEIzr33HPnXcuavfa1r+2q\nq656fQISsIsJSACwQR772Md24YUXzruMNfv7v//7rrrqqnmXATBXjkECAAAYBCQAAIBBQAIA\nABgEJAAAgMEgDQDM1ZVXXrlw8ePzrAMASkACYM6uueaaqn7wB3/wnD179sy5mrW55ZZbev7z\nnz/vMgDYAAISANvCQx/60AQkAObNMUgAAACDgAQAADAISAAAAINjkACAqg4fPlx1WnXOnEtZ\nr2urm+ddBHBiEpAAgKouv/zyqh8Y04nspdU3z7sI4MQkIAEA1TQa3xOf+MQe97jHzbuUNXvp\nS1/aq1/96tvOuw7gxCUgAQD/6qyzzur888+fdxlrdsYZZ8y7BOAEZ5AGAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGPbOuwAAAI5yr+rFndjf0/ZUd63eX90y51rW447VJ6rr5l3IOr2wetG8izhR\nnMgrHgDATnTPffv2felTnvKUedexZp/4xCe65JJLesITnnDO2WefPe9y1uyXf/mXu+iii867\n5z3vOe9S1uwNb3hDl1122UUJSCu2GwPSnuqM6tTqYCf+LwIAwA5zyimn9E3f9E3zLmPN3v/+\n93fJJZf0mMc8prvc5S7zLmfNXvziF/fABz6wiy++eN6lrNnll1/eZZddNu8yTii75Rik21fP\nrd5SXVsdqK4cl6+p3lQ9s7rtvAoEAADmbzfsQXpUdUl1VtPeon9qCkc3VvuawtMDqouq76ke\n2xSkAACAXWanB6Szq5dVn6yeXL2mOrTEcqdWT6h+qvr96vPT9Q4AAHadnd7F7uLqnOobqle2\ndDiquqF6SfWk6g7VV29JdQAAwLaypzo8Lj+32j+/UjbFs5ue1ykrXP6k6qbqOdWPr+Nx71r9\nTSvfQ7e3qQvgKdXN63jc5bxo7969/+G0007bxIfYXAcPHuyWW27pzDPPnHcpa3bo0KEOHjzY\nmWee2Z49e+ZdzpodOHCg0047rb17T9wd0ddee20nn3xy+/btm3cpa3bw4MEOHz7c6aefPu9S\n1uzmm2/uhhtu6Kyzzpp3Kety4MCBTj/99E466aR5l7Jm1157baecckqnnLLSj83t5+DBgx06\ndOjmpuOMT1Qn79mz58wT+bPu1ltv7brrrjvh14kDBw60b9++nbBO/HL11HnXss3tr36odn4X\nu2uqk6tzq4+tYPnzm/aqXbPOx31/016rlb6+e5pq3MxwVPUDhw4detmBAwc2+WE21b7qvAMH\nDnxg3oWs0wXXXnvtu+ddxDrd9eDBg5d37D2zJ4LzbrrpphtuuummT827kHU4o7rdgQMHPjzv\nQtZhT3W3AwcOvGfehazT511//fXv7cgPjyeiz7nxxhs/deONN57I3cxv19R1/qPzLmQd9h4+\nfPhOBw4ceN+8C1mnC66//voT/bPuzjfeeONHb7zxxhvnXcg6vX3eBZxoDo9p/5zr2Az3bnpu\nv9nye5HOqF5R3VrdY5PrAgAAto/9jVy00/cgvaP6herp1UOrVzUl6CubutLtq86rLqweV31W\n9WOVweIBAGCX2sl7kGrquvGd1eUdea5LTZdV3zKnGgEAgPnZ3y7Zg1TTE/3Z6gXVFzR1uzu3\nqX/yDdVHqkurd82rQAAAYHvYDQFpweH+T3t3HiZJXR5w/LuyoLAL7CLIfWoCqCAeEMADiCga\ncFWQ9RbRICrRJJAIGDXjleCDIkHiAagYEbxBPEFU8CQoeIASEFhRRECRY1l3l91l8sf71jM1\nvdUz3b07/Zuhvp/n6aemq6qr36pfd0+99TsqEqGrSwciSZIkaXp6sN8HSZIkSZJ6ZoIkSZIk\nSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIk\nSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVKaXToAqU/v\nBN5SOghJkqQZ5HJgn9JBzBQmSJppfg/8Fji0dCDi20TC+p3SgbTckcBTgVeVDqTlHgJcAbwG\nuKpwLG33j8AOwD8XjqPtNgEuBhYCNxWOpe3+HVhcOoiZxARJM80qYDlwZelAxCrgRiyL0p4J\nLMFyKK1qsn4dlkVptwPzsRxKe0ROfwn8qmQg4s7SAcw09kGSJEmSpGSCJEmSJEnJBEmSJEmS\nkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpDS7dABSn+7Ph8qz\nLKYHy2F6GAVWYFlMB34npocVxPfCsijPMhjAaD5GCsch9WJdYNvSQQiA7YF1Sgch1ge2LB2E\nANgRmFU6CLEhsFnpIATATqUDEADz86GJjZB5kTVImmlWAL8rHYQAuLl0AAJgaT5U3qLSAQiA\nxflQeTeVDkAA3FU6gJnGPkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmS\nJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJ\nBEmSJEmS0uzSAUhraA9gHvA9YFXhWNpkU2AnYDlwLXB/2XBabR7xPfgdcGPhWNpsc2B74A6i\nLPw9KmMO8EhgFrAIuLdsOCL+XzwW+ANwXeFY2mQvYIMuy0aBy4YYy4w0mo+RwnFI/ZgDnMHY\n53du2XBaY1PgC8TJX3Xs7wLeUDKoFvtb4mR8FHhv4Vja6inAlYx9H0aB24GjSwbVQo8APgas\nYKwcHgA+RySuKudrRHmcVTqQlrmF8b9L9cfKgnFNZyPkMbIGSTPRXsA5wHzgZvznNyyzgPOB\nfYH3AxcCGwNvAk4D7gM+Xiy6dnko8G7gWOLkfJuy4bTWHsBFwFLgOOBnwA7AW4EPEyfrHysV\nXIusB1wC7AZ8CPgy8Xv1POAoYHeiBmNFqQBb7CXAs0sH0VLzgJ8DJzQse2DIscxI1iBpprka\n+BawFfANrEEalucQx/p9HfPnEFeqfg+sM+ygWuowYAnwamBvrEEq5dPEsd+/Y/7uOf9Hww6o\npQ4jjvfpDcvOz2UHDDUiAWxCNDm9EGuQhm02ccwvKB3IDDNC5kUO0qCZ6N3AM4BbSwfSMs/P\n6Rkd85cA5xIJ6z5Djai9FgFPBD5aOpCW+wpwInBpx/xfAIuJ74Sm3lXAQuDkhmVX5nTj4YWj\ndApR231i6UBaaF5O7y4axQxmEzvNRJ8uHUBL7UE0o2vqZPuT2jrfH1pE7XVV6QAERFPfJg8n\narWvGGIsbbYoH51mETVHK4GfDjUiPR04Angd0bpAw1VPkOYBTwK2JPqs/hAHVpqUCZKkXm1D\njELUpKrN23ZIsUjT2UnEyfkHSgfSQtsAOwNbAy8H9iP6h91cMqiWWR/4CPCDnFp7N3zVMd8f\n+A3jy+AW4KXAd4cb0sxigiSpVxsAt3VZtjSnc4YUizRdHQ/8PTFIw5cKx9JGLyAGkYG4cPMK\nogmwhmeEuFhW9VvV8FU1SFsRv0nfJS7aHEoMIvNVoq9kU82rMEHS9HQRq49M9xi8r0hpK+n+\nm1HNt9pebTWbGCTgaOKq+TFlw2mtLwO/BbYAnkU0g3whcDj+Pg3DHsTomu8i7pGnMr4LbEb0\nEV5am/8rYjTHk4jfqH8Zfmgzg4M0aDr6E1FTUX+ovDuJodWbbJLTPw8pFmk6mU9c2DmKGFL3\ntTiMbik3Al8EPggsIGozFgBvLBhTW6wDnAlcD/xn4VjabgVxLrW0Ydnnc/r44YUz81iDpOno\npaUDUKPriCuyGwP3dCzbNadeMVTbbEzcg2cXYrhph9UdvnWJG8XexuotDT4FvB14Gg6FP9WO\nIgYDOIUYVbCyQU4fCbwMuIa4Z5jK8H5gPbAGSVKvLiHaMDfd9O85RBO8bw81Iqms2USTrl2I\n74XJURmnER3PD2xYtnlObV439R6V02OBT9YeH8n5++fzFw09svZ5JVGr/YSGZfvm1Auak/BG\nsZrJvFHs8GwK3Es0YdmmNv9VRBl4T54yvFFsOScSx/6I0oG03AFEOVzN+JE0NyNuOzBK/E5p\naq1H/C/ufGxNlMHZ+Xy9QvG1ySHEMb+c+N9d2ZUYmGEVNrFrMsJYXmSCpBnlMcQXvnrcTXx+\nr6jNW1Asuge/FxBXYpcSnUCvIY7/zxgbNUdT7/2Mfd6rMri1Nu/CcqG1SvX7c/kEjy2LRdcu\n7yDKYjlxn7AriA7qo8AXiP4xKmMeUQ5nlQ6kZU4jjvsSYsj1nxH/v1cB/1AwrulshMyL7IOk\nmWYUWFZ73tSO2dHups7niWr51xD3Gvkj0XziTMaXi6bWCsaO9zLgso7ly4cbTmv10o/CYY6H\n421EIvRyYCfilgPnAl/B4dZLW0n8RjXdZFxT543AZ4gmjTsQF3S+CXyCuLCmSViDJEmSJKnN\nRsi8yEEaJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElK\nJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmS\nJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUT\nJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmS\nJCUTJEmSJElKJkiSJEmSlEyQJLXN/sDDSwcxRd4CjALPyue75PMPF4toeGbKvq7tOLfjwf2Z\nlqShM0GS1DbfAZ444GtfAnywj/ml3QGcCJxfOpAhmCn72hTnmnx+FrJmn2lJUofZpQOQpAIW\nD/i6Q4Cd+phf2p+Bk0oHMSQzZV+b4lyTz899OR30My1J6mCCJKmNmk4mNwW2JZo/3QTcW1u2\nIXGFfh9gKdGk6a5cr2n+zzu2PYdoWjUbWETUItRtAOyVy27O57sCy4AbgOUN8c7KdTYEfk2c\neHeqtnsrcP2A70PGvlFu427gEcCjgWuAP3V5TTfVsbwl37NuR2B74KfAPX3GW9/XxcDORPn8\ntiGG7YiE5DrgD7X5/ZbTLsBmwPdq66yb29+MKJObgJVd4vwDzZ+fOzL+G4HfNcS/NfBXRHn0\nmiBtThy7bq4G7pxkG5XJ9rFufsa6mNif+7ustxHw18A6DH7sYfIylKSejOZjpHAckjQMo8AO\ntefbAZcADzD2e/gA8Alg41znSbVl1eOSCeZXHgb8N3Ei37lOPYYdc/5/AMcQJ5NLc96dwPM6\n9uExwLW17a0ATgXeysR9kPp9n9063mdpvsfr8vnB9K86Zqc2LHtXLnvKAPHW93W3/PuLXWK4\nIJc/Op/3Wk7Ve7wTODP/vqa2/Bjgto5t3Aoc2SXObp+fXfPvL3eJ/1O5/HF5DDo/001e1vBe\n9cchk7y+n32ESFT+h0icqvXuaFhvLvFdW9GxzW/T37HvtQwlqZsRxn47TJAktcpjGV97/gvi\nqvYbiMTjccB7iN/Fc3KddYB5RM3Fj/PvORPMr3yWOPF7C3HS+0jgaKJ26gbiqjiM1Vz9EvgW\nkRhAnMDfTiQGc3PeukSN0SrguNzmk4l+KDcycYLUz/usR1yBXwWckNs6EPhV7mv9ffrRT4LU\nT7yd+3o18BfGlwdEDdZS4KravF7LqUrYvkXUci0A9s5l++Wyi4F9iRqqp+XzUaKMOuOc6PPz\ng4xp8474H5ZxVfHPZfXPdJO5wKM6HvvnsfgTsOUkr+9nHwG+lPPeS9SQHQj8iLj4UE9sv57r\nnUTUIO0M/CuRWN0ArJ/rTXTsofcylKRuRjBBkiTmAv8GvL5h2bXECXZ9MJtlwOUN6zbNfyJj\nJ4id3pDLqqvp2+Tz+4hmQ3Wn5rKn5fODaR4FbX3Grux3S5D6eZ8F+fz0jvV2JBLKYSRI/cTb\nua9vzucv6HjdS3P+sfl8kHJaRTQFrKtGENy/Y/683K+/6RInNH9+jsz1juuY//yc/8aGePvx\nECKpHgWe2+Nret3HPXO9j3estwWR+Hwzn++b632+4b3enctemc8nOvb9lKEkdTNC5kX2QZLU\nZvcRJ2KziH4SWxI1JwBLiKRjLuP7I/Xq2TldCbyoY1n1Hk9l/EnkT4A/dqx7S06rYZz3yenF\nHestBS4CXtFDbL28T3Wy+42O9RYRzZaezfD0Em+n84iyPYzxJ+CHE7UY5+XzQcrpKqIfTF3V\nV+gYog/aXfn8biKx6Ndngf8CjgDeV5u/kKgpOXeAbdadQCQ6HyJqe3rR6z4elNOvdLz+NqKG\nrOo7dmBOm5pCXkgkufsBZ9fmNx37QcpQkroyQZLUdocDpzB2hbrq4/KwXD7o7RCqUcmOn2Cd\nLTqe39qwTtX5fZ2cbp3T3zes2zQgQZNe3mernDYNEvBzhpsg9RJvp0VErczBRFkuI5rXHUQ0\n06oGZxiknG5pWOdc4FCixuq5wP8SNSXnE839+rWESOJeQ9SQXEkk7IcQfZP6HRyjbk/g7URz\nyc4aqncS34m6I4nmcb3uY3VMm45TfWCNHXJ6U8N6VRK0bcf8pm0OUoaS1JX3QZLUZnsCnyau\nyB9AXG2eQ9QaXTLB63qxbk4PIk5smx6dTZse6GO7KxqWreoxtl7ep7ryazV2qgAABbpJREFU\n3vQ+f+nxfdaWXuJtch6RFD0zny8gkqVzausMUk5LGt5rRa53AHAWkci+nejjdgFjfWn6cVZO\nj8jpwcRn8+wBtlWZSyQ6q4AXExcE6u4lanrqj2rkuV73sTqm3Ua2q1TrNY1sV33uHtoxv+nY\nD1KGktSVCZKkNnsx8Tt4HHAp40/oNl3DbVdX+Dclai+aHk3Jx2Sq4Zw3bli2pjHXVcNHb9iw\nbKquxs+dfJW+fIZIBA7L54cTyV29SdfaLqdLiT5tOxH9jT5HnJyfMED8PyaSj4XE5/RwYnCK\nrw+wrcrpxAANb8ptdzqZaHpXf1zZsc6lTLyP1ZDz3Zo/ViZab5Oc9jL0+FR91yS1lAmSpDab\nn9POJj47Ao9fw23/JKdNTdG2IPpfDNLM+dc5fWzDsn0a5g2qOiaP7pg/C3jGGmy3amLVOboc\nTHyfnkHcTgxEcDCRUB5E9Le5r7bO2iqnjYjEo+46YnjtlYwf4a0fZxEj2f0d0bzuHCavmenm\nhURt1NeA0wZ4fa/7WI2wtzerO4OxgT+qxGuvhvX2zOlPe4hrqr5rklrKBElSm1VJQP1Ebj5x\n/5Zra88ry1h9NLVu879EXNk+nLGTPYjmQKcTfTeeMEDMVe3B6xl/5X0hsPsA2+umamL4OsYn\nM8cy1g9qENXQ4XsTyVZlH+Dpa7Ddbs4jjtObWb15Hay9cjqf6PO0Y8f83YmT86Z+VJVunysy\n3mXEPX42YPDmddsDHyGSxkFHdOt1Hy8gBm44hvEjzh0GHMVYsnIBMdDDMYwfZnwu0Z9oBauX\nV5Op+q5JajGH+ZbUVlsRfS6WEzff/CTR7OdtRCIwCvyQsT4g1bDI3ydGGWOS+QcRTbqWESeX\n5wC/YeyGl5VqgIimk8F/YvXhqs/IebcTJ4ffI04QT8751ZX0bsN89/o+n8t5NxFJ42VEDVZ1\nn6hBhvkmtzVKjJB3PDGS2s3EaG31obv7ibdp+GyImqOqmdUdNNckrI1y2gu4h+jTczHxefom\n8dm6g7i/T7c4u31+KtWNYX/csKxXn8xt/CLj73wc2sM2et1HiOHI7ydq675OfI9GiRqn+kWH\nBfn6O4nPxdlEovUAkZxXJjr20HsZSlI3I2ReZA2SpDa7lWhKdybR52GUaC70DuJq+weIE8Jq\n8INXEyeadzHW1G2i+RcRzcbeS5yYzwe+Sgw5/NbaesuJ5ONaVndLLqsPc/1a4FXECfV6xInz\nk4jR2S7LmCFOGC8Drh/wfV5C3Efm6oz9EuIkueoo39S5vhdHEjVgdxPDON9HNM+q4q+230+8\nnftauYcox8uJcmhqnrY2yukKYDdiaPG7iP4wtxEJ4KOIxKBbnN0+P5Wq1vBjDct6dXO+75+J\nZKPzsVEP2+h1HyGSlMcRyTzEaIjHAXswNjw4xHDeuwEfze1tTiSJTyAS58pExx56L0NJ6ok1\nSJKkbtZtmPcJ4v/Gzg3LtPZ9g0j01vYgFpKkMSNYgyRJmsBGRO3AlUTfl8ouRF+PG1m9tkZr\n36uJ5mOnMH5wCUnSFHFUF0lSk3uBDxL3ubme6Oe0IXEPHICjiStt+zG+T8lEFhPN6DS5U4lm\nZk8lmlC+p2w4ktQeJkiSpG7eQSRGC4HtiIToA8TQ0zfkOu8h+j/14v9oHp5cq3sI0V/pXcQx\nXlY2HElqF/sgSZIkSWqzEeyDJEmSJEnjmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJ\nkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJ\nkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJ\nkiRJkpIJkiRJkiQlEyRJkiRJSrNrfz8ZOL5UIJIkSZJUyJOrP2YBowUDkSRJkqRpwyZ2kiRJ\nkpT+H/wLPn8bmgReAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title “'attending_university' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebgkZ10v8O+QyUwWQxZCFkkUAoxIEKIsCQEhQoQgCsgmqwLCBaOXKGDA\nBZmwXAgIyiYCyiKIgEouGCASCRIRVC6LQDAEQ1gTwpAQsk2SmczcP97fcfp0ztLndPepnu7P\n53nqOX26qrt/1W91dX27qt5al2RnAAAAyM26LgAAAGBSrO+5/a9JPtFVIQAAAB25d5J7zf2z\ns4bNXVUDAADQoc2pXOQQOwAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAE\nAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiAB\nAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgA\nAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUCC4f1UkhNq\nOLLTSlbvkUl21nDdGj62i+edBg/Lrvdme8e1jMMktv04PufacbJecxKXO6ADAhIM74VJPlbD\nwzquBXYn904LHPt0XMcgfM5Zrd1pOQeSrO+6AJgCVy1ye1acneSn6/aOLgtht3LHJP9St38y\nyfk94yZxmZr1z/lqTGI7LmUc9S61nAMTSkCC4c36htMPk3y+6yLY7Tx2iXGTuEzN+ud8NSax\nHZcyjnqXWs6BCSUgwfCu7rl9Zc/tH02yqW5fnuQLdXufJLdPsiHJl5NcM8Br7JfkqCT7JvlB\nkq9mbc5ZGKTWWyY5um7vSHLuIs91QD3XdWn1X5dkzyT36pnmX5LcOIKa+t0qyRFJtiW5MG1D\nqN9C7bVHkrukvf8fH+B1BjFILb0OTJvfrUkuSHL9MtPfJsmP1+0rk3y2b/zBSe5Ut3dm6fk6\nNMmPpR2O/bUkW5Z57T2T3C7JQT31Xt03zU8luUWSx/Tcd48khyX5dpL/zuDLVLKyz8Ywn8nF\nPueDWmk79hvFfB5cz/G9JF/ve8zGesxeSb6Ypc/BGaSdk6XbcZTrx0GMcl22oZ7rgLS2+HZu\nukwMspz3W+16fqXr1pWu6wZt73Evd7Cm5k5I3NxxHbC7+sPs+hwd13P/U3ru/1Tdd2raBvHc\n/VuTvGCJ5z42yUfSNqZ39gxXJ3l72sbrKPSenDz36/igtS53YvP+Sd7RNw+XJzkl7Uu9d742\njqimOY9P8l99r7EtyRnZFSLm/Hrmt9dBaV/wozqBfiW1JG1D5e2Z/75dluR/J3lIz339tb24\nZ9y/LfC8g3QM8EtpwWpn3/CpJD+7wPQHJnlD2kZi7/Tbk7wnyeE90565wPPODX9a0wxysvxq\nPhvDfCYX+5wvZ7XtOGcU83mzJK/pe45PZle7PCrJpT3jfpjkcQs870raOVm6HUexflzIONdl\nRyb563p87/zvSPKPaecZzRlkOZ+z2vX8atetg67rVtre41ruYK1szq7lUUCCIT06ySdqOKrn\n/sdk1+frvCTPyuJfmCcv8LyPy02/MPuHLdm1N2AYvRsGly5T628u8dj+jYp1aSe1L/Zcr+n7\nf1Q1JclL+qa5OPM3kr6dtjdnTm97fSnJq3v+HzYgrbSWdUn+aZF53Znkb5aobdiAtNT7vDNt\nmXxkz/T7ZNfG1dzG4mX1d+6+C5L8SE3//nrd/g2u7UleWdMst6G62s/GMJ/JxT7nSxmmHUc5\nn6ct8tiPpO3V6G+PuXp6n3el7Zws3Y7Drh8XM6512SFpn9vex1/f9/+NaT8uJIMt58nq23iY\ndesg67rVtPc4ljtYS5vT85mZu7G5u3pgKvV+2f4g7dfMP03y80mel/lfrhf2PfYn0r6g58Z/\noO7bP8lJaRvUvV9Ew/ZI2VvrD5ep9WtLPLZ/o+JRmf/l99a0IHDLev7+L8ZR1fSzPeO2JXlQ\n3X+zJK/qGffeRV7v0rRfTf+zXvMtWb3V1PKIzH9v/iztMJUDc9OwNcqAdEzmb7S8ql73Vkne\nlvntcWA95pSe+69OOxE9SW6b9mv23Ljf7nmdw/rm4Q59dSy1TA3z2RjmM7kaw7TjKOfz8rT3\n/2G56UbveWkh7qFJ/rivptf0POdq2nmpdhxXW4xrXfZHPePOTFuGk2TvzA9hX+15zHLL+TBt\nPKp162LrumHbe1TLHaylzdm1HP7Pjc3d1QNTqffLYmeSN/eN7/917eCecW/quf9bmX94RNJ+\nfet97C90WOtSGxXv6xn39dz0vMf/7Bm/1Jf4Smt6b8/97+p73J5JLqlx29J+GV7o9c6uaYe1\nmlr+vucxX81NA/B/ZPH3bZiA9NaecV9coNbv9Yz/X3X/LyZ5Tg39J6S/o2f6v+25f5iANMxn\nY5hlajWGacdRzucLe8b9TN+4S9M28uec2zPukz33r6adBw1Io2yLca3L3t4z7vcXeN2nJHl4\n2uGXc+283HI+TBuPct260Lpu2PYe1XIHa2lzajl0HSRYO/2/in247//eL+oH9Nw+Izc9ofs/\n0n5dnHO/4Uq7iZXUupS79tz+YG76Rd0fGEZV0316bl+f9mvs3HD/tENlkrZRcfwir/d/0kLL\nsFZTy916HnNWbtrl8HtGUNdC7t9z+0N947aldS6xdw1zvzSfmfYL8J8k+Vx2XfPlhMzfADpg\nRDWO8rMxquV8McO04yjn8x09tz+b+SfY/33aOTVzek/QP6jn9rjbeVxtMarn7d2L9Udpy//j\n0zpFSf3/vrQfJQbtInyYNh7lunWhdd0o2nsUyx10Qi92sDZ2JvlK333f7ft/7vO4R+aflPvV\nLOxraRusyeg6a0hWVutyDuu5fdEC4xe6b9ia1qf1vjbnSTUs5naL3P+5AWtbympr6X3fvrHA\ndN8cqqqF7ZFdy9Nir3HDAvftmfar229k12F3C1m36sp2GeVnY5TL+WJW246jns/+z9n3s+vc\nkf7n/n7P7d75H2c7j6stRvm8b0zytLT3e2OSJ9eQtBBzZtohlP17XhczbBuPat2aLLyuG7a9\nR7XcQScshLA2bshNNy4XO/F/Y+Z/6Sy0UZrM/8Wv/9CMYayk1qWsy/zDNhaaj2vHUNOGvv8v\nSDuMbTGXLXDftiRXDFbaklZTyyDv2zBd4S62QbNX37hB2/zP0w4vStpG0VlpG/7b0351vssq\nalzMKD8bo1rOFzNMO456Pvvnq7cr/a1LjOs1znYeV1uM8nkvTTvk7aVph5Lt2zPuiCTPSAtQ\nv5X2Xi1nmDYe5bp1sXXdsO09quUOOiEgweS5toZ96v/FDgG5Zc/t5a5P04WdadcamfvFcKFf\nIQ9b4L5hXZv25TwXTt6S5PQVPsegh8iMq5ar07qHTlb+vu3sub3PAuMPXeC+pLVVb62DHOZy\neHb9ip4kz03yip7/35DRBqTd6bOxM6tvx0mbz7Vu50l1Sdoe4KenhaXjktwz7VC5fdP2Cr02\nrbOFixd+iv8xTBuPct260LpOezPznIMEk+nTPbcXOkfmwOzqVShpx6pPot6LId51gfH3HdPr\n9h7mcvSiU62N1dTS+779zALj77PAfXN6f5k9Ijddz99jicd+oef2Qu31J2k9T/1TWicNR2f+\nr+Af7Jv+mCVeq9dKDsvanT4bw7TjJM3nqNp5GuyRdq7Qv6SFhoennYc0dzjZ+iz+Getfzodp\n43GuW7U3M09Agsn0Vz23T8pNN6RenF2HWFyd5O/WoqhVOKfn9oOS/HTP/3fI/OvpjNL7em4/\nMvPPMzo4yXfSju3/ZOafdzMptfS/b73XBdmUpd+33q6LD0zrtW7O7bP0hRh7e6T6pczfODs6\n7Xo096/hm7npoT2913L6hcy/oOr+Pbf7D7257RI19dudPhvDtOMkzedq23labEw7x+iitJ4c\nb9E3fkvmn9s09yPFcsv5MG08znXrrLc3JNnVreLmjuuAabPcxS6PyPxuT3s3ntZnfren16V9\nmb4irZek3sc9o+Nal3rsprQv27nxV6Z1Jf2Xace9f71n3FJd0a60pgPSNuDnxn0/yevSzh+4\nqOf+d6/g9VZrNbXcLvPftx+kHdbyZ2nXFvlaz7j+Q2QOSjt0Z278tWknmL+qXvucJR77I2m/\nTM+Nv7xe802Zf2Hbs2v6/dIO9Zm7/ytp52C8Km0jsbeb621p16GZ+3X96p5xFyd5fVqXwsnS\nbTHMZ2OYZWo1hmnHcc5nbxv3P/a3esbN7aVYbTsP2s33KNtiXOuyd/aMuyitHZ6T1qNd72fq\n4szv5W2p5XyYNh7nunUc7Z2sfLmDtbY5u5bD/7mxubt6YCoNuwFwQNqvljsXGa5N+1Lputbl\nHvuMtBNw++v/UpIn9Pw/yoCUJHfM/C/k/uGMzN+QGVdAWk0tSTvPYaH37QtpF1fsva//GiZP\nz/wr3s8NH087PKb3vv5zUW+b1jaL1frBJDfvmf6URab7SM3Tp/vu31yPe+0Cjzmzxi3XFqv9\nbKx1QEqGa8dxzedqNlRX087TFJD2Szu0dLG22JnWU+Hd+h631HKeDLeeH9e6NRl9eycCEpNv\nc2o51EkDjM+W7Lq2w0K9DF2f+dd+uKZv/BVpF+u7d9qG1Ka0L6bLkvx7kr9J61mp61qXe+yf\np10D4ylpx+pfkfar6duSnNj3GqOqKUm+nBZMHp12/ZAfTdvY+HraoSr9FyNc7vWGsdJakrbX\n53NJfj3JrdP2Pnw87YKVB2f+vG/I/N6u3ph2pfonpXUNfFnaXp93pp1M3vvYjZm/AXVh2gnY\nD0/y82kblDfW/Wf0PTZJXp1dG2S3SjsE6YNpF8i9Mckj0i6sedu0w5DmrkPzO2kbQidUDZfU\n8yfLt8VqPxvDLlOrMUw7jms+/z27rq/T35nAd3oe+52e+1fTznstUce42mJc67Kr0j4PJ9Xf\no9JC0/VpwejctOW3PxgstZwnw63nx7VuTUbf3snqljvoTP+vegBr5ZnxqyHAqFm3wsptjj1I\nMHX2y+p6bLskC1/EchROSDs+/ci0c2PukvZLZNJ+Le/tSvafx1TDKEziewvMrhMyHetWmEgC\nEkyPI5P84Soe9/4kbx5xLXMuSDt0ZO6iip9KOwl5Z1rvanPdxV6X5JVjqmEUJvG9BWbXtKxb\nYWI5xA4YpwelnXex2EnIl6V1HQvA4KxbYbQ2xyF2wBr5cNqJ/o9Ou37Gj6b11nVJ2q+e707r\nohaAwVm3whjZgwQAAMyyzalcdLOOCwEAAJgYAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAU\nAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABF\nQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEAR\nkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQB\nCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAGV9\n1wUAAGN3eJKjuy6iY+cluaTrIoDJJyABwPR70fr1639977337rqOTmzdujXbt2//yyRP7boW\nYPIJSAAw/fY48cQTc+qpp3ZdRyde/vKX56yzztqj6zqA3YNzkAAAAIqABAAAUAQkAACAIiAB\nAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgA\nAABFQAIAACgCEgAAQBGQAAAAyvquCwCANbAuyQFdF9GhDV0XALC7EJAAmAWvTPI7XRcBwOQT\nkACYBQfe8573zK/92q91XUcnnv/853ddAsBuQ0ACYCbsv//+2bRpU9dldGLDBkfYAQxq1gLS\nzZPcIckhSfZKsjXJJUnOT3Jth3UBAAATYFYC0oOTnJrkXkn2WGD8tiRnJ3lJkk+uYV0AAMAE\nmYWA9LwkL01yfZKPJjkvyZb6f2OSw5Ick+SBSU5K8rQkb+mkUgAAoFPTHpBuk+TFSc5J8tgk\n31tm2vcmeX2SD6cdegcAAMyQab9Q7APSDql7cpYOR0lyUZInpp2b9KAx1wUAAEygaQ9IB6Wd\nX/TNAaf/SpIdSQ4dW0UAAMDEmvaAdEmSPZMcPeD0P5P2nlw8tooAAICJNe0B6cNpXXm/M8kd\nl5n22CTvSnJVkg+OuS4AAGACTXsnDZcmOTnJX6T1Xnd+dvVid0NaL3aHJrlzkqPSerZ7XJLv\nd1EsAADQrWkPSEnytiRfSPLstK68H7HANN9NC1GvSHLBmlUGAABMlFkISEny2SSPr9uHJjkk\nrbe669LC0ZYRv97Nkzw3C1+UdiEbk2xKu6AtAADQkVkJSL0urWHOYUmOS+vQ4Rsjeo2NaddV\nGvT9vUWS+yXZkHboHwAA0IFZCEj7JnlRkl9M22N0RpKX1Li3pV1Ads7H6/9hLxK7Je1cpkEd\nnxaQAACADs1CQHprkkcl2Z52TaQ/SnJE2qF1j0lydpJvp/Vyd9+0AHVcJ5UCAACdmvZuvo9O\n8sgkf5y2J2nftE4aHp/kKUmenOQBdfu4tI4cjk3bowMAAMyYaQ9Id09yTZLfTzu3Z2eS96Ud\nSrczydv7pv/TtOsm3W0NawQAACbEtB9id2hahwzb+u7/VlrHCP12pJ0/tN+Y6wIAACbQtO9B\nujjJ4Wldevf6ySS3zk274d67pr987JUBAAATZ9oD0ifTutx+bZJbpl2f6HfTDr37YZI/7Jl2\njySnJ9kzyb+ubZkAAMAkmPZD7C5M8qYkv5HkqT33vzrJV5L8WVp33N9IcockRyb5YJIvrG2Z\nAADAJJj2gJQkz0zytSQPTXJ9Wjfeb0g73+igJM9NsimtE4d3Jjm5mzIBAICuzUJA2p7Wzfcf\nLzDuJUlemuSQJFekXUgWAACYUbMQkJazI+2isQAAwIyb9k4aAAAABiYgAQAAFAEJAACgCEgA\nAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIA\nAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAA\nAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAA\nQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAA\nUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAA\nFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAA\nRUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABA\nEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQ\nBCQAAIAiIAEAABQBCQAAoAhIAAAAZX3XBQAAwBjtneTwrovo2CVJtnZdxO5CQAIAYJq9Mslv\ndF1Ex96Q5OSui9hdCEgAAEyzve93v/vllFNO6bqOTrz61a/OOeecs3fXdexOBCQAAKbahg0b\nst9++3VdRic2bNjQdQm7nVkLSDdPcockhyTZK+1YzEuSnJ/k2g7rAgAAJsCsBKQHJzk1yb2S\n7LHA+G1Jzk7ykiSfXMO6AACACTILAel5SV6a5PokH01yXpIt9f/GJIclOSbJA5OclORpSd7S\nSaUAAECnpj0g3SbJi5Ock+SxSb63zLTvTfL6JB9OO/QOAACYIdN+odgHpB1S9+QsHY6S5KIk\nT0w7N+lBY64LAACYQNMekA5KO7/omwNO/5UkO5IcOraKAACAiTXtAemSJHsmOXrA6X8m7T25\neGwVAQAAE2vaA9KH07ryfmeSOy4z7bFJ3pXkqiQfHHNdAADABJr2ThouTXJykr9I673u/Ozq\nxe6GtF7sDk1y5yRHpfVs97gk3++iWAAAoFvTHpCS5G1JvpDk2WldeT9igWm+mxaiXpHkgjWr\nDAAAmCizEJCS5LNJHl+3D01ySFpvddelhaMtI369g5P8aZINA05/i/q7bsR1AAAAKzArAanX\npTUkLSzdLsmRSf4r7XylUdiW5PK0Q/gGMRekdo7o9QEAgFWYhYC0V5LfT/KJJB+p+34syZvT\nrpM05/q679QMH5R+mOSZK5j++CQPHfI1AQCAIc1CQDojyUlJfjctIO2d5Jwkt0079O4zaSHq\nPkl+K8mtkjy8k0oBAIBOTXtAundaODo9ySvrvsekhaPfS/Kynmk3pHXo8Ngkd0/y6TWrEgAA\nmAjTfh2ku6ad1/Oi7Dq/585p3Xif3jftDWk93SXtkDcAAGDGTHtA2jPJjrTwM2drWs91C3WI\ncGmSG9MOuQMAAGbMtAekzyXZI8mv9tz3sbRD7A5aYPqH1vTnj780AABg0kx7QPpYkk8meUOS\nF6Z1wHB2kr9N8q4kP17T3TLJ7yT5qyQXJjlrzSsFAAA6N+2dNOxI2yv07iTPr+E7aYfY3SXJ\n19MOv5u7DtFFSR6S1uU3AAAwY6Y9ICWtQ4YTk9w/yaPSeqi7ddq5RtfX+C8m+Ye0PUjXdVIl\nAADQuVkISHM+WgMAAMCCpv0cJAAAgIEJSAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAA\ngCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAA\noAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAA\nKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAA\nioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACA\nIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACg\nCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACK\ngAQAAFAEJAAAgCIgAQAAFAEJAACgrCQg/WqSPx/g+b6Z5MGrrggAAKAjKwlIRyU5bplp9kly\nSJKfWHVFAAAAHVk/wDT/Vn+PSHJgz//91iW5TZKNSS4fvjQAAIC1NUhA+lCSuye5fZK9kxyz\nxLRXJnlHkncNXxoAAMDaGiQgvbD+bk7ysCwdkAAAAHZbgwSkOW9K8t5xFQIAANC1lQSki2s4\nLMmdk+yXdt7RQr5cAwAAwG5jJQEpSV6e5NlZvve709IOyQMAANhtrCQg3SPJ7yb5YpJ/SHJZ\nkh2LTLtYT3cAAAATa6UB6VtpPdpdP55yAAAAurOSC8XuleS8CEcAAMCUWklA+kySO2TxjhkA\nAAB2aysJSP+cFpJekWTjWKoBAADo0ErOQbpPkq8neWqSJyT5fJLvLzLt+2oAAADYbawkIP1c\nWhffSbJ/kgcuMe1/R0ACAAB2MysJSK9N8tYkNw4w7ZWrKwcAAKA7KwlIl9UAAAAwlVYSkH6s\nhuXskeTbSS5cVUUAAAAdWUlAekqSFww47WlJNq+4GgAAgA6tJCCdm+Qli4y7ZZJ7JLlNkhcn\n+eiQdQEAAKy5lQSkc2pYyilJHpHkT1ZdEQAAQEdWcqHYQbw6bW/Sz4/4eQEAAMZu1AEpSb6R\n5M5jeF4AAICxGnVAOiDJTyf54YifFwAAYOxWcg7SSTUsZF2Sg5KcmOQWST4xZF0AAABrbiUB\n6bi0ThiWcmWS30ly3qorAgAA6MhKAtKbkpy5yLidSa5O8rUk24YtCgAAoAsrCUgX1wAAADCV\nVhKQ5hyW5AlpF4Y9pO67JMm/JnlnkitGUxoAAMDaWmlAenCSv0my3wLjHpPkD5M8NMm/D1kX\nAADAmltJN9/7p+0huibJbyX5qSSH1nCXJM9OskeSv0uy12jLBAAAGL+V7EF6YNp1ju6W5DN9\n476X5AtJzk3y6SQPSPKBURQIAACwVlYSkI5KO9eoPxz1+n9JvpnkDpm8gLRvkhOSHJ127tRe\nSbamzdNcuLuhq+IAAIDurSQg3ZhknwGmu1mSHasrZyw2JHlJkt9MsvcS012R5GVJXp7WbTkA\nADBjVhKQzks7D+nhSd63yDQPTHJEJutCse9O8stJPpt2ftR5SbYkuT7JxrRe+Y5J62TiZUlu\nk+QZnVQKAAB0aiUB6ewkF6Z11PCmJOekXRdpXZIfTXJikqcmuSDJP422zFU7Ni0cvSrJc7L4\nnqEzkrwobb6enuR1Sb60FgUCAACTYyUBaVuShyT5v0lOqaHffyV5WE07Ce6ZFopOy/KHzW1P\n8twkT047V0lAAgCAGbPS6yB9Oa2Tg19IcnySw9OCxyVJ/iXJP6YFjUmxMe3cqasHnP4HaedP\n7Tu2igAAgIm1koC0Li0MbUvy/hrmbEgLRpPUOUOSfDVtHk9K8qEBpv/ltE4mzjlH7CwAACAA\nSURBVB9nUQAAwGQa9EKx90i7vtEtFxn/20k+nuS2oyhqhM5K8u2086ZOTruo7UKOTDu87q1p\n51mdtSbVAQAAE2WQgHSXtA4Z7prk3otMc0CSe9V0h4ymtJG4Nu2cqGuTvD7Jd5N8P+1cqf9M\n21P0g7RrN70syXeS/GJaD3cAAMCMGSQg/WXa9YMek9bb20J+P8kT0/bEvH40pY3MZ5JsSvK/\n0ron35IW4m6Xtkfs4iTvSfKEJHeKw+sAAGBmLXcO0k+l7Tl6bVqIWMpfJ7l/kl9NC0rfGrq6\n0bk2yZtrWAuHpx2ut8eA0+9ff9eNpxwAAGAQywWkn66/7xzw+d6S1k328Vk+UE2S30vby/Tk\nET3fD9OuGzVoJxg/nuTuWb4rcgAAYIyW24A/vP5+bcDnu7D+/tjqyunMbdP2lo3KtUleuYLp\nj0/yGyN8fQAAYBWWC0hzF3zdOODzzV0/6NrVlTNyz6xhObdMm8f/rv9fUwMAADBDluuk4aL6\ne9yAz3dC/f3GqqoZvQPT9g7dKu1isYsNc9dwmvv/hi6KBQAAurXcHqR/Tuvy+rlJPpBde5QW\nsn/auTw/TPLRURQ3Aq9NcuskT0pyeZLfTOviu99fJDkmyd3WqjAAAGDyLLcH6QdJ3pjWgcDf\nJrnFItPdLq1TgqOSvC7J1lEVOKTL0zpeODHtvKjPJ9mcZEOHNQEAABNqkF7Wnpe2Z+WhaUHj\nzLSgcXWSg5Icm+SBaV1an50WQCbNR9M6Ydic5A+SPDrtukif6LAmgLV0epJTuy4CACbdIAFp\na5L7JXlhkpOT/EoNvbYk+ZMkL09y4ygLHKGtaYcK/k3a9ZDOTds79rwuiwJYI4fc7W53y6/8\nSv/qezacfvrpXZcAwG5i0Ov0zJ2H9MIk90py+7Qe67akdQH+iUxuMOr3+bROJ05Jm58HJ/lu\npxUBrIGDDz44d73rXbsuoxMbNw7aGSsAs27QgDTnmiQfqWF3dmOSVyV5X5I/TztE8DOdVgQA\nAHRupQFp2nw9yUlJ7pPWzTcAADDDZj0gzTm36wIAAIDuLdfNNwAAwMwQkAAAAIqABAAAUAQk\nAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJ\nAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAA\nAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQFnfdQEAa+TpSZ7WdREd\nunXXBQDA7kBAAmbFcZs2bbrrfe97367r6MR73vOerksAgN2CgATMjKOOOiqPfexjuy6jEx/6\n0Ie6LgEAdgvOQQIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAA\nAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQA\nAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkA\nAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIA\nACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAA\nAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFDWd13A\nGto3yQlJjk5ySJK9kmxNckmSLyQ5N8kNXRUHAAB0bxYC0oYkL0nym0n2XmK6K5K8LMnLk+xc\ng7oAAIAJMwsB6d1JfjnJZ5P8XZLzkmxJcn2SjUkOS3JMksekBaTbJHlGJ5UCAACdmvaAdGxa\nOHpVkudk8T1DZyR5UZI3JXl6ktcl+dJaFAgAAEyOae+k4Z5poei0LH/Y3PYkz63bJ4yxJgAA\nYEJNe0DamOTGJFcPOP0PkuxI69ABAACYMdMekL6adhjhSQNO/8tp78n5Y6sIAACYWNMekM5K\n8u0k70xycpJDF5nuyLTD696a5MJ6HAAAMGOmvZOGa5M8LMn7k7y+hsvSerG7Ie0QvEOTHFDT\nX5DkoWk93AEAADNm2gNSknwmyaYkj0871O6O2XWh2OuSXJzkH5P8Q5L3JtnWTZkAAEDXZiEg\nJW1P0ptrWAtHpoWujQNOv1f9XTeecgAAgEHMSkBKklsk+ZEk30rrqW4heyR5YpLP17BalyY5\nPYMHpNsmOTXLd0UOAACM0SwEpNsneVuS4+v/i9Oui/SmBabdM62jhtMyXEC6IcnbVzD98WkB\nCQAA6NC092K3Lu28ouOTfCnJB9L20rwx7XA7h7QBAAD/Y9r3IP1ckmOSvDytG++k7SX64yTP\nTHJNkt/upjQAAGDSTHtAukP9fVnPfduSnJLkiiR/lHYx2devcV0AAMAEmvaAtFfaIXXXLjDu\nBWnnJ706Lg4LAFNrx44dSbJfkqM6LqVL3047RxpYxrQHpP9OO8/o55OcucD4p6T1IPe3SX4h\nyafXrjQAYC2cf/75SfKIGmbV65L8766LgN3BtAeks5N8J60Xu+ekBaFresZfl+TBaXuPzk7y\nojWuDwAYsxtvvDH3uc998vSnP73rUjrxxje+Meeee+6PdF0H7C6mPSBtTfKkJH+f1n33V5J8\nqm+a7ye5X1pvdy9ey+IAgLWxzz775PDDD++6jE7ss88+XZcAu5VpD0hJ8k9pPdk9PsnXF5nm\nyiQPSrtI7K8uMR0AADDFZiEgJclFWX7v0M4kf1UDAAAwg6b9QrEAAAADE5AAAACKgAQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACizcqFYIHlwkod0XUSHju+6AABg8glIMDseecQR\nRzzpmGOO6bqOTnzsYx/rugQAYDcgIMEMudOd7pRnPetZXZfRic997nNdlwAA7AacgwQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQB\nCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVA\nAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQ\nAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQk\nAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJ\nAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAWd91\nAbCG7pTk+K6L6NCmrgsAAJh0AhKz5Fk3v/nNn3zYYYd1XUcnLrrooq5LAACYeAISs2Td8ccf\nn1NPPbXrOjrxxCc+sesSAAAmnnOQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAA\nAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQA\nAIAiIAEAABQBCQAAoAhIAAAARUACAAAo67sugDX1K0me2nURHbpj1wUAADDZBKTZctJRRx11\n4rHHHtt1HZ0488wzuy4BAIAJN4sBaV2SfZPslWRrkmu6LWdtbdq0KU972tO6LqMT5557btcl\nAAAw4WblHKTDkpyW5NNJrk5yVZItdfvKJJ9I8rtJbt5VgQAAQPdmYQ/SA5L8XZL90vYWfSUt\nHF2fZGNaeLp7knsleXaSX0oLUgAAwIyZ9oB0QJJ3J7kiyROSfCjJ9gWm2yvJo5K8KskZSX4i\nM3boHQAAMP2H2D04yYFJHp3kA1k4HCXJdUnekeRxSW6V5EFrUh0AADBR1iXZWbdPS7K5u1LG\n4vfS5mvDgNPvkeSGJH+Q5GVDvO5tkvx7Bt9Dtz7tEMANSbYN8brL+Yv169f/+t577z3Gl5hc\n11xzTW52s5vF/Jv/WWT+zb/5n+3537Fjx/VJru26lo7ss379+o2z2v5bt27N9u3b/zKzfamX\nQWxO8oJk+g+xuzLJnkkOSfK9AaY/PG2v2pVDvu430vZaDfr+rkurcZzhKEmev3379ndfddVV\nY36ZiXXQjh07ctVVV13edSEdMf/m3/ybf/M/mw6qvzM7/9u3b5/l9k+S87ouYHezs4bNHdcx\nDndMm7e/zvJ7kfZN8v4kO5JsGnNdAADA5NicykXTvgfpy0n+LMnJSe6b5B/SEvSWtEPpNiY5\nNMmdkzwkycFJXprkgi6KBQAAujfNe5CSdvjaM5N8K7vmdaHhgiS/1lGNAABAdzZnRvYgJW1G\nX5PktUnulHbY3SFpXXtfl+S7Sb6Y5PyuCgQAACbDLASkOTvTgtAXuy4EAACYTNN+HSQAAICB\nCUgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAACU9V0XwJr6VJLjui4CAIA19W9J7tl1EbsLAWm2\nfC3JliSndV0InXhB/dX+s0n7zzbtP9u0/2x7QZKrui5idyIgzZYbklyW5DNdF0InLqu/2n82\naf/Zpv1nm/afbZctPwm9nIMEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEAR\nkAAAAIqABAAAUNZ3XQBr6oauC6BT2n+2af/Zpv1nm/afbdp/FXbWsLnjOhi/A2tgNmn/2ab9\nZ5v2n23af7Zp/8FsTuUie5Bmyw+6LoBOaf/Zpv1nm/afbdp/tmn/FXIOEgAAQBGQAAAAioAE\nAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiAB\nAAAUAQkAAKCs77oAOrEuya1quCTJd5Lc2GlFrLVDk/x4ku8l+Va0/6zZI8nxSa7N/2/v3qP0\nqMsDjn8DAYEEQgTlImBSq6QUkUKDIAih4kGRpohAARUKyqGSQ7XSSmipLge1WKrlKBWhXkCw\nelqPXAoSEAooVZCrXEoJEFAgh6uGcElCLts/nt/wzs7Om5333d2Z7Pt+P+e8Z/adyzvPO/Pb\n3Xnmdxm4o+FYNP42AXYkzvtDwAvNhqMGzEive4HnG41EdXsd8JY0XYS//5UNptdAw3GoHkcQ\n/yAHc68ngY83GZRqsw9xQZw//08DJzYZlGo1E7iZOPe3NxyLxtd6wBeBl2n9vr8KXABs1GBc\nqs8k4GRgGXH+D242HNVoI+CfaJ377HU5kSxruAFax8kEqY8cSZzrh4CPAXOIxOjRNP/YxiJT\nHXYlLpSeAz4N/AlwPK3zf3xzoakmxwJLgbuAlZgg9bovEL/bVwDvA/YHvpXmXdRgXKrHNsAC\n4nf9bkyQ+s33aP3+zyX+BpxP6zpww+ZCW2cNYILUl+4FVhBN6/LeQZSBm2qPSHX6AXGe5xTm\n75Lm/6LugFSrLYjz/FWiqcVyTJB62ZbEOb6N4f2NLwPWADvVHZRq9TXiBtiewHxMkPrJLOJ8\n30DUIub9KC07sO6gJoABUl7kIA395TPAh4gmdXn3EHeYptUekep0JXAacGNh/j3Ai8C2dQek\nWr1K3EX8K+JGiXrbQUQi/E0iGcq7gLhoOrTuoFSrBUTLgVuaDkS1W01c851Oqg3JuTlN/Z+/\nFg7S0F+ubjN/X2AD4k6jetclbeZvAUwFflljLKrfi8B/NR2EarNrmpYNwnF7YR31pquaDkCN\neQg4u82yGbl11IYJUv/aB3g9sDvRgfMe4LONRqSmnEXcTf5a04FIGjPbpenikmXPAquA7esL\nR9I6YBZwHHAn8D8Nx7JOM0HqX1fSalL3feBviCG/1V9OJQbq+AYxso2k3rBJmi4vWTaY5k+p\nLxxJDduB+D+/Cvgww5veKccEqbdsxfCBFu4gfhGKPgxMJ56NcTxwP3AU0WZZE1Mn538ycC4x\nvPf5wLzxDU016OT8q/etStN2/+cnE/3SJPW+2cRodusB7wH+r9lw1n0mSL1lDfBUYd5v26yb\nb5t8LjEE6MVEk4uyO45a91U9/9OBHxKj2c0HvjS+Yakmnfz+q/dlDwOdTjwQOm8T4hkplg+p\n9x0JfAd4hBjF8LFGo5lAHOa7f2xODP1a5mKiHOxWXzhqwDSiVuFl4JCGY1GzHOa7t32G+Js+\nt2TZbmmZ/Q77h8N896djiJtnC4BNG45lIhjAYb77ztbE3cJ2o1htlaY2uehdk4nzPwt4P/Es\nFEm96bo0Pahk2Z+m6TU1xSKpfgcB3yb6HR1MjGSqDliD1D9uIs71Jxn64LCjiTsMjzH8gYLq\nHacR5//YpgPROsEapN73c+KZV3Ny83YFlgIPYjP7fmINUn+ZRjStvR/YuOFYJpIBUl40idYo\nFmdgktTrdiCGddyOeFjsY8CbiDHxlxJNMYqdvNU7lhB/NG9dyzofxNEMe9VHGToYxx7AK8B9\nuXmHAU/UGZTG1duAnwJvJJrWriTO+4tER+07mwtNNbiJeFgwxENBtycS4yVp3gK87utVnwL+\nhfh7/mSbda4CzqwtoolhAPgcePeo3/wGeCtRg/BOIjm6G/gW0YGv3S+ResPdFdZx2M/etZqh\nA7D8tGQdz39vWQjsDJxEjGI1CfhH4DzKn4+k3rKC1u/0ovTKW1lvOKrREka+4e35H4FN7CRJ\nkiT1swEcpEGSJEmShjJBkiRJkqTEBEmSJEmSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIk\nSZISEyRJkiRJSkyQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmSJElKTJAkSZIkKTFBkiRJkqTE\nBEmSJEmSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIkSZISEyRJkiRJSkyQJEmSJCkxQZIk\nSZKkxARJkiRJkhITJEmSJElKTJAkSZIkKTFBkiRJkqTEBEmSJEmSEhMkSZIkSUpMkCRJkiQp\nMUGSJEmSpMQESZIkSZISEyRJkiRJSkyQJPW6OcAWTQeRsx0wCFxSYd1Zad1vjPN+JrLTie/5\nvqYDGcFozmUndmDdK/OSNKGYIEnqdTcAuzcdRJeeAU4DLm06EHXkaODrhXl1ncsjmNhlXpIa\nN7npACSpBi82HUCXfguc1XQQ6tjBwO8V5tV1Ll9K04la5iWpcSZIkvpBdrG4CbAH8Cjw6/T+\nD4DlwMPAijbbbwa8DVg/bfvMGMQ0mKYbpxhWlMSQxbsYWFjYflaKayGwBHgjsBNwH/Bch/vJ\nm5I+ezLl37V4DGcBbwB+tpbvOpKR9pmZRHyHTYGHiKSjaFOi9uQJ4nvmzQTeDNwFvFBYNh14\nK1FWHgFebRPDlsD2xHFdBCwt2fdewDKiqdvvgF+x9nM5UvnqpNxWTZC2Sp/Rzr3A8yN8RmYD\nomnfG4hzsghY1Wbdqse502PSrhxWLVuSNMRgeg00HIckjYdBYEb6eWZ6/0VgHnGRtizNex44\npLDtVOAiYCWtv5WDwH/nPrNTWd+g7wAfIS6gs899rhBDWb+VtwMP5LZZBvwD8In0/gNd7Adg\nI+BfiYvt/He9rvBds5jOBP4t/XxfZ4eg430C/CFDv/dK4Bziu+f7IP1xen9Oyf4+n5btk5s3\nBfgucUGfffYzwHGFbXdIca3JrbeGKB/TCvsufhcoP5dVy1cn5fYQhpb5dj5SEmv+dfAI22fm\nAU8Vtl3M8ONX9ThXPSYjlcNOypYkQeRC2d8KEyRJPW1nWrXl2Z3/+4HriQtPiJqXp4kLz6m5\nba9O659F3M3eEfhb4iLvYaJWplNZ4nIbUQtyeIrxWOBlokZiSlq3eFG9IXEXfDUwPy0/APjf\n9Hn5RKGT/QD8B3FRejpRs/AW4MS03sPEHXtoXaxfT9TEzAX27OI4dLLPDdJ3WA2cktbbm+hr\n80jhe3eaIF2e5v0zUfNzAPALIvnJJx73ELUdJxPJ2juALzF0IIz1gc2Jmp3b0s/tziVUL1+d\nlNupDC3z7UwFfr/wmkMkXs8B24ywPcB+Ka5rgXcRzQr3Te8HiXOUqXqcqx6Tkcph1bIlSZkB\nTJAk9aEsaXiJaI6Td05atm96/670/ocln/OFtOwvRhHDq0RTo7zz07J3p/fFi+q56f25he1m\nps8rS5Cq7Gd3WhevRSenZdmd/uxzVxPN1brVyT4/QPkIcBvTqr3oJkGaTauWLW9r4oL8J+n9\nVODvgZNKPvMB4BWGDnq0HLilsF7xXHZSvjopt91aj0g4B4E/q7hNNoLgnML8zYlj/c70vupx\n7uaYlJXDTsqWJGUGSHmRfZAk9aPbgWcL855I02x45APS9Ecl218B/B1xB/3CLmO4lagVycv6\nzGzZZpvsgnNBYf6jRNOh93e5n2y7VcCRhXU3TNN3M/QC906i70e3OtnnXun9tYX1lgHXAMd0\nGcOBaXplYf5TRM1P1rfnJeICfRKRbG6Ti/FlIlGbytD+SCPppnxVKbfdmk8kOucRtT1VPJ6m\n84h+Vr9L75cQyVOm6nHu5piUlcNuyrMkvcYESVI/WlwyL+tUvn6azkjTRSXrZhdk248ihsdL\n5q0sxFC07Vq2/RXlCVKV/WQjrp3aZr8Qd/vznihdq7pO9vmmNH2yZJ3fjEEMZd+lOIjF4cBX\naNVcZH2ANkrLO31sxow07aR8VSm33ZgNnEE01TylsOxM4rvnHUc0j/t34FDgMKLW6VaiNuhS\nYpCHTNXjPCNNOzkmZZ/ZTXmWpNf4HCRJ/WhNhXU2SNOyUbayBON14xxDUXb3e2XJsldGsZ/s\nux5I1IaUvYrNrl6u8Lljtc9s3bLvvXoMYmg34lpmNvCDtP/9ifMwhag1um4t21XZdyflq5sy\nM5KpRKKzGjiKSPzylhI1PflXFvNK4hztD3yTSGTPIPprXUarv1DV49zNMSkrh92UZ0l6jTVI\nklQuG0K6rOnS69O06jDIYyUbwnnTkmWjuSOeDQu+JdF/pg6d7DMbsnpaybJ2zRHLTC28X9s5\nzjuKuKF4CnDjKPZfdd91lq9ziQEaPkkkNkVnp9fa3EjruOxIq9ZpPvA5qh/nsTomTZRnST3E\nGiRJKndHmu5Rsmx2mt5VUyyZrOnRToX5k4D3juJzb0/TsiZ6WxN9Q8b6hlon+8z6UO1csu5e\nhfdZk60pxRUZ/tyfO9O0bBS+C2gNhjE9TYtNv2YCf1SybRXrQvn6c2JUwx8DX+1i+82I5Crv\nQWII8VW0RrGrepzH6pg0UZ4l9RATJEkqdxnR6XweQ4c8nkr0bVhJa3jnumTNuT7B0ATg07T6\n6XTjcuKu++G0LkQhmiqdS/Qr2W0Unz/afV6dpicxtHbhCGCXwudmw6DvSSSOmb2A9xTWvYwY\nUGAeQ0dC+xBwAq2L6Cwxyl/gTyee6/NA7n1mOcNHmytquny9mRjN8Gm6H9HtUmK0vpmF+bsQ\nxy7rM1X1OI/VMWmiPEvqMQ7zLalfZB3syy6yPpWWHZabN5eokXieuBi+kLjoW0MkKeMdQ9mz\nc/4zzVuUYrqJqGHJnslTHOa76nc9kOjHtJy48L0EeIzWwzirxN+pqvuEqGkYJC7oLwd+RlwE\nn53m52sLvpvmLSAurM8jOvl/meFDYn+Q6PPyEpGI/Tyt8yCtpGdboi/OCuB7wMVEc7DPEsnp\nYNru2LR+Nlz2zcTzeKD8XFYtX52eyyouTtvdkz63+Dq0wmfsAbxA9Fu6ljg2PyG+0zNEc7tM\nleMMY3NMoLOyJUngMN+S+tQKIqF4oGTZE2lZfhjlK4C3Ax8nmndNIi54LwTuriGGV9L7hbl1\njk7z3ktcWF5H3BU/OS3POrh3+l2vIZqgnUA8BHU6cBXwfeJCv0r8naq6T4C/JEZOO5h4yOdt\nwEeJxGM2caGeyUZZ2y+97ieae+1CPCMn37H/0rTvE1IsjxPP4TmP1oAFi4mmdH9NPHD0WaIZ\n2Y+JmrwZxPDf2YARHyP+0U6n1Tyw7FxWLV+dnssqfp22g0g2ijar8Bm/JOI/Jk23JAZxOBX4\nNkOHPa9ynGFsjgl0VrYkaRhrkCRpYtmgZN5FxN/yHUuWSZKktRsg5UX2QZKkiWMz4g79HUQt\nSmYW0d/iEYbWUEiSpA7ZxE6SRmc/hvahWJsXgetHsa+lwNeJZ80sJPrhbEo8hwbgROLuVxPq\nPA6SJI0rm9hJUvduIYY0rvK6b4z2uT/Rd+Mq4ErgLIYPt1y3Jo6DJEljZQAHaZCkMVH2bJfx\ndkN6rUuaOA6SJI05+yBJkiRJUmKCJEmSJEmJCZIkSZIkJSZIkiRJkpSYIEmSJElSYoIkSZIk\nSYkJkiRJkiQlJkiSJEmSlJggSZIkSVJigiRJkiRJiQmSJEmSJCUmSJIkSZKUmCBJkiRJUmKC\nJEmSJEmJCZIkSZIkJSZIkiRJkpSYIEmSJElSYoIkSZIkSYkJkiRJkiQlJkiSJEmSlJggSZIk\nSVJigiRJkiRJiQmSJEmSJCWTcz/vDZzaVCCSJEmS1JC9sx8mAYMNBiJJG42i0QAAABJJREFU\nkiRJ6wyb2EmSJElS8v/FVccV0tW8GwAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “'no_higher_education' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde5xkd13n/9ckmSQQkkBcEpCLQgJikIBCgAVUZDEgNxcQRUT86eLlwbKr\nKOB1fwYB8QqurLtyWUBRUG4KCLIgoAIqsCBLTCTcb5IgEEJCIBcys3+cb+/0NN0z3TPVXT3V\nz+fjcR51Od8+51NVp6rrXed7vmdXtTcAAAA6at4FAAAAbBfHLLv+tuqt8yoEAABgTu5R3X3p\nxt4xnTuvagAAAObo3EYu0sUOAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\ntq97julbV5l3h+q91d5l029tVWGH4J/aV+fPzbmWRbIoz+ssH8eJHfi9c6je074af2mGy90u\n5rEtHc46F2XbB7ahY+ZdALCmN4/LS6qvWXb/ruqPqzOX3bdnq4piy920OqP61+qCOddyJLhl\na7934EC814BKQIIjweUrbt+s/cPRo6vnt73fzw+trjOuf2qehRyBnlF9T/Wn1cNXzPO8frXL\n17jOgR1p29Jm1Hug9xqwg2znL1TAZOWXvJuuuP2Kpj1IV29NOYfkwnkXcIS6XnX/A8z3vH41\nAenQHGnb0qzrPdh7DdhBBCTY/i4bl8dWd6tut2L+XasvV5+oPrTK39+iOq26ZrT51wOs625j\nPVXvHuu+cVO3k49XH1vR/rjq1k3Hffxr9cE1lnt2dcK4/uGxrJV2jWXdYNT5L+P+W1U3GddX\nPsbV6q1pL9tNR02rPSeHalbru2H19dXu6uKm52S5E6s7Vndv36/kpzYdV1P11uorre95XXK4\n20HN/nFu1I2qmzdtK/9SXVRdu6LNF5ddv6yNW74dfrxD2ztxuM/10dU3NL2/PtD+j6nqa5ue\nh4urjx6klvW+Bgfalrb6fbae5a532z/YNrPe99pKG3mNl8zqM+5An8nrfb03e7uDI97SQY7n\nzrkOYH/XNL03Xzdu36j9B2VYOS0fpOH46v9v+nK3st0/VT+0xjo/sazdfaqfaPpysPLA9K+t\n/qD60oplf7L60VWWe7ADqh/Y9A93+bL+uumf8R8vu+9pK/7u4yvqPb1624rlvLv6xjUe70Yd\n7voeWP1jX/2afLT9X5M7rdJm+XT90e5gz+uhbgdb9TiXHOxx/HDTHoOVy7u4ekr7vigvWfne\nWa/7Vx9ZsY43Nn1hf/ey+1YbpGFWz/XZTV9Ol+67vPpPo+1J1StXLPv17dselpvla7BZ77Pl\n6/yZDS53VtvMet9rdeivcR36Z9x6P5M3+npv1nYHR7Jz27eN/78r586vHmAVr2v69fIp4/Zp\nTf8Yl/45Lk1L9/36aHe96u199T/KldPvr7LO9y2b/5+b9kyt/FL4dU2/fC7df2XTr5h7Wvvz\n5EBfZr5zlce0NP1z9YZlt3/5APU+uv2/TKz8knDdVR7vRh3O+h61os0VTb/QLr/vx0fbOzY9\nJ8uf0z3te61PHu0O9LzOajvYzMe55ECP45dW/O1Sd9Ll9/1d+/eIWPneWY97tS9YrZwu6MCj\n2M3quX5M9blV/m5P0x6OV62x3D9dscxZvwab9T5buc6NLHdW28x632uH8xrP6jNurc/kQ3m9\nN2O7gyPdue3bvv/flXPnVw+wAfdo/39S11sx//nL5l1ePbLpF8Azqv+24m+/b8XfLv/S8YGm\nf8Yvqv5r9eDR5q+WtfnLpi4qNQ0csfTL6lfavyvggb7MLJ/32aZfM09oGqJ55RemlV9Ml//t\nJ6r3V98/an3Lir/9wQ7foa5vd1MXnKV5z276crar+p0Vj3/5F/3fXzbvTw5Sz8rndVbbwVY8\nzrUex/FNX/b2NnWLesCyv7tN+w91/8hVnp+NOG/Zsi6qvq2pq9Gdm7qOHmg7nNVz/S9NexXu\nV/3Kir87r+nHiJ9qGqBg+a/9X2nqWlWzfw1Wzpvl+2zlYz/Qch91gL+dxTZzsPfarF7jw/mM\nW+0zeRav9yy2O1gE5yYgwRHrQAHpZu3/S+VjVvn71y6b/44V85b/09xbfceK+WeumH/rFfMf\nu2ze766x3OVfZs5asbxHr1jeQ1bMP9CXh6ubjgtYclLTF5ml+f+tw3eo6zulevyy6euWzTu9\n/R/jbZfNO9SANMvtYCse51qP4xbL7v9C05ff5e7Q1H3oO5u6fR6q262obeWX/PutmL98O5zl\nc315+/ZY1Ff/cv/Ty+bda8W8c8b9s34NVs6b5fvscJY7623mQO+1w3mNZ/kZt9pn8ixe71ls\nd7AIzm1s2wZpgMXy75oOtF2y2pfql1ffNa7fsemLyGoHs/9t+84ns+Tbll2/pumcM7dcdt/u\nNdqu5Y4rbr9yxe1XNf3zPrGDe3XT8SNLLms6nuE+4/a/WccyNmIj67ukfceIfU3Tc/b1Tb/y\nrtwDOIt+/bPcDub5OC9qOs7tuqO+d1QvHut/Z1O3t/esYzkHc6cVt1+74vbrmr5sn9xXm+Vz\n/aqxniV/03RsyZI/Wnb9b5v+ke8at08Zl5u9rW3W+2xWy92MbeZwXuNZfsat9pk8i9d7Ftsd\nLBQBCRbL8rByyZhWWj6q0VFNo0WtdlLEf1zlvuVDjO9u6mK3ljMOMG/JjZddv6L6zIr5X2ka\n+GE9B3+/b5X7Ll52fdafdxtd39lNXV7udpDl7jrI/PWY5XYwz8d5ZfXUMdW0p2ep6+bVTceR\n/En1guqqdSxvLSu3w8+tmL+nqRvSagFpls/1yhHbPrvs+uXtP1LaV5q+1C596V3+OmzmtrZZ\n77NZLXcztpnDeY1n+Rm32mdyHf7rPavtDhaGDRsWy/LuJGudF+maFbePW6PdasPWHrvs+tXV\n3x+glr1NXxT2HKDNyuWt5ksH+PvlVjvnzWrD887KRtZ3m6ZffpdGzvpE9aamA6mPbfWR/w7H\nLLeDeT/OX20aBOTnqm9adv+xTUMx37Opy9O9+upgs17r2Q6vXOP+WT7XK7f1aw8wb+X8JZu9\nrW3W+2yWy531NnM4r/EsP+NW+0yexes9i+0OFoqABItl+S9/N2j1gLLyoNqVv2guWS3YfH7F\n/HtupLhVLP9SdGJTN5aV/3xvdJjr2A5+qn1fYD5ZfXP7vpid1uwD0iy3g43YrMf5x2O6edMx\neGc3HUOydEzFWdWTW/3YkPVY3t1to9vhvJ7rtWz1trZdzXKbOZzXeJafcat9Jnu9YRMcNe8C\ngJlafnDwcX11//eahm1dclHTP9X1Om/Z9ePbv+vJoVh+YtljqtuvmH9Gh3fw/Xax/Ffsv2//\nX63vsM5lbKQ71GZvB2uZxeNcy1FN5255UfW4sa7HL5t/sO5FB7JyOzxrxfwz2r+r1HLzeq7X\nspmvwZHmULeZle+1w3mNN/szzusNm0BAgsXylvY/0PnJ7X9w8a3afxSlF2xw+W+qLl12++dX\nzP+V6tNNQ+mudjLNld7S/l1Tfr79v5z8QrM5Jmfelnetucmy68dW/2VF2+XHuSzvYnT6Bta3\n2dvBWg71ca7lEdX/btrD86RV5i8P7F9eT4FrWLkdPnHF/ANth/N6rtcy69fgSHOo28yB3muH\n8xpv9mfcTn+9YVPoYgeL5dqmLiOvafoB5D5NB/a+vmm0oe9p32hJ769+bYPL/1LTl4PfHrcf\n3bQX6W1NQ35/b9M/+xs0jYx0MJc0/br7Q+P291T/0HRCxm9pOgfNRa396/2R4m3tG573btUz\nm84n8simg7Pf0NT9p6Yv5zdrGnb4Y8uWccfqL5p+mf6t9v9leqXN3g7WcqiPcy3vavoV/Ojq\nF8cy3tN0cP3Nm86Zs2S1kcXW6/NNI3X98Lj98KZf9d/e1DXr3zad42vpl/7lPy7O67ley6xf\ngyPNoW4zB3uvHeprvNmfcTv99YZNszSW/blzrgNYn4OdKLamf8KXrmi3fPq79h+RbsmBzoWy\nZFf1tKYvhqst+wvtG5p3Pcs9pf1P0rk0Xdt0XqW/X3bfgc4Rslq9z102/2VrPJ6NONT1ndL+\nJ1hcmq6oHlTdf5V5NX2ZuWKVeUvDUh+sns3aDmb9OA+0voc2/dK/1mPY03SOnMPtEXGD1t4O\nf6L9T5D81FX+fjOe60cum3dxX+2zy+YvnfR0M16DzXqfHc5yZ73NHOy9Vof+Gm/mZ9xmvN6H\nst3BIji3sW3bgwRHni80nadiyWojCr2s6Qvd9zf1jT+1aRSuDzed4+X1ayz7ne07IPnja7TZ\n29RN5A/H8m/XdM6RTzX9evvC9j+nxsGWe0nTr6g/3jTow+6mYWf/sKmrzH9Y1nblsLwHq/fC\n9j1X56/xeDbiUNd3SdOeiMc07Y1Ymv/s9g0P/OimLzS7m57HmkakunP1k00ngLy8aejgj6yz\nns3aDmb9OA+0vpc3/eL+vU0HoJ/W9MX2801fOl/e6kNmb9Tnm57rn6i+fdT3wabt8F1Nz93S\n/8xPrfL3m/Fcf7p9z/NqQ0u/rX3dpj69rN2sX4PNep8dznJnvc0c7L1Wh/4ab+Zn3Ga83oey\n3cHCWfoV4Nw51wGw0q78WgksLp9xsH2cmz1IwDbxrKa9UDdrGpZ3eXeP72k6O3xN3WLeMoP1\nfWOHdrDyO3P+D2DjtvozDjhMAhIwb19qX9eQJzb14X9P0/C3P7ys3Qvb/0DqQ/UDHdrwt9/X\n1K8fYCO2+jMOmAFd7IB5Or76s9Y+8Hlv9Yqm45wAjjQ+4+DIcG662AHbxJXVg5tOoPh91dc3\nnZX+i9X7qlc2HXANcCTyGQdHGAEJ2C7+z5gAFpHPODhCHO55IwAAABaGgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAcM+8CtthJ1W2qU6vjqy9XF1Xvq740x7oA\nAIBtYKcEpPtXT6zuXh29yvxrqjdUT63+bgvrAgAAtpGdEJB+rnpadVX1xur86jPj9nHVjao7\nVPep7lv9aPW8uVQKAADM3d4xnTvnOjbDLaqvNAWjU9fR9p1N3e5uvMl1AQAA28e5jVy06IM0\nnNPUpe6Hq389SNuPVD/YdGzSd21yXQAAwDa06AHplKbjiz6+zvYXVnuq0zatIgAAYNta9IB0\nUbW7uu06239L03PyqU2rCAAA2LYWPSD9ZdMxRX9UnXmQtnepXlRdXr1mk+sCAAC2oUUfxe7T\n1WOq5zaNXve+9o1id3XTKHanVWdVt2wa2e4R1WfnUSwAADB/izyK3ZJvqf64KfjsXWW6qHpO\ndet5FQgAAMzNuY1ssOh7kJa8u/qBcf20piG/j6+urC5u2qM0S9evnlwdu872xzbtwfr2GdcB\nAABswKIHpOtXJ1efaBqdrqZud5/e5PUePdZ7/Drbf031bU1B6erNKgoAADi4Re5id27TY/v7\n6nbzLeWA7tZU53r3OAEAALNzbjvkRLFLTm3qZvf0pj07AAAAX2WnBKQ7NoWj/1R9sPqp6jpz\nrQgAANh2dkpAurL62er21T9Wz6j+pSk03anaNb/SAACA7WKnBKQlF1TnVPeq/k/1uOqd1aeq\nV1e/Xj2xOnteBQIAAPOz6KPYreXNY7pd9ajqu6sHjKnqSU3BCQAA2EF2akBacl71hDHduCkw\n3WzcD9vd0U3Dwx8970K2wNXVW5pGlwEA2DQ7PSAtd9GY4Ehxj+pNJ5544rzr2FR79+7ti1/8\nYtU3Vu+bczkAwIJb9ID0leqq/OrMYjrmqKOO6pWvfOW869hUX/jCF3rwgx9ci/95BQBsA4s+\nSMNTquObQhIAAMABLXpAAgAAWDcBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAIZj5l0AW+oh1cPnXcQW+Yfq6fMuAgCA\nI4uAtLM88KY3venD7nCHO8y7jk314Q9/uAsuuOCMBCQAADZIQNphvumbvqmf/umfnncZm+pl\nL3tZF1xwwbzLAADgCOQYJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYjpl3AQAHcu211y5dfU71xTmWshX2VI+vzpt3\nIQCwUwlIwLZ2xRVXVHW/+93vrieffPKcq9lcr3zlK/vSl750VgISAMyNgAQcER760Id2i1vc\nYt5lbKo3vOENfelLX5p3GQCwozkGCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAAhmPmXcAWO6m6TXVqdXz15eqi6n3Vl+ZYFwAAsA3slIB0\n/+qJ1d2ro1eZf031huqp1d9tYV0AAMA2shMC0s9VT6uuqt5YnV99Ztw+rrpRdYfqPtV9qx+t\nnjeXSgEAgLla9IB0i+op1Zuq76/+9SBtX1L9XvWXTV3vAACAHWTRB2k4p6lL3Q934HBU9ZHq\nB5uOTfquTa4LAADYhhY9IJ3SdHzRx9fZ/sJqT3XaplUEAABsW4sekC6qdle3XWf7b2l6Tj61\naRUBAADb1qIHpL9sGsr7j6ozD9L2LtWLqsur12xyXQAAwDa06IM0fLp6TPXcptHr3te+Ueyu\nbhrF7rTqrOqWTSPbPaL67DyKBQAA5mvRA1LVC6r3Vj/TNJT3Q1dpc3FTiPrN6v1bVhkAALCt\n7ISAVPXu6gfG9dOqU5tGq7uyKRx9ZsbrO6F6fHWddba/yYzXDwAAHIKdEpCW+/SYagpLZ1Q3\nq/656XilWTix6Zim3etsf/K43DWj9QMAAIdgJwSk46tfqN5avX7cd/PqOU3nSVpy1bjviR1+\nULq4ut8G2t+telu19zDXCwAAHIadEJD+rLpv9YSmgHSd6k3V6U1d797VFKK+rXpsU3e3h8yl\nUgAAYK4WPSDdoykc/Xr12+O+hzeFo5+vfm1Z22ObBnT4/urs6p1bViUAALAtLPp5kO7Y1G3t\nye3rvnZW0zDev76i7dVNI93V1OUNAADYYRY9IO2u9jSFnyVfbjpGaLXjfT5dXdvU5Q4AANhh\nFj0g/WN1dPWoZfe9uamL3SmrtP/u0f59m18aAACw3Sx6QHpz9XfV/6h+pWkAhjdUL61eVH3d\naHfD6nHVH1Yfql635ZUCAABzt+iDNOxp2iv0J9V/GdO/NHWxu3310abud8eO9h+pHtQ05DcA\nALDDLHpAqmlAhntX/656WNMIdV/fdKzRVWP+edWrm/YgXTmXKgEAgLnbCQFpyRvHBAAAsKpF\nPwYJAABg3QQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgOGYeRcAwH5OqG4w7yI22d7q0nkXAQCrEZAA\ntolLL7206lljWnRPrH5z3kUAwEoCEsA2sWfPnn7kR36kO9/5zvMuZVM985nP7Pzzz/+aedcB\nAKsRkAC2kRvf+Mbd+ta3nncZm+qEE06YdwkAsCaDNAAAAAwCEgAAwCAgAQAADDvxGKRdTcPo\nHl99ubpivuUAAADbxU7Zg3Sj6knVO6svVpdXnxnXL6veWj2hOmleBQIAAPO3E/YgnVO9rDqx\naW/RhU3h6KrquKbwdHZ19+pnqgc2BSkAAGCHWfSAdP3qT5rO2P7I6rXVV1Zpd3z1sOrp1Z9V\n35CudwAAsOMsehe7+1c3qL63elWrh6OqK6sXVo+oblJ915ZUBwAAbCuLHpBuXl1T/cM627+p\n2lOdsWkVAQAA29aiB6TLqt3Vqetsf+Om5+SyTasIAADYthY9IL15XD6jOvYgbU+ofq/aW/3V\nZhYFAABsT4s+SMMF1X+vHlN9e/Xq6vymUeyubhrF7rTqrOpB1b+pnla9fx7FAgAA87XoAanq\nsU1Dez+h+okDtPtA9fjqD7aiKAAAYPvZCQFpb/W71TOrb6rObDom6fim0esurs6r3jfDdR5X\n/UDrf35Pn+G6AQCAQ7QTAtKSvU1B6LwV9x/VNHLdLN2w+vHq6HW2v96M1w8AAByCRQ9INx/T\n25oC0pLd1c9WP1J9fXVV9fam44/+1wzW+8nqLhtof7dRIwAAMEeLPordj1RvaeryttxLqyc3\nhacPVl9oGsThL6tHb2WBAADA9rHoAWk196m+uyk43by6dXWj6q7Vx6rfqU6ZW3UAAMDc7MSA\ndE5Td7tHVJ9adv/bqx9rOh/SOXOoCwAAmLOdGJBOqj7RdJzQSm9pCk9fv5UFAQAA28NODEgf\nra6/xrzjql3V5VtWDQAAsG3sxID00uq61b1WmffD43KW50QCAACOEIs+zPeSy5tGqrt0TFc2\nDem9NBT3UdXTq8dWF1ZvnkONAADAnC16QHp39adNXeqWpps2Pe7rLmu3p2lI8E9VD272J44F\nAACOAIsekF41ptWsfOwPrt7adNJYAABgB1r0gHQgX1lx+41zqQIAANg2duIgDQAAAKsSkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAACGY+Zd\nwBzsqk6ojq++XF0x33IAAIDtYqfsQbpR9aTqndUXq8urz4zrl1VvrZ5QnTSvAgEAgPnbCXuQ\nzqleVp3YtLfowqZwdFV1XFN4Oru6e/Uz1QObghQAALDDLHpAun71J9Wl1SOr11ZfWaXd8dXD\nqqdXf1Z9Q7reAQDAjrPoXezuX92g+t7qVa0ejqqurF5YPaK6SfVdW1IdAACwrSx6QLp5dU31\nD+ts/6ZqT3XGplUEAABsW4sekC6rdlenrrP9jZuek8s2rSIAAGDbWvSA9OZx+Yzq2IO0PaH6\nvWpv9VebWRQAALA9LfogDRdU/716TPXt1aur85tGsbu6aRS706qzqgdV/6Z6WvX+eRQLAADM\n16IHpKrHNg3t/YTqJw7Q7gPV46s/2IqiAACA7WcnBKS91e9Wz6y+qTqz6Zik45tGr7u4Oq96\n3wzXeXTTCHrHrbP9N8xw3TveVVddVdMQ7w+bcymb7XbzLgAAYNHshIC0ZG9TEDpvlXm3rf5t\n9fczWtfNqme1/oC09DrsmtH6d7QLL7ywo4466hYnnHDCS+Zdy2a6+uqru+aaa+ZdBgDAQtlJ\nAelAHlfdobrTjJb30aYR8dbrbtXbmkIch2nv3r2dfvrpPetZz5p3KZvqJS95Sc9+9rPnXQYA\nwEJZ9IB01pgO5vTqlOqR4/Z7xwQAAOwgix6QHlL98gbav3BcPikBCQAAdpxFD0jvra5q6rr2\n+9XfrNHuP1a3aBrFrmY7YAMAAHCEWPSA9Irq9tWzq59qOs/R46rPrmj3gOoG1Z9vaXUAAMC2\nctS8C9gCF1b3rH6sKQj9c/WD8ywIAADYnnZCQKqpi91zms6B9DfVH1avb+pWBwAAUO2cgLTk\noup7qn/fFJb+qanLnfMPAQAAOy4gLXllU0B6QfXb6XIHAAC0cwNS1WVNo9fdo3prdcF8ywEA\nAOZt0UexW4+/q+417yIAAID528l7kAAAAPYjIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwbCUiPqn5/Hcv7eHX/Q64IAABgTjYSkG5Z3fUgba5bnVp9wyFXBAAAMCfH\nrKPNP4zLm1Y3WHZ7pV3VLarjqksOvzQAAICttZ6A9Nrq7OpW1XWqOxyg7WXVC6sXHX5pAAAA\nW2s9AelXxuW51b/vwAEJAADgiLWegLTk2dVLNqsQAACAedtIQPrUmG5UnVWd2OjTh5oAACAA\nSURBVHTc0WouGBMAAMARYyMBqeo3qp/p4KPfPampSx4AAMARYyMB6c7VE6rzqldXn6v2rNF2\nrZHuAAAAtq2NBqRPNI1od9XmlAMAADA/GzlR7PHV+QlHAADAgtpIQHpXdZvWHpgBAADgiLaR\ngPTXTSHpN6vjNqUaAACAOdrIMUjfVn20enT1yOo91WfXaPuKMQEAABwxNhKQvqNpiO+qk6v7\nHKDtBxOQAACAI8xGAtIzq+dX166j7WWHVg4AAMD8bCQgfW5MAAAAC2kjAenmYzqYo6tPVh86\npIoAAADmZCMB6UeqX15n2ydV5264GgAAgDnaSED62+qpa8y7YXXn6hbVU6o3HmZdAAAAW24j\nAelNYzqQn6weWj3jkCsCAACYk42cKHY9/mvT3qTvnPFyAQAANt2sA1LVx6qzNmG5AAAAm2rW\nAen61TdXX5jxcgEAADbdRo5Buu+YVrOrOqW6d/U11VsPsy4AAIAtt5GAdNemQRgO5LLqcdX5\nh1wRAADAnGwkID27+os15u2tvlh9uLrmcIsCAACYh40EpE+NCQAAYCFtJCAtuVH1yKYTw546\n7ruoelv1R9WlsykNAABga200IN2/enF14irzHl79UvXd1dsPsy4AAIAtt5Fhvk9u2kN0RfXY\n6nbVaWO6ffUz1dHVy6rjZ1smAADA5tvIHqT7NJ3n6E7Vu1bM+9fqvdXfVu+szqleNYsCAQAA\ntspG9iDdsulYo5XhaLn/XX28us3hFAUAADAPGwlI11bXXecy9xxaOQAAAPOzkYB0ftNxSA85\nQJv7VDfNiWIBAIAj0EaOQXpD9aGmgRqeXb2p6bxIu6qvre5dPbp6f/VXsy0TAABg820kIF1T\nPaj68+onx7TSP1f/frQFAAA4omz0PEgXVLet7lfdrbpxtbdp8Ia3VP+r+sosCwQAANgqGwlI\nu5rC0DXVK8e05NimYGRwBgAA4Ii13kEa7tx0fqMbrjH/p6q/qU6fRVEAAADzsJ6AdPumARnu\nWN1jjTbXr+4+2p06m9IAAAC21noC0v+srlM9vPqzNdr8QvWD1c2q35tNaQAAAFvrYAHpdk17\njn6v+tODtP3j6gXVg5uCEgAAwBHlYAHpm8flH61zec+rjm4a4Q4AAOCIcrCAdONx+eF1Lu9D\n4/Lmh1YOAADA/BwsIC2d8PW4dS7vhHH5pUMrBwAAYH4Odh6kj4zLu1YvX8fy7jkuP3aoBQGw\n2D75yU9W/Xj1sDmXshVeXP3SvIsAYP0OFpD+urqq+tnqVe3bo7Sak6ufr75QvXEWxQGweK64\n4orOPvvs63/rt37r9eddy2Z661vf2jve8Y47zrsOADbmYAHp89Wzqv9cvbT6D9XnVml3RvWi\n6pbVU6svz7BGABbMGWec0QMe8IB5l7GpLrroot7xjnfMuwwANuhgAanq56o7Vd9d3bv6i+o9\n1RerU6q7VPdpGr3uDdW5m1EoAADAZltPQPpyda/qV6rHVN83puU+Uz2j+o3q2lkWCAAAsFXW\nE5Bq33FIv1LdvbpV04h1n2kaAvytCUYAAMARbr0BackV1evHBAAAsFA2GpCOZN9R3a+6bXVq\ndXxT98GLqvc2jdLnaFoAANjBdkJA+rqmEfjOXnbf1U3dBo9rGoDigdUvVq+rHtnqI/UBAAAL\n7qh5F7DJdlevre7QNIjE3ZrO13RcddK4PKVpEIrnNY3G9+oW/3kBAABWseh7kM6pzqweVb1w\njTafr948pvdUv1vds3rTFtQHAABsI4u+p+TMptH1XrzO9s+p9lbfvGkVAQAA29aiB6Rrmx7j\n7nW2313tagpJAADADrPoAeldTYHnMets//hxaTQ7AADYgRb9GKS3VG+rfqu6S/Xy6vymE9xe\n3TRIw2nVWdUjqvs2nePpbfMoFgAAmK9FD0h7qgdVz60eNqYDtX1B9dh0sQMAgB1p0QNS1SXV\nQ6pbNe0hOrN9J4q9srq4Oq96TfWJGa1zV/Vvq+uus/1tZ7ReAADgMOyEgLTkA2PaCreo/qad\n9fwCAMARb9EHaVhy/eoB1XeN60tOq367+sum7nX3ntH6Pty+EfHWM919RusFAAAOw07Yw3Gf\n6iXVSeP255qOS7qgaZS7myxr+0PVTzadLBYAANhhFn0P0nHV/2w63uh/VE9qCkh/UP3H6sTq\n+5u6xD24+pfqN6obzqNYAABgvhZ9D9I5TXuIfqB60bjvd6oPNZ0b6dzqT8b9H62uqf6i+s5l\n7QEAgB1i0fcgnT4u/3zZfZdWr6q+tvpfK9r/9bi8+eaWBQAAbEeLHpD2LpuW++S4vHjF/Ut7\n1K7YzKIAAIDtadG72L2/aZS4+1cvW3b/a5qORVoZhO47Lj+8+aUBAADbzaIHpDc0hZ3nNQ3E\n8N+qL1f/MKYlJ1UPrZ7eNFDDX21tmQAAwHaw6F3svlL9f+PyN6oT1mj3oKYQtbv60eqqrSgO\nAADYXhZ9D1LVW6pbVQ+pLlmjzQXVU6o/qi7coroAAIBtZicEpJqON3rOAea/e0wAAMAOtuhd\n7AAAANZNQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIDhmHkXsIW+o7pfddvq1Or46svVRdV7q1dV75hbdQAAwNzthID0ddVLq7OX\n3Xd1dVV1XHWn6oHVL1avqx5ZfW6LawQAALaBRe9it7t6bXWH6hnV3aqTm4LRSePylOpe1fOq\n+1SvbvGfFwAAYBWLvgfpnOrM6lHVC9do8/nqzWN6T/W71T2rN21BfQAAwDay6HtKzqyurV68\nzvbPqfZW37xpFQEAANvWogeka5se4+51tt9d7WoKSQAAwA6z6AHpXU2B5zHrbP/4cWk0OwAA\n2IEW/Rikt1Rvq36rukv18ur86jNNI9kdV51WnVU9orpv9frxNwAAwA6z6AFpT/Wg6rnVw8Z0\noLYvqB6bLnYAALAjLXpAqrqkekh1q6Y9RGe270SxV1YXV+dVr6k+McP13qz1H/v0tTNcLwAA\ncIh2QkBa8oExbYXTqw8ewt/tmnUhAADA+u2UgHRK9R3V9aq3V+9bo93upqG+/3xMh+pD1U2a\n9lKtx7dUL03XPgAAmKudEJAe0HQepOstu+/F1Y9Xl69oe3T1Q9VHO7yAVPWpDbS90WGuCwAA\nmIFFD0gnNO0R2l39XtOenbtW31/dprpXdencqgMAALaVRQ9I39m0d+YRTXuNlvxp9YfVK0eb\nq7e+NAAAYLtZ9BPF3rLpuJ6V3eVe0bQX6R7Vs7e6KAAAYHta9IB0VdPIcMeuMu/V1eObjjn6\npa0sCgAA2J4WPSD907h89Brzn9F0jNKTqydsSUUAAMC2tejHIP1N9c7qN6vbNe0p+uSKNj8x\nLn+juvfWlQYAAGw3i74Hqep7qv/T1JVuteG091Q/Vv1C07mSAACAHWonBKSPV3esvrV6/wHa\nPa36xuq/VH+9+WUBAADbzaJ3sVuyp3rrOtp9qHrKJtcCAABsUzthDxIAAMC6CEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwHDPv\nArbQd1T3q25bnVodX325uqh6b/Wq6h1zqw4AAJi7nRCQvq56aXX2svuurq6qjqvuVD2w+sXq\nddUjq89tcY0AAMA2sOhd7HZXr63uUD2jult1clMwOmlcnlLdq3pedZ/q1S3+8wIAAKxi0fcg\nnVOdWT2qeuEabT5fvXlM76l+t7pn9aYtqA8AANhGFn1PyZnVtdWL19n+OdXe6ps3rSIAAGDb\nWvSAdG3TY9y9zva7q11NIQkAANhhFj0gvasp8Dxmne0fPy6NZgcAADvQoh+D9JbqbdVvVXep\nXl6dX32maSS746rTqrOqR1T3rV4//gYAANhhFj0g7akeVD23etiYDtT2BdVj08UOAAB2pEUP\nSFWXVA+pbtW0h+jM9p0o9srq4uq86jXVJ2a43hOqY9fZ9sQZrhcAADhEOyEgLfnAmLbC6dX7\n2/gxXrs2oRYAAGCddlJAWo/d1fOrV4zpUH2o6eS0692DdFbTiWp17QMAgDkSkPZ3dPUD1Qc7\nvIBUU7e99TruMNcFAADMwKIP8w0AALBui74H6dZjWq/1nlAWAABYQIsekB5R/fK8iwAAAI4M\nix6Q/nlcvqJ65zraH1M9efPKAQAAtrNFD0h/Wn1vdXb16OrzB2l/fAISAADsWDthkIYfawqC\nz513IQAAwPa2EwLS56qHVxd18AEb9lZXVV/Z7KIAAIDtZ9G72C352zEdzFVN3ewAAIAdaCfs\nQQIAAFgXAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgOGbeBQDAIrr00kurbl392pxL2QrnVy+cdxGb7LjqCdX15l3IFriyenp12bwLgXkQkABg\nE3zsYx/rpJNOuuWtbnWrn513LZvpkksu6SMf+cinWvyAdEb15Nvf/vYdc8xif31697vf3d69\ne/+2etO8a4F5WOx3OADM0W1uc5t+7dcWewfSG9/4xp761KfOu4ytsKvq3HPP7eSTT553LZvq\n3ve+d3v37t017zpgXhyDBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAYxQ4AOGR79+6t2l3d\ncc6lbLbT513AFrt1dem8i9hke6t/qq6edyFsLwISAHDILrzwwqobVv97zqUwI3v27Kn67/Ou\nY4v8x3bOY2WdBCQA4JBde+21nXLKKT3/+c+fdymb6u1vf3u/+qu/Ou8ytsyTn/zkzjrrrHmX\nsake97jH9eEPf/j4edfB9iMgAQCHZdeuXZ144onzLmNTXec615l3CVvqOte5zsK/pkcfffS8\nS2CbMkgDAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAwP9t\n786D5KzrPI6/x9zJJCYagSBH4kEQhcUDV2QV3MKDFVFXxHN1PShLEC2lXMGjGFe8VxcB0XVx\nlXVVdC3jyaKiSGGpnIJBjhhgBTZGwplOZiaZSWb/+H67ptPpmemZebqf6c77VdX1TD/P0898\np59O5/k8v+f3eyQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQp\nGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpzS67AEmSJKndhoaG\nAA4Cji25lHb4PXBv2UV0CgOSJEmS9jgbN24EeFs+ut2FwMllF9EpDEiSJEna44yMjHDKKadw\n4oknll1KS33qU5/i0ksv9Zh/EuyDJEmSJElpT0yTPcAiYD4wAGwttxxJkiRJM8We0oK0D/Bh\n4BpgC1ABNuXPm4FfAe8FlpRVoCRJkqTy7QktSC8AvgMsJlqLbiPC0TZgHhGejgCOAk4HXkIE\nKUmSJEl7mG4PSEuBi4GHgNcDlwDDDdabD7wS+CywBliNl95JkiRJe5xuv8TuxcAy4CTgBzQO\nRwCDwNeA1wKPBY5rS3WSJEmSZpQeYCR//jDQV14pLXEm8XfNbXL9WcB24APAJ6bxe1cBV9F8\nC91s4hLAucDQNH7vRC6cPXv2WxYsWNDCX1G+gYEBdu7cyaJFi8oupaWGhoYYHBxk8eLFZZfS\nUjt37mTr1q0sXLiQWbNmlV1OS1UqFebPn8+cOXPKLqWltmzZwpw5c5g3b17ZpbRUf38/PT09\ndPt37uDgIMPDw/T29pZdSktVv3N7e3vp6ekpu5yWqlQqe8x37rx585g7t9nDxM40MDDA8PDw\nl4G3ll3LDNcHnAXdf4ndZmAOsBfN3T14BdGqtnmav/dPRKtVs+9vD1FjK8MRwIeGh4cvrlQq\nLf41pVsIPKpSqdxTdiEt9ghgVaVSub3sQtrgCf39/bczekKnWx04ODj458HBwe1lF9Jie2/f\nvn1g+/bt0/2unemWAAsqlcpfyi6kxeYCKyqVyp/KLqTFeoDHb9myZX3ZhbTB4/v7++8EdpZd\nSIvtt23btge2bdvWX3YhbfCHsgvoNCP56Cu5jlY4hPjbvs7ErUiLgO8TXwYHtbguSZIkSTNH\nH5mLur0F6WbgAuAU4Gjgh0SC3kRcSjcP2Bs4DDgBWA58HFhXRrGSJEmSytfNLUgQTeLvBO5m\n9G9t9FgHvLGkGiVJkiSVp489pAUJ4g89FzgPeApx2d1exNDeg8BGYC1wa1kFSpIkSZoZ9oSA\nVDVCBKG1ZRciSZIkaWbq9vsgSZIkSVLTDEiSJEmSlAxIkiRJkpQMSJIkSZKUDEiSJEmSlAxI\nkiRJkpQMSJIkSZKUDEiSJEmSlAxIkiRJkpQMSJIkSZKUDEiSJEmSlAxIkiRJkpQMSJIkSZKU\nDEiSJEmSlAxIkiRJkpQMSJIkSZKUZpddgNQC5wHvKLsISZKkGeK3wJFlF9EpDEjqRncBtwGv\nK7sQFWIpcBnwKuD2kmtRMc4F/kiczFDnexHwLuC4sgtRYa4mTjReXXYhKsRZQKXsIjqJAUnd\naBjoB64ruxAVYnlObwZuKrMQFeZhYCP+G+0Wq4Eh3J/dZARYh/u0W9xfdgGdxj5IkiRJkpQM\nSJIkSZKUDEiSJEmSlAxIkiRJkpQMSJIkSZKUDEiSJEmSlAxIkiRJkpQMSJIkSZKUDEiSJEmS\nlGaXXYDUAtvzoe4wRNzV3X3aPfw32l3cn93Hfdpd3JdTMJKPvpLrkIoyH9i37CJUqMeVXYAK\ntRfQW3YRKsxs4ICyi1ChVgE9ZRehwizLh8bXR+YiW5DUjQaBDWUXoULdUXYBKtS9ZRegQg0D\nd5VdhAp1Z9kFqFAPll1Ap7EPkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOS\nJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQl\nA5IkSZIkpdllFyC1weHAUuBKYEfJtWjyVgIrgPuBdeWWooKszMdaYr+qc80CDgAeA9wFbCy3\nHBXg0cAqoAL8L7Ct1GpUpGcAvcBvcL9OaCQffSXXIRVtEfAlRj/jveWWo0k6HLie0f03AqwH\nnldmUZqWHuA0YIDYn8eXW46m6S3ABnb9N3ojcEyJNWnqngZczq77sx/4NDC/xLpUjGcRJ4lH\ngP1KrmWm6mP0s29AUld6JtHasIk4A2ZA6iwriH33IPAO4CjgDcDdxH/YTy6vNE3RCuBSYAi4\nAQNSpzuZ2IdrgX8A/hZ4P7AFGASeVF5pmoInEC1GDwNnEvvzROAKYj9/pbzSVIA5xL/V6jG/\nAamxPgxI6nJrgZ8D+xIHZQakzvIZYp+9pG7+4Tn/W22vSNN1HnAncRbzDAxInayHaDm6n7gc\nq9Y7iX378XYXpWk5j9hvJ9bNX0Ds623AvHYXpcJ8iDg5dQkGpPH0kbnIQRrUrT4KPJ/4Ylfn\neTnwZ+BHdfNvAK4hDqzntrsoTculRMD9bdmFaNoWAp8kwlB9H7Jf5XTftlak6boIeB3ww7r5\nA8DNxPftgnYXpUKsBj4AnIP9eJtmQFK3uhjYWXYRmpIlRAfhav+jetcSB2gHtbMoTduPict3\n1Pm2Ap8Dvt5g2cqc/rFt1agI1wLfYPeO+48mTmysBx5qd1Gath6iL/YG4KySa+kojmInaaap\nNv2P1fpXnb8/cFPry5HUpIXEQdhW7LPSyZ4CPBZ4ItEHtIcYkEOd52TgucALif67apIBSdJM\nszCng2MsH8jpojbUIqk584kWpUOJS7X+r9xyNA1nAy/Nn68lBsi5urxyNEUriEthvwb8tORa\nOo6X2KlT/QS4te4xq9SKVJThnI51Aqc6f3sbapE0sb2I4aGPB94MfLPccjRNHwdeBbyX+H/1\n10QfFnWW84j/T99TdiGdyBYkdar7cESdblXt9L1sjOWPyukDbahF0vgOIzr2LwH+DvhZueWo\nAFflA+BfiQFWPkK0QlxTVlGalJcCryCG4L+v5Fo6kgFJnep1ZReglrmH6MOweozl1fur3NKe\nciSN4VDgl0Tn/SOJlnx1poXAUnbv+7mDGPToWOA5GJA6wWzg88Q9IAFeX7Ps4Jy+nLjP4Ddw\nQKuGDEiSZpoR4BfE2ej9iMBUtRg4BriO3YcXltQ++xOtRfcBRxPD8qtzXQc8DlhO3DC21t45\n9bLmzjCfGGQDov9RI+fm9DuM3d93j2YfJEkz0fnEte8XEF/25PPPESHpcyXVJSlcCDySuJmz\n4ajzfZu419EX2XUAnMOAdxMtST8poS5N3hbi/8lGjwtyndX53HA0jpF89JVch1SUJxM3o6w+\nHiI+41fXzDuhtOrUrM8S++1eogP4Pfn8q8Sws+osVzD67+8uYl/eWjOvr7TKNFmHE/vvYXb9\nrq19rCmtOk3FHKJFcIS49Oo3wFoiGO0ETi+vNBXoHGIf7zfRinuoPjIXeYmdutEIu54VuaHB\nOjvaVIum7j1Ep+BXE8OVXg58Fw+8OtU2Rm/8e0c+ag21txxN0xUTLK+/4ahmtiHgBcRIhMcB\nBxID4fyUGL79+vJKU4HWE/92/ffZBFuQJEmSJO3J+shcZB8kSZIkSUoGJEmSJElKBiRJkiRJ\nSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmS\nJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYk\nSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElK\nBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJmtgxwKNrnh8C\n/BkYycc+JdQEcHD+/i+W9Ptngpn4HlRrunCSrzuA3T9rkqQ2MyBJ0sQuB55e8/ydRCj6APBU\n4P4yigLuBc4E1pT0+9vttcAFdfO66T04id0/a5KkNptddgGS1CEqNT8fmNPPAw+XUEvVA8An\nSvz97XY88Li6ed30HmzJaWXctSRJLWVAkqTmVIAlwNOAvXLeXwPbgV/ntGoJcBAwC7iTaOWo\ntRB4Zi77E3FJ1mOAK+vWW5TLZk+wnQ3AurplB2cd64CHsuZDgJuA+xrUsBB4EjAIrAe2jflO\njG+q210O7E9cmnYHsLlm2WKiVeVIYIC4DO1B4EbGfw8mux+KqHU8c4jL6B5DBLs7gOGa5c0G\npL2zzrGspflWzYlqqrUMeGLWdzu7fuZrtevzL0ktU72Gvq/kOiRpphoBVgLPYvQ7s/ZR7YPU\nC1wEDNUt/0W+vqraR+UjwL/nzzfVLJ9PtE5tq9vOZWNsp7b/zaHALTWvGQA+BLw9n78411uV\nzz8GnEoc9A7kvPuBlzXzxjQw2e0ekH/XzpqadxLv4yNznWew+3t+2TjvQbP7oRW11tZU2wfp\nVGBjXT0bgDfVrPMyRj9r43k9u78ftY/jJ3j9ZGqCCCr/SQSn6nr3Nliv3Z9/SSpSH6PfNwYk\nSZrAU4iz2LOApcAvie/NvfN5T673Pzn/E8QZ9NXAe4kDy/XAglyvemD+c+B3wAlE+Kr6NnGQ\n+UGipeDxwNuIlor1xBl42D0czCXOtO8AzsjlxwI3A9fkui/KdastIH/IOlbl/EOAvxBhoXcS\n71HVZLf7e6Il4jTgycBfAZ/MbfxXrlN93wfz71hKHLQ3eg+g+f3Qilpra6oGpKPz+U+BZxOX\nCT43n48AR+V6vYx+1sbTCzyh7nEMEe7uA1ZM8PrJ1ATw/Zz3L0Qr3rHAb4hwWBsi2/35l6Qi\n9WFAkqQpu4z43pxfM+/ZOe87Ddb/aC77x3y+Xz7fwWh/pqqnM3owWu+0XFY9c18fDk7I5+fX\nvW4VcWBfG5CqNWwhLm+qdU4ue26DGiYyme32EgNdnNJgO7cA/ew6mNAg8Nu69erfg6nsh6Jr\nrQ9IH8znx9S9bilwNnGp5nQ8ghjcYQR4aZOvabamI3K9r9Sttw8RfH6WETKBjwAABcVJREFU\nz8v4/EtSkfrIXGQfJEkqxrE5/W6DZT8A3k+ctf9qzfzriT4YtY7L6TDw6rplc3P6HHY/YIXR\ng9pL6+bfSYS649jdtcCmunn35HQ6w003s90txMFzD9G3ZQWjf+NWosWhl+b7+MDU9kOra707\np6cS/aYezOcPEUFlus4ggs4XiNaeZjRb0wtz+qO6128kWvGq/bRmwudfkgphQJKkYqzM6R0N\nllUPAvevm39P/YqMjtL2vnF+11j3Xdo3p3c3WHYjjQPShgbzqp30Z41Tw0Sa3e4rgc8y2qpQ\n7QNUbZ2b7O0oVuZ0Mvuh1bV+A/h74ESihecqouVlDTGgwnQcAXyYuIzy9LplH8maa72JuDyu\n2Zqqn8dGn9XaQSxW5rTMz78kFcL7IElSMebktNHIXkM5nVc3f+s423kh0SrR6DHWZVTVM+xD\nDZb1j/GanWPMn65mtnsEcDFR7/OI+hcRLTGXjfO68UxlP7S61iFinz2PuOzusUSo+T3wPUb7\n5kxWLxF0dgCvIQJbrc1ES0/to/q+NFtT9f0ca2S7qpnw+ZekQtiCJEnFeCCnjS5Le1ROmxl6\n+b6cLif63ExGdZjoxQ2WzcSz7q8hTtSdTgx8UWv5FLdZ1H6oV0Stv6x57WpGW3jOAM6aQk3n\nEwM0vIsINvU+nY/p1DTe+1lrJnz+JakQtiBJUjGuy+kzGyw7Iqe/a2I71+a00eVw+xB9PcY6\nuVW9vOmQuvk9wPOb+N3ttiyn9ZdlrQKeOsVtFrUf6k2n1iVEkKl1GzFc9zC7jhjXrFcBbwQu\nAc6dwuubren6nD6L3X2J0QFBZsLnX5IKYUCSpGJ8j+jofiq7DrPcS/SnGGLXoaDH8n3iLPor\nGT2whLj06Hyin8jTxnht9VKvtzM6DDbAe4hLqGaaatioPfheRtxz55aa51WD7D7aXL2i9sN0\na621hhh9b1Xd/MOIg/1GfaDGcyDwb8RQ5FMd0a3Zmr5HDNxwKruOOPcK4GRGw8pM+PxLUiE8\nCyNJxdhMDGP838RNL39M9G15AXHm+1Tg9ia2s4U4i78GuJK4t8xW4G+IA9SzgavHeO11xDDL\nJxId7X+Vr9mXOLj8p0n/Va31ZeI+OecSw2nvJG5kew7xPnwG+DoRBi4iWiCOIf6uDcBJDbZZ\n1H6YTq1X1b32TOLA/mZin24C9srtbCJGx5uMs4kb095FDBpR77s0Hk1uKjU9DLwZ+BZxv6gr\n83cfCazL7cDM+PxLUiEMSJI0eTcS35/1nft/ABwKvJW44WcPcdPLrwI31Ky3DbiC0ZaHej8h\nbpB5MnEz0mXEAec3iXBQ1Z/bWVcz77U57/n5usuIcHRaLq92oh+vhntyWf3Q182YzHY3EJen\nvZu4Gegm4uD4EqIFbCUxpPaOXP8txH0qlgF/zHmN3oMi9sN0aq3WdFu+9uqs5w05XU4MmPA+\n4D+Y3DDmEKPCXZE/79dg+ZImtjGZmtYQn8OTic/l3UQQ/wK7DgzR7s+/JLWMN4qVpO4yp8G8\ni4jv+tVtrkWSpE7QR+Yi+yBJUvdYQrQCXAcsrJl/MNGn43Z2bWmRJEl1vMROkrrHZuAC4n42\n64g+HIuJe90AvI04OzYZRzP24AP1KsDPJ7l9SZJmFAOSJHWXfyaC0UnAAUQgOo+4Gej6KWzv\nk8Azmlz3VqLviSRJHcuAJEnd5/J8FKHR/W8kSepa9kGSJEmSpGRAkiRJkqRkQJIkSZKkZECS\nJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRk\nQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmS\npGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqQ0u+bno4D3lVWIJEmSJJXkqOoPPcBIiYVI\nkiRJ0ozhJXaSJEmSlP4fK+S+KgYWSgUAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'foreign_nationals' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZxld13n/1eTzkYSlghJAAETEBE0ooAgMIKIBERQEBcW9cEMLsO44I9l\nFPVnUBgc1xmV+TmIiIIIiiKLiiC4BTcEEQRDNIBESSDIkk7S6Szdvz/Otx5dXVR3V3Ut9/at\n5/PxOI+6dc/33vOpe09133ed7/mcXdWBAAAA6GazLgAAAGBe7F52+23VRbMqBAAAYEYeVD1w\n6ZsDY7lwVtUAAADM0IWNXGSKHQAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMCwe9YFAHBM\n7lOdPm5/sPrXBdvedrtvddq4/YHqw3O+zVnUC7BjHBjLhTOuA2DJGdVDxvKfZlrJ/HpXB//9\n/uFl92/Va3e47S2Kf+zgz/cDx8E2Z1EvwCK7sPHvqiNIwDw6r/qTcfsT1WfNsJa1+uzqrtXH\nqvfNsI7j8bVjPszLPgwwUwISMI/2HOb2PPu56vHVq6pvnmEdx+NrNw++vjp13P7ILAtZo62o\nd172YYCZEpCAeXS8fcg/vXrUrIsYjrfXbl68f9YFrNNm1ztP+zDATAlIwDy6etntq1ase0B1\n0rj9zrH+dk1Tgz7cZzYPOLm6W9O5OR+r/uUw21zteavu2DT16GPVpSsec0Z17+qBHfxr/llN\n5/9UXVTdeIz1LNk1xt+66ec72tGCI712a7He7a3m3Ors6obqsqaf83BWe91PqD6v6bX65w79\nmapuX92puqL60FFquW31OdWJY/wHDjPuSE0PjmXf2Ii1PO9amzSc0/Ra7ar+vbq8umnZ+mPZ\nh2t97/GS5fvWZaOeqs+t7jBuX9ahP/N6f9/X+n5v9X4HHOc0aQDm0Q1N/za9ccX9l3Xw360L\nqu9q+gC3snnA7atfq65dNv5A9W/Vt6+yvQ+veN67VG9b8dh3Vp+/7DH3WbF+5XKrDdRT01/0\nP7hi/FuaPkC/c9l9K5smHO61O5pj3V7VKdX/2xSoVr4O/1h922G2ufJ1v2/Th9Ol+/ZU3zPG\n3qJ67YrnflOHvs5LHl39/Sq1fOgwtRyp6cGx7BtrsXybz1jn8x6tScNTmo4yrfz5r6ie18Fw\ntZ59+Fjf45rejw+teMyfNgWO31h23wtWPG6tv+/rfb+3ar8Djl8XdvB3XEAC5tIbm/56/bwV\n91/cwX+3vrfau+z7pQ9Md2766/TS/dc1/aV5f4f/N2/58z61Qz+YrfzAdfPxmHs3fVhb/rz7\nx303VrfcQD0P7WDQWbm8ryN3lTvca3ckG9ne6dXfHOaxy5dfWmW7y1/3p1X/scrj9jcd4Xjd\nYZ73VSue81tXrL+m6WjA8vu+c8VjjhQ4jmXfWIuV21zP8x6p3h/uM1+/61fc95dNs0jWug9v\n5D3+qg6GmpXLP1VvXvb9j6547Fp+34/l/d6K/Q44vl2YgAQcp5Z/MPznpg9Mr6j+d/XYMeaP\nl435w6ZpRFX36OBfv2+svvAwz3tZdUn1hPGcf9GhH4y+ZUVNv7Rs3StXqflY6nnPssdcXn15\n09SfL22alre8ns1ou72R7f3qsnV7qic3/dX9rtUvrnjsN6147PLX/d+bjip8dfVjKx73nqZg\n+fSmBgXL/9p/Y9PUqpqmVn1s2boXNQWBXdX/Wnb/xzt0mvmRAsdG9o0jWfmzH+l5v/UIj11e\n7ylNAeFA01S6r1n2c969eveyxz152eOOtg9v1nv88aYjNqc1taFfGQpX7ltH+33fjPd7M/Y7\n4Ph3YQIScJxa/sHmQPUVK9bfY8X6u61Y/93L1v38YZ73+qZzLJbcoulD4dL6X1zxnEf6cHks\n9Xzhises/ND91SvWbzQgbWR7d+zQowNPW+X5/2DZ+r9dsW75676ng0cs6jP/cv//LFv30BXr\nHj7uP7N65rLlzssec5cVj7nnYeo4UkBa775xJBt53sPVe+6y+z/dFJiWu1fTlLOvapr2ueRI\n+/BG3uPzO/Q1f+qKxz1uxfojBaTVft834/3ejP0OOP5d2Pjd1qQBOJ79eQev+bPky5fdvqHp\nukDnLbvvxMOMXe71TefiLLmq6dyQC8b3t1lHjcdSz31WPMcfrPj+jU0ffm/Z5tjI9r6y6eT2\nJasdffid6pHj9r2bPvyv1kDidWM7S/6s6dySJS9fdvvPm/4j2zW+P3N8/UT10+P2ZzW91p8z\nxp2+YnvHcg7JZu4bW/G8lzed53bzptf5b6vfHM/19qapku9aZ20beY/vvWLca1d8/7qmgHJG\nR7fa7/tmvN+bsd8BC0RAAo5nf7/KfZ+97PaJTVPaDueuh7n/4lXuu2LZ7fX823ks9dxu2X3X\nNJ0fsdz+pmlBmxWQNrK95WHvE2NZaXknsZs1vSarXYh0Zce2jy+7vadDO6Xd2PShdulD7/L3\n5L5N06sesMo2ltt1lPWr2cx9Yyue97rq+WOp6ejg0tTN65vOPXpl9dJq3xqfcyPv8cp968oV\nj7uxqVHJWhpcrPb7Xht/vzdrvwMWhF9s4Hi2Wmvhk5bdvr76qyM8/kDTh7n9K+5f7fpBq7U6\nXotjqWflY1Zz3THWs5qNbG/5FK7DPfaGFd+ffJhx1674/qYjrFu5fsndm44yLHVpu6x6a9NJ\n+yd1+I6Ba7WZ+8ZWPe//aGoC8gPVFyy7/6Sm9t0PaZom99A+MwyvZiPv8Vr2rdXe29Ws9vu+\nGe/3Zux3wAIRkIDj2cpgU/XJFesfsj2lHNax1LN8+tkZTdObVn4oO2djZW3a9pb/tf3WrR44\nV57IvvIowmZ6egc/LP9b9cUdDAFnt/GAdLz4jbHcqXpQ01GWr+rgeTjnVz/e6ucTrbSR93h5\n8Nvovrza77v3G9h0N5t1AQCb7D3Lbp/SodODtsPKaTzHUs/yi8fubvowu9xdO3Tq0kZtZHvL\nT8g/uc8856SmVslLLm/6ILtVlh8x+asOPUJyry3c7jy6WdP1fl5RfX/Ta/PMZesPNyVt5T68\nkfd45b71RSsed9cObRaxXt5vYNMJSMCieWv1qWXf/+CK9T9WfbSp3fFmtMeuQ6dC3WUT6vmL\nDp2y9OwVj3lOx3b+zOFsZHt/0aHNBX68Q0/o/9wO7Vz20mMrcc2WT+O6w7LbJ1U/smLsZp3D\nNU+eWP1d01HB566yfnlg37vs9pH24Y28xyv3rR/s0H1po/vyTn+/gS1gih2waK5t+gD3M+P7\npzYdtXlbU4vtb2z6QHbrpu5Vm+Ffl92+d/WGpr+g/3TTX9DXW88nmzpnPWV8/81Nf2X/m6ap\nUl/WdP2kpb+8b/SPXRvZ3k1N07R+f9x/QdPJ9G9q6vD1+A52KLuk+okN1no0b+tgK+gHVL/Q\ndO2aJzc1Anhz01SzmoLgHVv94qbHq3c0HTk5ofqhpp/5XU0NGe7UdJ2lJcu70R1tHz7W9/gT\nTUewvm18//jqr5v2rS9pus7W5R37EdGd/n4DW8R1kIDjyZGuV7NkV/WCpg/vB1ZZPt3B9slr\nfd4XL1v/6hXr7tjBi3MuX5baZx9LPbfu0Iu3Li03Vd/VoReffX4bt9HtPb7pSNlqP9+Bpu5p\nn73K4470uj952bor+kwfX7Z+6aKnZ3boxTyXlmuqx1SPWmXd0erYyL5xJBt53iM99uubjg4d\n7r3Y33RdpeVB92j7cB37e3xmh9+3vrtpatxaroO02mu0Fe/3sex3wPHvwlwHCThOvb2DJ41/\n+DBjDjRN5fn1pr+Yf2HTdWE+0vQX9pd16HVP1vK872+6PkrVe1esu6zpL+Hf13Shyj1NLY6X\npiUdSz2fHM/5XdWDm1qE/8t4jndUZ3VwFsBHVql3vTa6vVc3hagnNJ2PclZT57sPNF1X6U2H\n2e6RXvePdvA1X6219Ns6OG3qo8vG3bfpiMeXjfveW72og62on9r04fnE8bMdrY6N7BtHspHn\nPdJjf6fpKM03NjUtOLspDH2yKaj8Tp/ZZv1o+3Ad+3v8ifHc39nUpOTEptbav940HfC/LBu7\nsvX40V6jrXi/j2W/AxaMI0gAwCzsyhEZYD5c2Pi3SJMGAGAr/d+m6XeX9ZnnoD2++qxxe39T\nUweAmTLFDgDYStd2cPrbs5vOU3pXU4vvpywb97IObRYBMDOm2AEAW+WU6jUdvrnDgep3m87L\nA5iVC9OkAQDYBtdVj226SOw3VZ9T3ba6urq4em1TUwmAuSAgAQDb4R/GAjDXNGkAAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBh96wLAObezasHzLqIOXZl9Q+zLgIA2BwC\nEnA0T7jZzW724tNOO23WdcydG2+8sb179366utWsawEANoeABBzN7jvc4Q792q/92qzrmDt/\n/dd/3XOe8xz/jgLAAnEOEgAAwCAgAQAADAISAADAICABAAAMO+3k4ltUd6/Oqk6p9laXVxdX\n186wLgAAYA7slID0qOrZ1QOrE1ZZf0P15ur51V9uY10AAMAc2QkB6QeqF1T7qrdU7226sOO+\n6uTqnOpe1QXVI6pvr14yk0oBAICZWvSAdG71vOqt1ROqjx1l7G9VL6z+sGnqHQAAsIMsepOG\nhzdNqXtKRw5HVR+svqXp3KRHbnFdAADAHFr0gHRm0/lFH17j+PdX+6uzt6wiAABgbi16QLq8\nOrG65xrHf0nTa/KRLasIAACYW4sekP6wqZX3y6t7HGXs/apXVHuq39/iugAAgDm06E0aPlo9\nrXpxU/e6izvYxe76pi52Z1fnV+c1dbZ7YvXxWRQLAADM1qIHpKqXVu+untHUyvvrVxlzRVOI\n+qnqkm2rDAAAmCs7ISBVvbN60rh9dnVWU7e665rC0ZUzqgsAAJgjOyUgLblFdecOBqS9TU0c\nrqmunWFdAADAHNgpAelR1bOrBzZdF2mlG6o3V8+v/nIb6wIAAObITghIP1C9oKkBw1s62KRh\nX1OThnOqezWdn/SI6turl8ykUgAAYKYWPSCdWz2vemv1hOpjRxn7W9ULm9qDX77l1QEAAHNl\n0QPSw5um1D2lI4ejqg9W31L9U/XINnYUaVfTdL5T1jH+lOr1G9gmAACwQYsekM5sOr/ow2sc\n//5qf1Onu404t+mo1YnrfNxJTfUCAAAzcLNZF7DFLm8KKfdc4/gvaXpNPrLB7X6gKezsWuPy\nwPG4XRvcLgAAsAGLHpD+sKmV98urexxl7P2qV1R7qt/f4roAAIA5tOhT7D5aPa16cVP3uos7\n2MXu+qYudmdX51fnNXW2e2L18VkUCwAAzNaiB6Sql1bvrp7R1Mr761cZc0VTiPqp6pJtqwwA\nAJgrOyEgVb2zetK4fXZ1VlPXuOuawtGVM6oLAACYIzslIC330bGsZld1l+oTYwEAAHaQRW/S\nsF4nV/9cfe+sCwEAALafgAQAADAISAAAAMOin4P0HWNZKxdqBQCAHWzRA9LZ1b2brnl0YMa1\nAAAAc27Rp9j9SlM3ul9paut9tOVWsykTAACYB4sekD5SfWf1X6vHzrgWAABgzi16QKp6dfVr\nTUeR7jjjWgAAgDm26OcgLXlq0/S5q48y7obqB6uLtrwiAABg7uyUgHRj9fE1jLup+oktrgUA\nAJhTO2GKHQAAwJoISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAw7J51ATBHbj3rAubUzWddAADAdhGQYPKM6qdnXQQAALMlIMHkVne/+917+tOfPus6\n5s5LXvKSLr/88lmXAQCwLQQkGE477bTudre7zbqMuXPGGWcISADAjqFJAwAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADLtnXcA2Oq16SHXP\n6qzqlGpvdXn17urPq+tnVRwAADB7OyEgnVQ9v/pv1alHGPep6ieqn6wObENdAADAnNkJAemV\n1WOrd1avrt5bXVntq06uzqnuVX1zU0A6t/qumVQKAADM1KIHpPs1haOfrZ7Z4Y8Mvab68epF\n1XdWv1j943YUCAAAzI9Fb9LwZU2h6LkdfdrcjdV/H7cfsoU1AQAAc2rRA9LJ1U3V1Wsc/8lq\nf1NDBwAAYIdZ9ID0z03TCB+xxvGPbXpNLt6yigAAgLm16AHpjdW/VS+vnladfZhxd2yaXver\n1aXjcQAAwA6z6E0arq2+rnpt9cKx/EdTF7vrm6bgnV3daoy/pPrapg53AADADrPoAanqHdXd\nqic1TbW7RwcvFHtd9ZHqj6rXV79V3TCbMgEAgFnbCQGppiNJvzyW7XBe9b6mI1TrsWsLagEA\nANZopwSkqts3HTH6xLL7TmmaUndudXnTUaRPfOZD1+2D1cOrk9Y4/p7V/+rorcgBAIAttBMC\n0t2qV1ZfPL7/8+qJTWHkoqZwtOST1WPG/RtxYGxnra7d4PYAAIBNsBMC0m9WX9QUWPZWD2gK\nTB+oblH9UFOnu3s0dbr7rabQpFEDAADsMIsekB5cfUn1+Op3xn2fU7173P/lTU0clrypekv1\nVdUbtq1KAABgLiz6dZA+v/p4B8NR1YeautZ9pEPDUdVbq09Vd9+O4gAAgPmy6AHpjGrPKvdf\nU119mMdc29qbKwAAAAtk0QPSh6o7Vrdbdt/upvOQ7tbBC8QuucMY++/bURwAADBfFj0g/XHT\n0aLXNZ2H9Oim6Xa3qf6++vWm9t9Vn1v9RrV/PA4AANhhFr1JwyerZ1e/VP32uO9A9Z+rDzc1\nZfj36voOTqv7HzmCBAAAO9KiB6SqFzUdLXpMU+vu11bvGeu+snpWddfqo01HlH5lBjUCAABz\nYCcEpKq3j2WlPxsLAADAwp+DBAAAsGYCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAsHvWBWyzW1R3r86qTqn2VpdXF1fXzrAuAABgDuyUgPSo6tnVA6sT\nVll/Q/Xm6vnVX25jXQAAwBzZCQHpB6oXVPuqt1Tvra4c359cnVPdq7qgekT17dVLZlIpAAAw\nU4sekM6tnle9tXpC9bGjjP2t6oXVHzZNvQMAAHaQRW/S8PCmKXVP6cjhqOqD1bc0nZv0yC2u\nCwAAmEOLHpDObDq/6MNrHP/+an919pZVBAAAzK1FD0iXVydW91zj+C9pek0+smUVAQAAc2vR\nA9IfNrXyfnl1j6OMvV/1impP9ftbXBcAADCHFr1Jw0erp1Uvbuped3EHu9hd39TF7uzq/Oq8\nps52T6w+PotiAQCA2Vr0gFT10urd1TOaWnl//SpjrmgKUT9VXbJtlQEAAHNlJwSkqndWTxq3\nz67OaupWd11TOLpyk7d3dtO1lE5a4/hbjq+7NrkOAABgHXZKQFruo2OpKcjctbpj9U9N5ytt\nhmuqv2uawrcWd6juWx3YpO0DAADHYCcEpFOq51QXVW8a992p+uWm6yQt2Tfue3YbD0pXVz+6\njvEPqJ68wW0CAAAbtBMC0muqR1TPagpIp1Zvre7SNPXuHU0h6sur7246mvO4mVQKAADM1KIH\npAc1haP/Wf3MuO+bm8LRD1Y/sWzsSU0NHZ7QNN3t7dtWJQAAMBcW/TpI9246r+fHO3h+z/lN\nbbz/54qx1zd1uqtpyhsAALDDLHpAOrHa3xR+luxt6ly3WkOEj1Y3NU25AwAAdphFD0h/X51Q\nfeuy+/6kaYrdmauM/9ox/uKtLw0AAJg3ix6Q/qT6y+r/q36sqQHDm6vfrl5R3XmMu231/dWv\nV5dWb9z2SgEAgJlb9CYN+5uOCr2y+pGx/HvTFLsvqj7UNP1u6YKuH6we09TyGwAA2GEWPSDV\n1JDhYdVXVt/Q1KHuc5rONdo31r+nen3TEaTrZlIlAAAwczshIC15y1gAAABWtejnIAEAAKyZ\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAADDegLSt1a/tIbn+3D1qGOuCAAAYEbW\nE5DOq+5/lDE3r86qPu+YKwIAAJiR3WsY89fj62dXt172/Uq7qnOrk6tPbLw0AACA7bWWgPQH\n1X2rz61Ore51hLFXVS+rXrHx0gAAALbXWgLSj42vF1Zf15EDEgAAwHFrLQFpyYuq39qqQgAA\nAGZtPQHpI2M5pzq/OqPpvKPVvG8sAAAAx431BKSqn6ye0dG73z23aUoeAADAcWM9AelLq2dV\n76leX/1Htf8wYw/X6Q4AAGBurTcgXdbU0W7f1pQDAAAwO+u5UOwp1XsTjgAAgAW1noD0juru\nHb4xAwAAwHFtPQHpT5tC0k9VJ29JNQAAADO0nnOQvrz6UPXU6snVu6qPH2bs744FAADguLGe\ngPQVTS2+q25ZXXCEsf+SgAQAABxn1hOQfqH61eqmNYy96tjKAQAAmJ31BKT/GAsAAMBCWk9A\nutNYjuaE6t+qS4+pIgAAgBlZT0D6z9WPrnHsc6sL110NAADADK0nIP159fzDrLtt9aXVudXz\nqrdssC4AAIBtt56A9NaxHMn3VV9f/dwxVwQAADAj67lQ7Fr876ajSV+1yc8LAACw5TY7IFX9\na3X+FjwvAADAltrsgHSr6ourT2/y8wIAAGy59ZyD9IixrGZXdWb1sOqzqos2WBcAAMC2W09A\nun9TE4Yjuar6/uq9x1wRAADAjKwnIL2oesNh1h2orq4+UN2w0aIAAABmYT0B6SNjAQAAWEjr\nCUhLzqme3HRh2LPGfZdXb6teXn1qc0oDAADYXusNSI+qfrM6Y5V131z9cPW11d9ssC4AAIBt\nt54237dsOkJ0TfXd1RdWZ4/li6pnVCdUr65O2dwyAQAAtt56jiBd0HSdo/tU71ix7mPVu6s/\nr95ePbx63WYUCAAAsF3WcwTpvKZzjVaGo+X+rvpwdfeNFAUAADAL6wlIN1U3X+Nz7j+2cgAA\nAGZnPQHpvU3nIT3uCGMuqD47F4oFAACOQ+s5B+nN1aVNjRpeVL216bpIu6rbVw+rnlpdUv3x\n5pYJAACw9dYTkG6oHlP9XvV9Y1npn6qvG2MBAACOK+u9DtL7qntWX109oLpddaCpecNfVH9U\n3biZBQIAAGyX9QSkXU1h6IbqtWNZclJTMNKcAQAAOG6ttUnDlzZd3+i2h1n/9OrPqrtsRlEA\nAACzsJaA9EVNDRnuXT3oMGNuVT1wjDtrc0oDAADYXmsJSL9SnVp9c/Waw4x5TvUt1R2rF25O\naQAAANvraAHpC5uOHL2wetVRxv5G9dLqsU1BCQAA4LhytID0xePry9f4fC+pTmjqcAcAAHBc\nOVpAut34+oE1Pt+l4+udjq0cAACA2TlaQFq64OvJa3y+08bXa4+tHAAAgNk5WkD64Ph6/zU+\n30PG1389pmoAAABm6GgB6U+rfdV/r048ythbVj9Yfbp6y4YrAwAA2GZHC0ifrI03giAAAByj\nSURBVP5vdd/qt6vPOsy4u1Zvrs6rfrHau1kFAgAAbJfdaxjzA9V9qq+tHla9oXpXdXV1ZnW/\n6oKm7nVvri7cikIBAAC22loC0t7qodWPVU+rvmksy11Z/Vz1k9VNm1kgAADAdllLQKqD5yH9\nWPXA6nObOtZd2dQC/KIEIwAA4Di31oC05JrqTWMBAABYKEdr0gAAALBjCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAMPuWRcwA7uq06pTqr3VNbMtBwAAmBc75QjS\nOdVzq7dXV1d7qivH7auqi6pnVbeYVYEAAMDs7YQjSA+vXl2d0XS06P1N4WhfdXJTeLpv9cDq\nGdWjm4IUAACwwyx6QLpV9crqU9WTqz+oblxl3CnVN1Q/W72m+rxMvQMAgB1n0afYPaq6dfWN\n1etaPRxVXVe9rHpidYfqkdtSHQAAMFcWPSDdqbqh+us1jn9rtb+665ZVBAAAzK1FD0hXVSdW\nZ61x/O2aXpOrtqwiAABgbi16QPqT8fXnqpOOMva06oXVgeqPt7IoAABgPi16k4b3Vf+nelr1\n4Or11Xubuthd39TF7uzq/Oox1W2qF1SXzKJYAABgthY9IFV9d1Nr72dV33WEcf9cPbP6te0o\nCgAAmD87ISAdqH6++oXqC6p7NJ2TdEpT97orqvdUF2/iNk+t/mvT+U9rcedN3DYAAHCMdkJA\nWnKgKQi9Z5V196y+rPqrTdrWravHNYWwtTh9fN21SdsHAACOwU4KSEfy/dW9qvts0vN9pHrQ\nOsY/oHpbU4gDAABmZNED0vljOZq7VGdWTx7fv3ssAADADrLoAelx1Y+uY/zLxtfnJiABAMCO\ns+gB6d3Vvqapa79U/dlhxv236tymLna1uQ0bAACA48SiB6Tfrb6oelH19KbrHH1/9fEV476m\nqbHC721rdQAAwFy52awL2Abvrx5SfUdTEPqn6ltmWRAAADCfdkJAqmmK3S83XQPpz6pfr97U\nNK0OAACg2jkBacnl1eOrr2sKS//YNOXO9YcAAIAdF5CWvLYpIL20+plMuQMAANq5Aanqqqbu\ndQ+qLqreN9tyAACAWVv0LnZr8ZfVQ2ddBAAAMHs7+QgSAADAIQQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYds+6ALbVPasHzrqIOfUlsy4AAIDZE5B2lmfc\n4ha3eMo555wz6zrmzmWXXTbrEgAAmAMC0s6y6wEPeEDPfvazZ13H3Pm+7/u+WZcAAMAccA4S\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMu2ddAMDx6oorrqg6tbp0xqXMq6uq+1XXz7oQAFgrAQng\nGH3605/uxBNPvNn3fM/3nDfrWubNlVde2cte9rKq0xKQADiOCEgAG3DCCSf0NV/zNbMuY+5c\neumlSwEJAI4rzkECAAAYBCQAAIDBFDsA2H6PrW476yLm1L7qVdV1sy4E2JkEJADYXreqfve2\nt71tu3f7b3ilK664ogMHDlxR/dGsawF2Jv8yA8D2ulnVC17wgs47TwPElR75yEe2b9++E2Zd\nB7BzOQcJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYNg96wIAAJbc\neOONVc+vvn/GpcyjA9UPV38760JgkQlIAMDcuOmmm3rwgx98r9vf/vazLmXuvOENb2jPnj2/\nk4AEW0pAAgDmygUXXND973//WZcxdy666KL27Nkz6zJg4TkHCQAAYBCQAAAABlPsANhKD66u\nnnURc+aMWRcAwOEJSABsuiuuuGLp5mtmWQcArNdOCkhfUX11dc/qrOqUam91efXu6nXpCgOw\nKUar5l772td2xhkOmCx3+eWX96QnPWnWZQBwGDshIN25+u3qvsvuu77aV51c3ad6dPVD1Rur\nJ1f/sc01AgAAc2DRmzScWP1Bda/q56oHVLdsCka3GF/PrB5avaS6oHp9i/+6AAAAq1j0I0gP\nr+5RfWv1ssOM+WT1J2N5V/Xz1UOqt25DfQAAwBxZ9CMl96huqn5zjeN/uTpQffGWVQQAAMyt\nRQ9INzX9jCeucfyJ1a6mkAQAAOwwix6Q3tEUeJ62xvHPHF91swMAgB1o0c9B+ovqbdVPV/er\nfqd6b3VlUye7k6uzq/OrJ1aPqN40HgMAAOwwix6Q9lePqV5cfcNYjjT2pdV3Z4odAADsSIse\nkKo+UT2u+tymI0T36OCFYq+rrqjeU/1+ddkmbvf81n7u0+dt4nYBAIBjtBMC0pJ/Hst2uEv1\nzuqEbdoeAACwCXZKQDqz+orq9OpvqosPM+7EplbfvzeWY3VpBy9EuxZfWr1xA9sDAAA2wU4I\nSF/TdB2k05fd95vVd1Z7Vow9ofq26kNtLCBVXTuWtVhZBwAAMAOLHpBOazoidGL1wqYjO/ev\nnlDdvXpo9amZVQcAAMyVRQ9IX1Wd09TC+zeX3f+q6ter144x129/aQAAwLxZ9AvFntfUsnvl\ndLnfbTqK9KDqRdtdFAAAMJ8WPSDtq3ZVJ62y7vXVM5vOOfrh7SwKAACYT4sekP5xfH3qYdb/\nXNM5Sj9ePWtbKgIAAObWop+D9GfV26ufqr6w6UjRv60Y813j609WD9u+0gAAgHmz6EeQqh5f\n/UPTVLpzVlm/v/qO6jlN10oCAAB2qJ0QkD5c3bv6T9UlRxj3gurzqx+p/nTrywIAAObNok+x\nW7K/umgN4y6tnrfFtQAAAHNqJxxBAgAAWBMBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg2D3rAgAAOLprr7226rHVuTMuZR4dqH6j+sdZ\nF8LxT0ACADgOfPrTn+7Od77zBbe5zW0umHUt8+aSSy5pz549NyQgsQkEJACA48TjHve4Hv3o\nR8+6jLnzzGc+s3e+852zLoMF4RwkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAI5rH/rQh6p+\npDpgWXV5/rG+tjvR7lkXAAAAG3HDDTf0sIc9rAsuuGDWpcydV73qVf3d3/3d7Wddx/FEQAIA\n4Lh3zjnndO9733vWZcydt7zlLbMu4bhjih0AAMAgIAEAAAwCEgAAwLATz0HaVZ1WnVLtra6Z\nbTkAAMC82ClHkM6pnlu9vbq62lNdOW5fVV1UPau6xawKBAAAZm8nHEF6ePXq6oymo0XvbwpH\n+6qTm8LTfasHVs+oHt0UpAAAgB1m0QPSrapXVp+qnlz9QXXjKuNOqb6h+tnqNdXnZeodAADs\nOIs+xe5R1a2rb6xe1+rhqOq66mXVE6s7VI/cluoAAIC5sqs6MG4/t7pwdqVsiR9s+rlOWuP4\nE6rrqx+qfmID2z23+pvWfoRud9MUwJOqGzaw3aN58e7du//LqaeeuoWbOD5de+217dq1K6/N\nZ9q7d2/79+/vtNNOm3Upc2ffvn3dcMMNnX766bMuZe7ccMMNXXfddZ1++unt2rVr1uXMlf37\n93fNNdd085vfvBNOOGHW5cydPXv2dOqpp7Z796JPclm/PXv2dPLJJ3fSSWv9WLNzXH311Z14\n4omdfPLJsy5l7uzdu7cbb7zxV6qnzrqWOXdh9aO1+FPsrqpOrM6qPraG8bdrOqp21Qa3+69N\nR63W+vruaqpxK8NR1Y/ceOONr9yzZ88Wb+a4dEZ12p49e66YdSFz6OTqrD179lw260Lm0O7q\nTnv27PnArAuZQ7uqu1x99dX/MutC5tRdr7322ks7+EdKDjpv7969/1rdNOtC5tCd9u3b99F9\n+/btm3Uhc+ic66+//prrr7/eh5zVvXfWBRxvDozlwhnXsRXu0fSz/UZHP4p0WvXaan91ty2u\nCwAAmB8XNnLRoh9Bel/1f6qnVQ+uXt+UoK9smkp3cnV2dX71mOo21QuqS2ZRLAAAMHuLfASp\npmke31td1sGfdbXlkurbZlQjAAAwOxe2Q44g1fSD/nz1C9UXNE27O6uptfd11RXVe6qLZ1Ug\nAAAwH3ZCQFpyoCkIvWfWhQAAAPNp0a+DBPz/7d19sG1lXQfwL5cLCvdyeVHgNvJOBZRWk0EC\nodBQQDCUgpglGoaTxlTOOI5alsdMawY1hjF1ZEJCpakQAq0GSkJlihAuBSoR8ird0LqiF/By\nX09/PL89Z5/NPq8czjr7ns9nZs06e61nr/Xbd++7zvqeZ61nAwAwawISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAAZWXXBcAS8VdJzuu6CACA58CtSY7vuohRISBB82CS25L8ZteFMFJ+Jskf\nJzmp60IYKWuS3JTktUnu67gWRstnk3wmyTVdF8JIeU+SJ7ouYpQISNBsTbIxyR1dF8JIWZtk\nR3xumJv9av71JHd1WQgj5+kkj8Qxh7nZ0HUBo8Y9SAAAAEVAAgAAKAISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABlZdcFwBKxNcmWrotg5GyJzw1ztzXJeHx2mDvHHObD\nZ2Yexmsa67gO6NKqJAd2XQQjZ0WSw7ougpF0RNcFMJIOSrJ710UwcvatiemNpXKRHiRonqoJ\n5mJHkoe6LoKR9EDXBTCSHu26AEbS410XMGrcgwQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABF\nQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoK7suAJag\nXZOckOT7Se7ouBaWrhVJjk6yJskjSdZ3Ww4jxDGG+dg7yZFJNiV5MMnT3ZbDiFiV9rnZJe1z\ns7HbckbHeE1jHdcBS8HhSW5J+z9xe8e1sHS9Ji0QjfdNNyU5tMuiGAmOMczVIUmuzuTjzeYk\nH06yZ4d1sbQdkOTyJFsz8bnZkeRv4nfVVMYy8W8lIEF5Q9pfVu5MO6A4eWGY05JsT/LVtKB0\nYpJ3pf01994kz++uNJY4xxjmak2Se5JsS/KhJD+f5JVJbk47d7uys8pYynZPclfaZ+SjSc5I\n8gtJPlHL7k2yW2fVLV1jEZBgkhek/T+4NMnz0k52nbwwzB1JnkyydmD5W9M+Q29Z9IoYBY4x\nzMebM/wcbY8kj6YF7VWLXBNL3zlpn5uPDFl3ba07ZVErGg1jqVxkkAZotiQ5O8lvp126AMMc\nkuQnk3wuyWMD6y5P61k6Z7GLYiQ4xjAf/5nk95JcNrB8U5J1afeSH7DYRbHkrUtyXpKLh6zr\n3fe49+KVM3oM0gDNE2knvTCdn6j5sBvrNyb5r7420M8xhvm4uaZhDk3yVJL/WaxiGBkP1jRo\nl7Seo21pl/oyBQEJYPYOqvlUI9atT3JM2uUvmxalImA5el2SH0tySYxmx/QOSnJUkhclOT/J\nK5K8LcnDXRa11AlIALPXGzFqqhOSXihaFQEJeG78bNrN9uvSLr+D6Zyb5E/r5/VJXp/kqu7K\nGQ0CEsvFgUm+OLDsjiS/2kEtjK5tNZ/q2NlbvmURagGWnzcm+XhaODoz7bu0YDqfS/uuvrVJ\nTk/y6bQRWF8dv6umZJAGlosdaTfV90/f6bQiRtGGmu87xfr90n7hPLk45QDLxIokH0zy50mu\nS7uPZMO0z4Dm/iTXpA33fXbaSG29AWOYhmG+4ZkMwcswx6UdLz88ZN2KJI8nuXtRK2JUOcYw\nF5elHXven3ajPUxnt7R7jnYdsu7ItM/S9Yta0WgYi2G+AeZsXVrP4xlD1p2UZJ8kNyxqRcDO\n7gNJLkzy9rR7jsa7LYcRcGna92SdOmTdgTV3ed0M9CDBM/nrLlP5QNox8119y/ZLGzJ1S9pf\n52AmjjHMxolpl4h/sutCGCmnpP2eujvJwX3L909yS617Ywd1LXVjmchFAhKkDX15a9+0I+0+\nkv5lB035bJaTPTLxC+a+tO8o2Zg2gMOF3ZXFEucYw3z8bdqx5muZ/Fnpn87srDqWsj9M++xs\nTrv64ba0780aT/LZDL/8brkbS+Uio9hBsz2Th27+0pA2LmsgacN3n5LkgiQ/l2SvJJ9KcnmG\nf4EsJI4xzM9DeeYIrIO2L0IdjJ4/SAtC5yc5Iu3rJ65K8vm0gT6YgR4kAABgORuLQRoAAAAm\nE5AAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQ\nBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAU\nAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABF\nQAJglB2a5OQk+3VcBwA7CQEJYOd1SFp4eEHHdTyXzk/yz0mOq8fL4TUD8BwSkAB2XuelhYeX\ndlzHryT56CLta6m8ZgBG1MquCwDgOfNkzZ/otIrkrCRHLNK+lsprBmBECUgAO6/BsLBn2qVo\nDyZ5OMnRSfZP8uWB562qdSur7bcH1g9uZ88kxyR5Osk3kmyudnul9eQcn2RT2qVvjyf5jznu\nr2eX2s9eSe5L8p1ZvOapHFjbmsrdSTbMsI2e3dIu7du/anogybYp2u6b5IeqvvuTbJmi3Zok\nP5xk18zuPZjvewnAEOM1jXVcBwAL65fSju+H1eOj6/H7klxWP3+1r/3zk/xZWsAZ75v+qW8b\nSXJ4Lf9AkovSTvY31bINtd8k+amB7fS2Ndf9JcmPJrmnr83WJJck+f16fPoUr3kqrxtSW/90\n1gzP77koyWMDz12f5IKBdquSXJkWnHrtvj2k3eokf1Gvr3+bNw28poV6LwFoxjJxrBSQAHZS\nq5O8OBNXC/SCzReS3Jnk7CQv62v/12kn5u9O6105MslvJNmY1jO0Z7U7uLbztdrW4bX8R5J8\nKy0wrU7r/dgnrWfpK/Xzqnnsb7e0HqPtSd5W7U5Mu9fo/kwOSIOvebp/mx8cmE5OC3r/l+QH\nZnh+kryi9n1jkhPSLiN8eT0erxp7rqtlH0zrUTs1yb8m2ZGJQJkk/1Dt/iStB+moJG9PC1bf\nSLJHtVuo9xKAZiwCEsCyc1Da8X572vDY/V6aiRP4Qb9V63q9Hb3tPJl2WVe/S2rdy/uWPZ3k\n1mexvzPr8ccH2u2Rid6b0/PsrEgLXONJfnGWz3l3tT95YPk+Sf4oyU/X42Or3ScH2q1NCz7/\nWI9PqHZXD9nX+2vdr9XjhXovAWjGUrnIPUgAy8+6tPtW+p1R821Jfnlg3e41PymTT/JvT/K/\nA20frflMw2zPZX/H1+MbB9ptSnJDktfPsK/ZeGda0PlYWm/PbHyz5hel3Vf1eD3+blp46jmt\n5p8feP5jaT1qvXu2Tq35NUP2dX2S303rtbqib/lCvZcAFAEJYPl5dMiy3ihz75jmeWsHHq8f\n0qY3OMGuM9Qwl/29qOb/PaTNIzPsZzaOTfLeJF9Pu4Sv3/uSvHpg2QVpl8ddleRVSc5N63X6\nt7TeoGvTBnno6b3WYf/um/t+PqzmDwxp1wtBBw8sX6j3EoAiIAEsP08NWbZbzU9L8qUpnrd9\n4PGOZ1HDXPbXa7t1FjXN1eq0oLM9yWvTeqX6bUzr6enXG3lua1owOjnt+5dOTwta703rhept\nr1f/VCPb9fTaDRvZrvfanzewfKHeSwCKgARA0gYmSJIXpt0ztJT21xuye+8h6174LOv4SNoA\nDb+T5K4h6y+uaTo315S0QRV6vU7vTPKeTAxHPtNlh9O126/msxl6fLHfS4CdyoquCwBgSbi9\n5mcMWbc27f6Yhfyj2lz2d1/NXzyk7fFDls3Wa5K8IcnfJ7l0Hs9fkxau+t2bNoT4tkyMYreu\n5i/LM30iLaQlyR01P25Iu2Nrfucs6lrs9xJgp2MUO4DloTfy2aeHrFudNuDC05k4GU/a5VpX\n1/N6J+7Tbeette7cvmXfTRuOe777O6Ye35PJvSvnZeL7guY6it2hVddjSQ6Y43N7vpDWW3P4\nwPLe9z9dWY/3ThvA4VuZPOLcOZk8Ot+atF6k9Zk8zPjqtEEgtqQN150s3HsJQDMWw3wDLDvT\nnVQn7Z6V76edWF9b7R7KxBeSzmY7wwJSb/jsW9K+n2eu+0taT8t4Wsi4LsmX08LJxbV8WG/J\ndD5Vz7ur9js4vWoW2zguyffS7jO6Mcln0gZp2Jz2JbBH9bV9ZVrAeTLtu47+pfZ/b5J9+9qd\nXc/fkBawrkgLTDuSvKWv3UK9lwA0YzHMN8CysznJF9N6Yoa5Ia235k1JfjztxP3vkvxlWriZ\nzXYerXX9w3//etovnn0zcbncXPaXJG9OGznurLQvOf1KkvOTHJ3WS/K9KV7TVB6uOpMWNgat\nmcU2bkvykrRhxl+Sds/PY2mjx12eNsBDz7Vpr/FNaa/5m2m9OR/L5IEhrq9tXZh2SeEuaaHy\niiT/3tduod5LAIbQgwQAACxnY6lcZJAGAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABA\nEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQ\nBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAU\nAQkAAKCs7Pv5xCTv6KoQAACAjpzY+2GXJOMdFgIAALBkuMQOAACg/D8M8+LtOwHNywAAAABJ\nRU5ErkJggg==",
"text/plain": [
"Plot with title “'rented' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde7xld13f/9cwYSaEhCSCCZcA5aoGxAgKCKjUKoqpQFEoUvzVu/woVQtY\nbGtr8NoftF5AvOANRJRSNXLzhqBcbEXUaiAUErmWghhQyEwymUyS+f2xvucxe07OOXPu+8w5\nz+fjsR9nn73W2vuz91p77/Xe6/v9rn3V8QAAAOg28y4AAABgpzhj5vqfVG+bVyEAAABz8qjq\nkQv/HB+Xy+ZVDQAAwBxd1shFmtgBAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICDB1vnc6tHjcvdtfNyvq46Pyw3b+Lis7HRcL6djzRu1Fe/bJ3Tidbxpk+5zJ5nHdrKRx9yL\n2zWwBgISbJ0fqP5oXJ4w51qA1fG+Zb0e1RSsz5pzHcAGnTHvAmAXO7TM9a32hurzx/VbtvFx\nYTeY1/v2dHa6feZsRb0XV28d1z+nes8m3S8wBwISbJ157Wh9uvqrbXw82E0EpLU73T5ztqLe\nr9/k+wPmSECCrXN45vq1M9fvWt1/XD9U/cW4fk5136amr/+7un6J+5xd9u+rK6r91eeN5d9c\nfWb1gDHPLdVbTrF81Z2qe1d/V31w0WMeHMucWb2zldvs33Y8h8+ojlRXdfLrsNrn8enqvDH9\nk+NxFzuvumTm/3dU161Q22ocqO437vsfqo908rpbzoXVPZrW3fura9bwmGeNxzxQvbvVPYdz\nmtbX7UedV7f6vi0bWXYzrXZbmXVe02t1Q1PdN4z7eeTMPG+tbl5m+btVF1XHqvc1bWeLLfe+\nXa3zR40Lz+noGpdfy/rZKe/n9XzmrGe7X43V3O9K9c5azefB51Z3rJ4yc9tDqzuP+f9miftd\n73twrdv/ar4vZm3k87s2b7uDHWGho+Jlc64Ddpvv68T76+Ezt3/zzO1XN31xvLjpC2nh9sPV\nv1/iPr9lZp7/2fRFdkUnd/5eqQPyNy9a/jbVC5t2GBdu/x/VXcb8T6o+PjPt09VTl6jr/Opn\nmnYejndyh/T/NnN/q30ePzwz/WMt3V/y2TPzXNP05b5ed69e0cnr4HjTztPvN/UrWMrXVH+5\naJmF5/TFi+adXS8LRyb+bdNrunD7ker7V6jzYdUfdPL6WtheXtYU0jZz2a3ozL7WbaXq3Orl\ni2r/++q7mnYYZ+/n4BLL/4umHx1m5ztWXV7dc9G8y71vT+WcptdxtsZPVv+6etyi57mU9ayf\nnfJ+XstnTq19u1/KRt5Pp9qu1/J58LpF88xefmLR/a73/bve7X813xe19vW9VdsdzNtlndhO\nBSTYIk+u3jYu9565/SmdeN99tPrVlv+Cfc6i+5xd9l3VT3byl1mt/OU/u/yV1fOWedw/aPoV\n9KYlpt1UPXDmPs/qxJfuwk7EJ8ffhduuqs5ew/O496Llv6Rbe8vM9BcuMX21LmhaD7PP8eii\n/29uCkOzntXSr93sDvjXzcw/u14+forl/9USdT61W+9YLb5c08nrZqPLbnZAWs+2sq9pwITl\n6n7hov8X++FF0z/ayTvRH2k6srRgufftSvZVf7hCjb8+c32pgLTe9bNT3s9r+cxZabt/xhKv\nzXI28n5aqd61fh68ulu/rjeNy3+dud/1ruONbP+r+b7Y6Of3Zm13sBNc1sx7aeHKZfOrB/aU\nJ3Xyl9F1TV+ed6y+qKlz78L0w9UdZpZdvFNwbfXXTb9U/tIS8yz+8p+d9g9Nv0J+d9NoXYu/\nJK9s2ul7fPVfOvnLbTaQfNeiej9n3H6fcf8L0757jc/jjcs8XuO1mv3S/YLW7z/N3M/rmprG\nVN2uk3e6rp5Z5pJFj/9jTc1L7la9dOb2Tzf9Orv4OX+66Vfvn6i+ovreTt4Je/+iGj+raV0u\nTH/NuO3c6quadvJnd1hus0nLbnZAWs+2Mvt+OV79ctPr/JlNr9/ina5ZXzwz7Vj12HH7bZrW\n2cK0V23weX3tojp+uml7OL9bB7TFNW7W+tkp7+dTfeastN2/r9XbyPtppXrX83lw505+PT97\n0X1uZB1vZPtfzefsRtf3Zm13sBNcloAEczP75XK8qUnPrIcvmv71Kyz7hm7dtGy1OyvHm4Y0\nXvDgRdM+3rRTsGD2iM3/mLn9nzYd6XpOt+6o/PKZZf77Gp/H189M/0jTL6kL/uXMtCvbmJfN\n3NdSzRq/uXpi03pZ2HH55ZllFvePum1TG/yF6d8+bl/8nH9+0XKLf4W908y0l8zc/n+6dTOy\nhy5a9qs3adnNDkjr2VZ+a+b2D3brvrN/PTN98Q7iq2am/dqiabdtar55vCk8XbDWJzPjN2ce\n5+pu3ST0z1aocbPWz055P5/qM2ct2/1KNnK/K9W7ns+DUwWkjazjjWz/q/mc3YzP783Y7mAn\nuKyxfRqkAebvFYv+/9OmL5ULx/8Pbmqis5Qfadq5W6+Xz1z/y6ZfEBeaUvxmUxv8BW/uRL+a\nz5i5/XXjsr+pPfyjOvElPvvFeF7LW+p5/FZTU487Nv1i+vBO9GF43Mx8v7LC/a7G7K/W/6mp\nk/Ibm768P9CJX1pn/ZOZ67+zaNqxpoEAFnaelutzsvjX098dj7/gTtUnxvXHzNx+ebfu+P9n\nTSHyovH/l83UtZFlN9t6tpWHzFx/fbd+PX+tetAyjzfbNPNo06/1sz7atHN7RvWI6rdXLn9Z\ns0cwf69bDx3936ovXGbZzVw/O+X9vJK1bPfzuN/1fB6cykbW8Ua2/8WW+pzdjPW9Gdsd7CgC\nEszXzdWHlrj9Q50ISCv9sv2/NvDYx5u+8Gd9ohNfbFcvMW3B7GfHbZt+dfl/O9GcbCn7Vpi2\n1PM42tQ/67vG/1/XFJAOVl85brtlzLMRP1d9W9POycHqm8alpp2W1zU1mVo4UrS/EzsyVR9e\n4j5vPMVjHq/eu+i2v130/8JrvL+TO28vXi8L3j9T18L8G1l2K6xnW7nzzPXF2+tyt9X0+l04\n8/83jsty7rvCtFOZrXGp9/NS20ht7vrZSe/n5axlu5/X/a718+BUNrqO17v9L2Wpz9mNru/N\n2u5gR7FxwnwdaekTFc7uYC83Otux6lMbeOwbu/WvkbPDIx9ZYdqsn21qdlLTl+XvNe0Q3tT0\na+TnnaKOlZ7HL3RyQHp201GB24/b3lj931Pc/6l8vKmJy4+Ox7j9zLSLqqc37TA9s+m5ntnJ\nOwvrGSL7xm4dopa7n4OLHm+58DX7y/DBmb/rXXYrrHVb2dfJ2/9S9S81HH5NQzTPuqqpSd1y\nPrnCtJWspsblmidu5vrZKe/nlaxlu5/X/a718+BUNrKON7L9L3X/S33ObnR9b9Z2BzuKgATz\ndXZTM4bFXyJ3nLm+1Llaamecsf4unfh1teq51Qtm/v+ZTv0Fu9LzeFf19qbhce9RfX4nN1d5\n2aorXdnHmo4ufEfTztHDmwbMeEzTDtL+6kVNnas/2rRTsLADvtXNRK4fl7PG/8v10fjMmesL\n52HayLKbbT3byvGmQUwWfo1e6hfuOy9xW03Pe3Y9/VL1/62h3tU63tSk6Jzx/1pr3Cnrpzbn\n/bwbrPXzYCUbWccb2f4XW+pz1vqGZSx1bhFge33Rov/v0MnNfa7axlrW6gGd/Ovo6xdNv6SN\n+4WZ61/dNEpVTaNWXb4J979gf1Ozvrc27SQ8sbpXJ5qPnNG0s1QnToxYJ/cRWPDjTSM3/WEn\nBmnYiHfMXH/EEtPP78ToUzX1adiMZTfTereV2RNtLvVaf+kKjznbDOoBy861cbM1PniJ6UsN\nU79gp6yf2p738+liLZ8Hiy1ujraRdbyR7f9UrG9YhoAE8/dvO/m9+OxOblbxhu0tZ00WN/mY\nPZ/MV3fyiTbPXedjvLITZ3P/+k50SP6NVt+8ZDkHm/oUfKBp5Lk7Lpp+TSf3ZVg40jc7otPX\ndPLOzQOazufyT8Zluf4nazE7EMVXdesd7h/qxDZzuOm12YxlN9N6t5U3zVx/bNNRxAWf3cnn\nmlrst2auf10n//Bwp6bmme9v6oA/269srRbXOHt+l/ufosadsn5qe97PO9l6Pw8WNzG7z6L/\nN7KON7L9n8peX9+wooXhFi+bcx2wV8wOkXp9U9+HP6+eX722k4dI/f0Vll2uX8Nqh9xdavm/\nmZn+9EXTnjkzbeFXzXOamoAs3P7eMd+PNe08zA5/fKzp/CQPXeXzmPXznfy6HO/ks9lvxOyJ\nej/Q9Gvxc5pGsHrTzLSPdmJUp7M7+bX6+6aO2y/p5JOQzobbUz3nizr5+c3uZJ/RycPj3tC0\n0/WCplEPZ5dbvN42suxmDvO93m3l/k07cgvTrm0aZv0Xm/pUfHBm2uId1fOaAurC9E9UP9XU\nv+QDM7e/coPP7b6LavyHpuZJP920bbx/Ztripk5buX52wvt5I9v9SjZyvystu57Pg5qCzey0\nF3fiRN8bWccb2f5P9Rpt1ef3Wrc72Cku68T2KSDBNpv9crmuacjq2ZMIzn553G2FZXdCQKqT\nTzQ4e/mDph2Idyy6/bJVPo9ZD1t0Hx9sfaNoLeWcpqZwSz2HhcuHuvXJaO/T1EdquWVe3/In\n+V3PjuJ5Tb9uL/d41zeto6Wsd9mtPFHsareVmrbFm5dY7l3V02b+X6pj/sWdvF0vvlzeyTu6\n6/Udy9R4RdNJMmdvWzzwylatn53wfj7dAtJ6Pw9etMR8r5uZvpH373q3/9W8f7fi81tA4nR1\nWWP7NEgDzNdtmjr6XtI0MtJnN/1a+Nam4WavWzT/NU3nkajlR0NaaZ5TLf/2pqFs69adj//v\nzLKzI8f9ZCe+qO/W1DTl9U0n6by5+tqmEy7ep6l5yu82jQR3quexuK6PVncd/y+cwHAzHGrq\n1/RV4++9m3aSjjbtCL2laSd68Y7A+5o6MD9xLHdR0/N935j/zYvmP9Vrf3TRMovX/aeaTur4\nqKYd7vs37cB8sun1+fWmEbiWst5lV7O9rcV6tpWaRtr6y6bRtu41ns9bqpdWXz5z/4vPL1P1\n7qaQ9OSm88vctWln9INNTZk262SVP9c0jPK3VP+o6SjSm5sGErlTJ6/bA508atlWrZ+d8H7e\n6Ha/nI3c70rLrvfz4N807fA/uqmp3sc6uY/kRt6/693+V/P+3YrP7/Vsd7DjLP6lDtham/2r\n/F5wSSdes5u7dRt/9q7vzC/S7F22f9g8l+UIEnCaOLPpV84Fv93JZ7uv6Rfe9YxS9rGWPrEn\ny9vu1/rRTX0f7t40pPrnNf3KXdORmNlhiv94HfcPO9mjs/3DthOQgJ3qvzTtiD+4umDcdrT6\nD0vMe/fq+9bxGK9uGgCC1dvu1/qqpmZJCyfs/J9NHdyPV0/oxFDEN1T/dR33DzuZ7R/mRBM7\n2F6a2K3OH3dy5+BjnfxrKXvHY5v69CzXwf2TTcMSw25k+4ftcVma2MHcbHbH993qDU0B8pbq\n6qZO8O+ea0XMy+82DYLx5KZzs9y1aSS4jzX9ov7KpuGPYTey/cMcOIIEAADsZZc1ctFt5lwI\nAADAjiEgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADGfMuwAAYMe4T3WveRexCa6q\nPjzvIoDTk4AEACx46cGDBx914MCBedexbkePHu3GG298dfWEedcCnJ4EJABgwf5v+IZv6KlP\nfeq861i3n/3Zn+1Vr3rV/nnXAZy+9EECAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABjOmHcBc7Cvun11ZnWkum6+5QAAADvFXjmCdOfqedU7qsPVoeqacf3a6m3V91R3\nmFeBAADA/O2FI0iPqX6jOqfpaNF7m8LR0epgU3j6wuqR1bOrr2kKUgAAwB6z2wPSedUrq09V\nT6t+p7ppifnOrJ5U/Vh1efVZaXoHAAB7zm5vYndpdX715Oo1LR2Oqm6oXl49tbpb9dhtqQ4A\nANhRdntAukd1rPrTVc7/puqW6r5bVhEAALBj7faAdG112+qCVc5/l6bX5NotqwgAANixdntA\n+qPx98erA6eY9/bVi6vj1R9uZVEAAMDOtNsHaXh39dPVM6ovrV5bXdk0it2NTaPYXVg9qHpc\ndafqR6ur5lEsAAAwX7s9IFU9s2lo7++pnr7CfFdXz6leth1FAQAAO89eCEjHqxdWL6oeWF3c\n1CfpzKbR6/62emf1nk18zNtUX9LqX999o6ZXbGINAADAGu2FgLTgeFMQeuc2PNY9q1e1+tf3\njKYT2b6qadQ9AABgDvZKQHpc9U+bjhhd3onBG769+jfVvaqPNTWv+6GWP1/San2g1Y+cV/WI\n6k+ajiQBAABzshcC0n+sfmDm/39dfVfTUN4/V11ffbS6qPr+pqM/37TNNQIAADvAbh/m+87V\nv2s6AeyXVV/U1BfpedWzqp+pzq3uXd2x+vXqG6v7z6FWAABgznb7EaRHV/urJ1efHLf9afXI\n6j5NIWmhOd2hplHuntw0JLihvgEAYI/Z7QHpHtVHOhGOFvxVU3+fGxbdfm1Tc7u19B8CAAB2\nid3exO5T1flL3H5B9RlL3L6vqanddVtZFAAAsDPt9oD0100B6Vtnbvui6ivH7Y9dNP/TqrPG\ncgAAwB6z25vYvb1pSO+fr767Olo9aNz219VvNw3t/cHqAdVTmk4Y++Y51AoAAMzZbg9IVU+t\nfqHpaNGxplD09OpIdUn1bTPzvr/62uqWba4RAADYAfZCQPrbppPE3ra6uZPDz1dUX1Ddt/p4\n9bamEAUAAOxBeyEgLVgu+Pz5uAAAAHvcbh+kAQAAYNUEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGM6YdwHb6PbVo6sH\nVBdUZ1ZHqo9VV1RvqW6cV3EAAMD87YWAdKD64epfVbdbYb5PVf+5en51fBvqAgAAdpi9EJBe\nWf2z6i+r36iurK6pjlYHqztXl1RPaQpI96qePpdKAQCAudrtAelhTeHox6rntPyRocurH6xe\nUn1H9VPVu7ajQAAAYOfY7YM0fFFTKHpep242d1P13HH90VtYEwAAsEPt9oB0sLq5OrzK+f+h\nuqVpQAcAAGCP2e0B6eqmZoRftcr5/1nTa/KeLasIAADYsXZ7QPq96iPVr1bPqC5cZr67NzWv\n++XqfWM5AABgj9ntgzRcXz2henX14nH5ZNModjc2NcG7sDpvzH9V9fimEe4AAIA9ZrcHpKq/\nqO5f/YumpnYXd+JEsTdUH61+v3pt9arq2HzKBAAA5m0vBKSajiT9/Lhsh3tVb2/1r+/CfPu2\nphwAAGA19kpAqtrfNKLdgrOrS6t7NzWp+6vqj5tGsduoD1VPbvWv7wOqn+jUQ5EDAABbaC8E\npHtVL2s6evTycdtjql+r7rho3iuaRrJ7/wYf85amsLVa12/w8QAAgE2w20exu231xuphnTh6\ndNfqt6qzqh9v6pv0LdUrq89t6ou0F4IjAACwyG4PApc2HUH6500DMFQ9pelEsP+ketPMvL9U\n/Xn1X5qOMP3O9pUJAADsBLv9CNL9mo4c/ebMbf+oqY/Qm5aY/yVN/YAesOWVAQAAO85uD0g3\nNA3OcM7MbX/X8uc5urkpIN20xXUBAAA70G4PSH80/v7gzG2XNx1FuniJ+Z/d9Jq8Y2vLAgAA\ndqLd3gfpXdXPVc+sHjSu/1n1vdWrqx+qrqouqp5WPa56Q/W2eRQLAADM124PSFXPqD7SFIpe\nsWjaSxf9/8rq27ahJgAAYAfaCwHplqYjRS+qHlt9YXXPphPF3lR9onpn9brqvXOqEQAA2AH2\nQkBa8OmmI0SvnHchAADAzrTbB2kAAABYNQEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABg2EsnigUAdrmrr7666iurv59zKRt1dfWweRcBe5GABADsGtdff30XX3zxbb/p\nm77p/HnXsl7vete7etnLXna/edcBe5WABADsKueee24PechD5l3Guh05cmTeJcCepg8SAADA\nICABAAAMAhIAAMCgDxIAbI6HVKftwADDufMuAGDeBCQA2Lh91dvPOuus/fv37593Let2+PDh\neZcAMHcCEgBs3L5q/4/8yI/0oAc9aN61rNull1467xIA5k4fJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBhLQHp/6l+dhX39+Hq0nVXBAAA\nMCdrCUj3rh5+innOqi6oPmvdFQEAAMzJGauY50/H34uq82f+X2xfda/qYPX3Gy8NAABge60m\nIP1O9YXV/arbVZesMO+11curX9t4aQAAANtrNQHpB8bfy6ontHJAAgAAOG2tJiAteEn1qq0q\nBAAAYN7WEpA+Oi53rh5UndPU72gp7x4XAACA08ZaAlLV86tnd+rR757X1CQPAADgtLGWgPTQ\n6nuqd1avrT5Z3bLMvMuNdAcAALBjrTUg/Z+mEe2Obk05AAAA87OWE8WeWV2ZcAQAAOxSawlI\nf1F9dssPzAAAAHBaW0tA+uOmkPSC6uCWVAMAADBHa+mD9CXVB6tvrZ5W/VX1iWXm/a1xAQAA\nOG2sJSD946YhvqvOrb5yhXn/JgEJAAA4zawlIL2o+uXq5lXMe+36ygEAAJiftQSkT44LAADA\nrrSWgHSPcTmV/dVHqvetqyIAAIA5WUtA+ubq+1c57/Oqy9ZcDQAA7ByfU91t3kVsgiurj827\niNPFWgLSW6ofXmbaZ1YPre5V/VD1xg3WBQAA8/abBw8e/JwDBw7Mu451O3LkSDfddNMvNo1E\nzSqsJSC9aVxW8l3V11Y/vu6KAABgZzjjmc98Zpdeeum861i35z//+f3e7/3e/nnXcTpZy4li\nV+Mnm44mfcUm3y8AAMCW2+yAVPWh6kFbcL8AAABbarMD0nnV51ef3uT7BQAA2HJr6YP0VeOy\nlH3VZ1RfXt2xetsG6wIAANh2awlID28ahGEl11b/pmkoQQAAgNPKWgLSS6rXLTPteHW4en91\nbKNFAQAAzMNaAtJHxwUAAGBXWktAWnDn6mlNJ4a9YNz2sepPql+tPrU5pQEAAGyvtQakS6tf\nr85ZYtpTqu+rHl+9fYN1AQAAbLu1DPN9btMRouuqZ1afW104Lp9XPbvaX/1GdVHDxxAAACAA\nSURBVObmlgkAALD11nIE6SubznP0BdVfLJr2d9UV1Vuqd1SPqV6zGQUCAABsl7UcQbp3U1+j\nxeFo1p9XH64+eyNFAQAAzMNaAtLN1VmrvM9b1lcOAADA/KwlIF3Z1A/piSvM85XVRTlRLAAA\ncBpaSx+kN1Tvaxqo4SXVm5rOi7Svumv15dW3VldVf7i5ZW6aOzQ1/7ugaSCJI03NBt9TXT/H\nugAAgB1gLQHpWPW46rer7xqXxf539YQx705yafVvq0c2jbS32LGmAPjD1f/YxroAAIAdZK3n\nQXp39YDqq6tHVHepjjcdhXlr9fvVTZtZ4Cb43upHq6PVG5ua/10z/j/YdOLbS5qaB35V9W3V\nL82lUgAAYK7WEpD2NYWhY9Wrx2XBgaZgtNMGZ7hX9UNNzQG/vmk48pXmfVX14up3m0IfAACw\nh6x2kIaHNp3f6DOXmf7d1Zur+2xGUZvoMU1N6r6plcNR1Qeqb2jqm/TYLa4LAADYgVYTkD6v\n6QjMQ6pHLTPPeU39e97UNADCTvEZTUe8PrzK+d/bdBTswi2rCAAA2LFWE5B+sbpd9ZTq8mXm\n+fdNR1/u3tREbaf4WHXbpn5Tq/Hgptfko1tWEQAAsGOdKiB9btORoxdX/+0U876iemn1z5qC\n0k7wu01Def9qdfEp5n1Y9WvVoer1W1wXAACwA51qkIbPH39/dZX390tN/X0e0akD1Xb4ePWM\n6heaRq97TydGsbuxaRS7C6sHVfduGtnuqdUn5lEsAAAwX6cKSHcZf9+/yvt73/h7j/WVsyVe\nWl1RPbtpKO+vXWKev20KUS9oOtEtAACwB50qIC2c8PXgKu/v9uPv9esrZ8v8ZfUvxvULmwaS\nOLO6oSkcXbPJj3d+0/Diqx1G3aAQAACwA5xqB/4D4+/Dq99cxf09evz90HoL2gYfH5dZT6zu\nWv3U9pcDAADsFKcKSH/c1C/nudVrOnFEaSnnVv+u+nT1xs0obht9dXVJmxeQ/qH6V2uY/xHV\n4zfpsQEAgHU6VUD6h+rnqu+s/nv1LdUnl5jvvk0jwN27+uGmkeN2gseNy6k8qrpjUz+kmsLg\na7aqKAAAYGdaTR+Z762+oOkIx5dXr6v+qjrcdCLWhzUNfrC/ekN12VYUuk4Pbgp1q7Uw70cS\nkAAAYM9ZTUA6Un1Z9QNNQ2b/83GZdU3149Xzq5s3s8ANek3TCW7vWf1MU303LDHfC5vO+fSP\nx/9LzQMAAOxyqx1lbaEf0g9Uj6zu1zRi3TVNQ4C/rZ0VjBb8ZfV51X9oOhL2T6vvqP5o0Xw3\nNtX/qW2tDgAA2FFWG5AWXFf9wbicLo5W/6npxLU/X72p6YS2z2nqYwUAAFDVbeZdwDa6smkw\nhn9dPan63926qSAAALCH7aWAVHVL01DeF1d/Vr2yenX1mfMsCgAA2Bn2WkBa8JGm4b+fXD20\n1Q0FDgAA7HJr7YO02/z3pqHJv7PpBLcAAMAettcDUk0j1/3AvIsAAADmb682sQMAALgVAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGA4Y94FAABw\nws0331zTPtqXz7mUjTpavXXeRcBaCUgAADvI3/zN37Rv375zzj777DfMu5b1On78eIcPH676\nrOqqOZcDayIgAQDsILfccktnn312r371q+ddyrp96lOf6olPfGLZ1+Q0pA8SAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwHDGvAsAAGDX+qLqrvMuYgPOmncB\nbD8BCQCATXX48OGqzjrrrF/Yv3//nKtZv0OHDs27BOZAQAIAYFPdfPPNVb34xS/unve855yr\nWb/HPOYx8y6BOdAHCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYNiL50Ha\nV92+OrM6Ul0333IAAICdYq8cQbpz9bzqHdXh6lB1zbh+bfW26nuqO8yrQAAAYP72whGkx1S/\nUZ3TdLTovU3h6Gh1sCk8fWH1yOrZ1dc0BSkAAGCP2e0B6bzqldWnqqdVv1PdtMR8Z1ZPqn6s\nurz6rDS9AwCAPWe3N7G7tDq/enL1mpYOR1U3VC+vnlrdrXrstlQHAADsKLs9IN2jOlb96Srn\nf1N1S3XfLasIAADYsXZ7QLq2um11wSrnv0vTa3LtllUEAADsWLs9IP3R+Pvj1YFTzHv76sXV\n8eoPt7IoAABgZ9rtgzS8u/rp6hnVl1avra5sGsXuxqZR7C6sHlQ9rrpT9aPVVfMoFgAAmK/d\nHpCqntk0tPf3VE9fYb6rq+dUL9uOogAAgJ1nLwSk49ULqxdVD6wubuqTdGbT6HV/W72zes8m\nPuZtqi9p9a/vAzbxsQEAgHXaCwFpwfGmIPTObXise1avavWv78J8+7amHAAAYDX2SkD6iqY+\nRmdXb69e2nT0aLGDTc3xfmJc1usDrX7kvKpHVH/SFOIAAIA52QsB6fuqH5z5/xub+iM9oVsf\nTdrXdPTnvG2pDAAA2FF2+zDfFzUFpPdXT6oe3DSi3fnVm6vPnV9pAADATrPbjyB9cVOzuadV\n/3Pc9r+q3x+X360eVv3fuVQHAADsKLv9CNLdm/r1vGPR7e+vLq1uV726Omub6wIAAHag3R6Q\nPtHUr+guS0y7qvq6ppPE/nq7/2gaAABwCrs9IL296QjSj1T7l5j+R00nj/2a6jerO2xfaQAA\nwE6z2wPSldUrmvogvbelT8j6S9W/rL667TlHEgAAsEPt9oBU9c3Vi6oLW/ooUtXLqy+rPr1d\nRQEAADvPXuh3c6z6zqZzH92ywnxvrS6uHl59ZBvqAgAAdpi9EJAWHF3FPDdVb9vqQgAAgJ1p\nLzSxAwAAWJW9dAQJgJ3ps5uaOS/XTxQAto2ABMC8XVDd6QUveMG861i3W265pec+97nzLgOA\nTSAgAbAjPPjBD27fvn3zLmNdbr755nmXAMAm0QcJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAAhjPmXQAAG/KQ6tvnXcQG3WXeBQDAAgEJ\n4PT2mPPPP//bH/nIR867jnX7wAc+0JVXXjnvMgCgEpAATnt3uctdetaznjXvMtbt8ssvF5AA\n2DH0QQIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIDhjHkXADBH96juP+8iNui+8y4AAHYTAQnYy1544MCBxx88eHDedazbkSNH5l0CAOwq\nAhKwl+1/whOe0NOf/vR517Fuz33uc7vuuuvmXQYA7Br6IAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAxnzLsA2KO+uDo47yI26JbqbdWN8y4EAGCzCEiw/e5fveXs\ns89u3759865l3Q4fPtzx48cfV7123rUAAGwWAQm23xlVv/Irv9J5550371rW7fGPf3yHDh3y\nGQIA7Cr6IAEAAAwCEgAAwCAgAQAADAISAADAoIP13nJp9bh5F7EJrqxeOO8iAADYfQSkveXr\nLrroom+85JJL5l3Hun34wx/uiiuuuDoBCQCALbAXA9K+6vbVmdWR6rr5lrO9HvjAB/asZz1r\n3mWs2+tf//quuOKKeZcBAMAutVf6IN25el71jupwdai6Zly/tnpb9T3VHeZVIAAAMH974QjS\nY6rfqM5pOlr03qZwdLQ62BSevrB6ZPXs6muaghQAALDH7PaAdF71yupT1dOq36luWmK+M6sn\nVT9WXV59Vnus6R0AALD7m9hdWp1fPbl6TUuHo6obqpdXT63uVj12W6oDAAB2lH3V8XH9edVl\n8ytlS/y7pud1YJXz769urP5D9Z838Lj3qt7e6o/QndHUBPBAdWwDj3sqv3DGGWd8y+1ud7st\nfIitdcMNN3Ts2LGbm/qOna72V3c4++yz27dv37xrWbdDhw7V1I9vK7fZrXb2gQMHbnvw4MF5\n17FuR44c6fjx45111lnzLmXdjh071g033NA555wz71I25NChQ5111lnt379/3qWs2+HDhztw\n4EAHDqz2a3Pnuf7669u3b1+n83fd0aNHO3bsWGefffa8S1m3W265peuuu+60f08cOnSogwcP\nntbviSNHjnTTTTf9YvWt865lh7us+v7a/U3srq1uW11Q/d0q5r9L01G1je58f6jpqNVqX999\nTTVu9Y7mf7zpppteOXZsT1cHqwurD8+7kA263+HDh6+edxEbdK/q/7T8kdnTwYU33njjDTfe\neOOn513IBty+OvfQoUMfnXchG7CvuvehQ4feN+9CNug+119//fs78cPj6eiuR48e/fTRo0dP\n52bm51ZnHjp06OPzLmQDzqjufujQoQ/Mu5ANut/1119/un/X3ePo0aMfP3r06NF5F7JBV867\ngNPN8XG5bM51bIWLm57bKzr1UaTbV6+ubqnuv8V1AQAAO8dljVy0248gvbv66eoZ1ZdWr21K\n0Nc0NaVbOBrxoOpx1Z2qH62umkexAADA/O3mI0g1Nd34zqamQMdXuFxV/cs51QgAAMzPZe2R\nI0g1PdEXVi+qHtjU7O6CpqG9b6j+tnpn9Z55FQgAAOwMeyEgLTjeFITeOe9CAACAnWm3nwcJ\nAABg1QQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC/v/27jxMkro8\n4Ph3D+7lWAUUFdgFI4iYEBWiEgLEAxVCFAE1Iep6RnmUGFSIoo4CRjx4VEhAICrgFeMj3qCi\nggceHCqisAssEsjKjbDAsrsskz/et+yampqZ7pmerpmt7+d56qntql/XvF2/7t56+3eUJEmS\nkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJElpftMB\nSD06Hjiu6SAkSZJmkZ8Bz2g6iNnCBEmzzf8B/wsc0nQg4vtEwvqDpgNpuSXAPsCrmg6k5eYC\nvwBeB1zRcCxtdxSwCHhLw3G03SOA7wCHA8sbjqXt3gOsbDqI2cQESbPNOmA1cHnTgYh1wPVY\nF017LnA/1kPTii7rS7EumnYrsBDroWnb5vq3wO+aDETc2XQAs41jkCRJkiQpmSBJkiRJUjJB\nkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpzW86AKlH\na3JR86yLmcF6mBmGgbVYFzOBn4mZYS3xubAummcdTMJwLkMNxyF1YwNg+6aDEAA7AvOaDkJs\nAmzXdBACYDEwp+kgxObANk0HIQB2ajoAAbAwF41viMyLbEHSbLMWuKnpIATAjU0HIABW5aLm\n3dB0AAJgZS5q3vKmAxAAdzcdwGzjGCRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJ\nkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJB\nkiRJkqRkgiRJkiRJaX7TAUh9MB/YG3gQ+HnDsbTRBsAiYCvgRuC2RqNpty2BnYFVwA3EZ0LN\nWJTLb4A7G42kXTYFdgHmAdcC9zQbTqvNA54JPABc3nAsbbYR8f/CRsBy/Ex0bTiXoYbjkCbr\n7cR7+LqmA2mZ+cC7gLvpfI8MA5cC+zQYVxvtAHyJkfWwGjiZuGDU4MwB3kQkqcPAQc2G0xpz\ngfcD99P5DKwBzgA2bjCutloM/Jioh8sajqWtNgY+SOe7qFi+Svx4o9GG6JwnEyTNajsTv06Z\nIA3e6cR5vxB4MfAs4J3AfUTLxROaC61VtgCuBh4CPgI8F3gRcBFRP+c0Fln7bAdcAKwFfoUJ\n0iCdSJzvrwHPA/YH/iu3nd1gXG30CuBe4JfEZ8EEqRmfpfOZOJj4XHwit10LbNhcaDPWECZI\nWk9cCFwPXIUJ0iBtS1yQ/4rRXXWPIr5T3jvooFrqn6n/Dt8EuJm4QNlswDG11SlE18anA8di\ngjQoWxM/ylzK6LHVXwEeBnYbdFAt9Ujiff9xokvXg5ggNWFXoh5+QLRql3059x0w6KBmgSEy\nL3KSBs1mryRaLY4iLtY1OKuBQ4HXMfrcF33NtxxoRO11DdFyd2Zl+yrgCiKB3XbQQbXUBcAe\nwM+aDqRlXkBcjJ9FJENlZxAXiIcMOqiWWkO0VryZ+H9CzVhHDD84jmwNKflxrh8z0IhmGSdp\n0Gy1DdGd6L+BbwAnNBtO69xD/DJb51m5vnRAsbTdRbnU2ZEYk/GHQQXTct9sOoCW2iPXdRMB\nXFYpo+m1Evh600GIa4EPjbFvUamMxmCCpNnqY8Svgkc1HYhYADyNSFqfA7yKSFw/32RQ4gjg\nz4GP4mx2Wr89LtcravbdTrRybz+4cKQZa1dgCdG74CcNxzKjmSBpNno+8DLg1cCtDccieDzR\nzxniQvxEYjapalcXDc7fEl2LriC630nrs2KmxrofAoZzu+Pw1HY7EDPYPQT8I6O73qnEBEkz\n0beJrkFlTyL61G4GnEZ0KfrkYMNqnb9jdBP9aUTrXdkNxKxpWxMtSW8FDgMOzH2auvE+E1Wv\nImYYvIKogwemN7RWOZ54b5ctAX7aQCzqKMZBjnVNM58YGyO11Z7EbHZziW7w1zQbzsxngqSZ\n6A5iwG2dE4gB588ZXDit9SBwS2XbfTXlyuORzgI+B1xMzOjlDF79Md5nojCXuOfF0cQ9kV5O\nTNSg/rmX0Z8JL7ybV9yIdyGjb1S9KXE/mLsGGpE0c7wU+BQx4+9BwO8bjWYWcZpvzRbFL+bf\nIsZXlJcbiQuXI3DqykGYS4w5WjDG/puIi0kNzpnEd/mJjJ7WVYPnNN+DU9ws/OCafU/JfacM\nNCIVnOa7WS8nurtfAGzecCyzwRDeB0mz0EGMvBv0WItT7E6/lxDn+t9r9s0nZk67Y6ARtdv7\nifp4a9OB6E9MkAanSIJOr9n3HqyHJpkgNecFRPfT87DHWLeGMEHSLDSPaLGoW64kmo8XEDfI\n1PTakuhatxLYp7R9Q+KX2mHgnAbiaqO9iV8IP9V0IBrBBGmwLiHuu7NfadseREv2UrxAbIoJ\nUjO2JLqb/haviXoxROZFfmFoNllH/RgYiAvE4XH2q7/uIfo1fxn4ITHg8y7gCcRkDUuBYxqL\nrl3eRnSp24uxW0+Px3v0DMLFdMaKFTdh/DBxs0aIbi5DA46pLV5JfBd9n7gf0lriM7GSmPXU\nm4kPxj8BR5Yeb0hMLV3+bjoUuHmQQbXQEqIb/Go6s8xWfZP4v0E1TJC0vrgMfyUZtPOBxcBr\ngN2IL+MLiRkGz8XZ0wbl98SF+XjqZrtT/62mM3Xu8lzK1g42nFZZBuwOvJGYsWsO0QX4NOrv\nj6TpsY6R063/sKaM00tPvz8y8f8Lfh9NwC52kiRJktpsiMyL5jYciCRJkiTNGCZIkiRJkpRM\nkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJ\nkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZI\nkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJ\nSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJ\nbbIf8Mg+H3NXYBg4vc/HbYvHEefvMw3GUNThWQ3GMBU7MD3vbUlqJRMkSW3yA+CpfT7mbcC/\nAef1+bhStw5net7bktRK85sOQJIGbGWfj3cX8IE+H1PqxX257vd7W5JayQRJUtsUF5ELgKcB\nNwA3AguBPwPWAFcBD5WesymwV6nsrsA2wI9K+1YAy2rKPgJ4AnA3sLR0zC2BXYA7suzwGPFu\nDWyf+5cD91b2jxXbdXn864Gbao772Hy9yzL2Xm1AdO3ahkgSlzPynJUV53ZlxrOmpkzx+jcB\nngiszteweoxjbkGc13nEa79tnFh7KTsVE9VV2a4Z1zLgj8C2wG7Ee++OStnNsvx86uPvNkF6\nFHFux/Ib4M4JjlHod/3DxPU03uewbKLzJUkTGs5lqOE4JGm6DQOL8t+75+MPAScRF20P5bZb\ngANKzyvGqBwPnJn/vqqyrxiDtDgfvx94N3GBXxz3p8BWwDuAVcDa3H4JcaFXtgNwIfAwne/p\nh4GzieRqotiemP/++hjn4rO5/y/G2D+eI4lzNFxaVgBLKuU2A86h8/qHiYvVcrliDNKngCOI\nRLIoewfwwsoxFxDnYC0j//736dRtr2WnOgap27oCeDJwdancKuBdwBvy8YGlshsD/0G8h8rx\nX1iJ/4WMfG+P5YjKcarLQd28WPpb/9B7PdV9DqH78yVJdYbofG+YIElqjd3ptJwXF1srgPOJ\ni9x5wL7ERdx9wHZZtkh6vgf8EjgYeHrlOEWCVLQgLCWSkIXARsCpuf1H+fcelbG8I7d/sBLr\nlUTS9ibgSUQicxKjJzQYL7afEBedj6oce2OideOKMc7TePbNv/cd4JnATsDf5ONhYO9S2a/m\ntg8DzwCeTSSJD9NJfIoE6VLgWuAwop5eAdyfcW5WOub5Wf4DRGvDLsDbiIvw64gWqF7LTjVB\n6rauNiRaNNYBx+bffTbwu3z9w8DzSuW/SNTfcUTCuzPweuKcXEe0qEAkGOX39lgWAI+vLPsR\nSdoddN7v4+l3/UP39TTeex26P1+SVGcIEyRJLVdcFK8iukaVHZn7js7HxUX8OmDHMY5zeqXs\n3cQFaWFRbl/DyAvRjYgLwR+Xti0A3gm8sSbuq4EH6EyyM15sSyqvo/Ci3P7mmuNP5Lh87n6V\n7VsBJwB/lY/3pNMyVPZo4vV+txL/GqIbVtknct8++fiZ+fhLNXGdmPteOYmyU0mQeqmrg/Pv\nnFopt5h4/eUE6al0kouqN+W+aktMr+YSkzsMA3/f5XP6Xf+91NN47/VBnC9J67chMi9yDJKk\ntruM0WM+ijENe1a2X0GMfejG5XTGhkBnnM8y4A+l7auJMRwLS9vuIy4O5xBJw3ZE6wNEq8om\nxIV5eYxLXWxfBD5GtMZ8pLT9cOKX9s91+VrKivFMRwK/JhJBiHE0x5XKFV0Uv1F5/i1Ei1B1\nbNHPiRaksutyXSSwz871l2vi+hrRGrcv8Okey05FL3VVJA8XVI5xA9EN7PmlbcW/HwJeWilf\nHH8fRicgvTiWSHROI1p7utHv+p9MPdW91wdxviS1hAmSpLarm8DgllxXu6bd3MNxb608XjPG\n9mLfvMq2w4CT6fxqvirXG+f+6m0a6mK7H/g88DriF/bLiQv2g4ixSdXEsBufAw4BDiVaHX5O\ntAacRwzyL+w0Tlx1Ey/U1cPaXBfnZlGul9eULS6Yt59E2anqtq4ek+u61/prRiZIxfk7Zpy/\n++jJBJv2BN5LdO+rtjAeT7ymsiVE97h+1/+iXPdST3XHnO7zJalFvA+SpLZ7sGbbw7mu/oh0\nfw/HHe5xe9mewBeIBGF/4hfwzYiWiAvHeM5YsRXdxl6R6wPzOJ/uIo46a4kL4/3z2I8lLrSv\nBL5CZ7zIBrkea2azqocnLvKnY9bNglYkUxtNouxU9FJXRUvGWkZ7oPK4iP8A4pzWLd12i6ta\nQCQ664CXEQld2b3EjwTlpTiP/a7/ydRT3Xt9Os+XpJYxQZLUdgtrtm2V6z8OMpCSlxHfz0cD\nFzHyIrM6XmoilxIXr4fnMQ8jWrHOn2KMFxHjbnYixvD8D3EBemzuvyvXPYZudwAABLNJREFU\nj5zi3ykb75iPyPWdkyg7Fb3UVdHlcvOa41RbN4rWva2JJL5uqUu0unEqMUHD24n3RtWHiK53\n5eXySpmL6E/996uepvN8SWoZEyRJbfeUmm275/rqQQZSUiRt1W5Hi4G/nMTxziK6C76A6F73\nGbpv2anagri4LltKTCH9EJ1ZzIoZ8p7OaGcweqKCbhQX6XvV7CvGi/1yEmWnope6KsrsVtk+\nB3hOZdtluX4+oz2aGLszmW7yLyFaE78FfHwSz+93/fernqbrfElqKWexk9RGxcxl6xg5A9nG\nwA9z31/ntmJsSXnK5upxqrPY1ZUt7slSdTNwTenxu7Ls60vbFhKTR1yV+xZ38ffKz11FjOkY\nppMATsb3iF/rF1e2Py2PfU4+3pIYwH8rI2ccezHdn69/yX2H5uMtiBaHFYycCXABMYZnDTG1\nc69lpzKLXS91Vcy09gtGTl1+NNFtrDyL3QLgdqLlozxZyAbEjG/D1CcV49mRaBW9hbgx7WT0\nu/57qafx3ivTcb4ktcsQTvMtqeWKi+IvEYPmf0TcrHJZbv9CqeygE6THEONAVhP3UjqXuIh8\nN/CveZxLiJaAbhIk6NwY9tIJyk1kL+AeIuH6Th73uxnrbcQ9bAovIi5w7yO69F1C5x5RRctL\nLwkSxFTZq4luV+cQY6lWEGOY3lB5frdlp5Ig9VJXEF3RhonWpHOAi4nZ+4r7JpXvg3QAMTbp\nQWIShM8Av6dzs9RenZvPvTKPVV0O6eIY/a5/6L6eJnqv9/t8SWqXIZzmW5KA+JV7T+JeKXsQ\ns3qdDJxZKrOauJCt63L3QO5b1kXZi4lfxat+ysiB8iuI7llvIX49v53owvQtouVhETGl9LoJ\n/l7Z+cA/AJ+coNxEfgE8GXh5rrcmWiSOyWOXpx4/j7hp6muJG3feRCSkp9F5vePFf3Puu720\n7Wv5d19DtITNIaYz/zTwq8rzuy1b1OHSCV57nV7qCqIOLia61C0kEuZTifcfjJys4NvEeXst\ncR4XAt8kZiYs3zerWzfm34ZINqq26OIY/a5/6L6eJnqv9/t8SWoxW5AktdFUWg1mowuIX/4X\nTFRQ026Dmm1nE+/HXWr2SZKm3xCZFzlJgySt/15NdD86mZE3r9VgbUG0tlwObFravisxu+D1\ndFoiJUkNsYudJK2/PkrM0rcPMfbopJoy+1I/1XmdlcQg/fXZdJ6Pe4H/JO4btIwY97Y5cU8h\niIkeurlPliRpGpkgSWqrqYw7mS3mEq/zBCI5qrsp7knEDGTduIapzYA3G0z3+XgfkRgdDuxA\nJESnEF09r+vxWJKkaeIYJEmSJEltNoRjkCRJkiRpJBMkSZIkSUomSJIkSZKUTJAkSZIkKZkg\nSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIk\nKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAk\nSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSWl+6d97A8c0FYgkSZIkNWTv4h9zgOEGA5EkSZKk\nGcMudpIkSZKU/h+kOqtox+U9EAAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “'primary_school_age' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde5xsZ13n+88OOzdJCARNQCDcIwZBFJDrIKJAEERRHAVBXzioDHJmVBTx\nwjEoDB50hsOMnEFEBwEFkVFuSoZLVOQmDMhwM8CAAYSQcCcJyc5tnz/W07NrN7337kt1V+/u\n9/v1Wq+urvVUrV+ttbq6vrWe9aw91f4AAADomEUXAAAAsF3snbn9lurNiyoEAABgQe5d3Wvp\nl/1jOmdR1QAAACzQOY1cpIsdAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwLB30QUA7GB3\nra47bn+s+sQCa9luFrVuNrLcu1Qnjdv/XH18jnXNy9FQ40YsYr/ZyDK9B8BRav+YzllwHbAV\nTq7uO6Z/tdBK2A3e34H32CcvuJbtZlHrZiPLfc/MY399g3Vs1nvRPGvcjhax32xkmd4D4Ohx\nTuPv1REkdptbVX8zbn+huuECawF2L+9FrNdNq9tUF1cfXHAtsCMJSOw2lxziNsBW8l60Pj9U\nnThuf3qRhazSZtT7rOrh1Z9VPzqn5wRmCEjsNj6UANuB96L1+dCiC1ijedd7UvXgOT8nsIyA\nxG5z6cztrxyh7S2r06urqk82dWc4lHtWx43b75557ps1dYe4uProKuo7vjqz6fyEi6v/vYrH\nrNZsje+rPj9u36o6rfpMdcEca1xpndy4qWvIJ/rak8dvVJ1R7ak+VV1YXbOKehaxnTZqPctb\n7evcU33nzO/vberCNWu1J/KvZ5tsdB/ezHWzWnuaXsMNmvbVtX7zv5r1tpb3os2osTb+t3Od\n6puatvlHOvg1VX1j03pYzXvLN1S3qI4d7T92iHaHG/Rgq/++V/O8qx2k4Uj7zMnVnat7deCI\n1GlN57BVvbm6eoXnXc/fxuy+9clRT9Vtq5uM25/s4Ne81vf71W7vzd7v4JAM0sBuc1XTPn/u\nCvNOqP7vpg8b+5dN769+4hDP+YmZdg+sbl29Zdnj31198yEe/43VH1dfXfaYf6l+ai0v7jBm\na/yx6j7VPy1b3tua/jHOo8ZPdvA6eVzTP/DlJ48/pulb1uXr+zPV0zrw4WLWorbTWs2eoP3E\ndSxvPa9z77J2Z6/Q5kgn8q9nm6x1/1jEulm+3JVOmn9wU2icfb43Nn0YfnfzXW+Hey86nI3U\nOK+/nbs2fThduu+S6v8aba9XvXLZc7+uuv4Kz/t91T+uUMsFh6jlcNtvs/6+N7KvHml/W+0+\nc5cV2sxOs+t2vdu4pu1xwbLH/G1T4PiTmfuesexxq32/X+v23qz9DlZyTgf2nf9z45zF1QNb\n6tymb9uetuz+k6p/6PD/hPZXz13hOc+fmf/YDv5nsfyfwNcte+zNm76hW2pzRdO3bdc237/P\n2RqfXe07RI2f7Gv/oaynxtnl/bvq8pnfl/5h/vqyZV9bXbnsvrd28NHuRW2n9Vj+4Wgty1vv\n69xoQFrPNlnP/rGIdbPScmfdrwOhZfn0wea/3g71XnQ4G6lxXn87j286Ar38cdc2HeF41SGe\n98+WPeePL5t/WdPRgNn7fmbZYw63/Tbr73sj++rh6l3LPnPnpsBx7bL2V4/plPGcG9nG9+9A\nqFk+/VP1+pnff2PZY1fzfr+e7b0Z+x0cyjkd2G8O+c8Ldpv/1oG/h0uqRzV9I3Wb6vc6+A33\nR5Y9dvaf4CerD1ePqB5W/f2yxz562WPfMDPvtU1dKarO6sA3gFdXd9jg6/tAB/9DeXVTN4Ub\nV09dVuNvzaHG2XXykaZ/mH/aFM4e1vQt52Vj/jXVQzrw4fF2TV3Dlh7/qJnnXdR2Wo/Z5X3q\nCMv78WWPXe/r3EhAWu822ej+sVXrZvlyl39gfd/MvAubjrIeX31HU1fB2eedx3pbj/XWWPNb\nb59qOqrwvdVvLnvc+5oC8s81DVAw+23/1U1dq2rqWnXxzLznNa2zPdX/O3P/5zo4VB5u+23W\n3/dG9tVD1bvefea5M/e/dIVa57WNP9d0xOa6TcPQLw+Fy/etI73fz2N7z2O/g8M5pwP7zf+5\ncc7i6oGFu1kHf3P2+BXa/PXM/Hcsmzf7Jn5lU7/vJddr+ke1NP/3Zuad1cFv8su7tz1hZt5/\nXuNrWm62xi/3td19zp2ZP3ti8XprfP+yx33Xssfdclk9Jyybf6emLhf3b+q+VYvbTuu13uVt\n5HVuJCCtZ5vMY//YqnWzfLmzH1jvsOx1LP8A/b3L5m90va3HRmqc53q7pANHLOprv7n/hZl5\n91s27wHj/lOrX5yZbj7zmFsve8ztD1HH4QLSPP++N/K8h6p3vfvM4QLSRrbxHTt4nT922eN+\ncNn8wwWkld7v57G957HfweGc09hnDNIAk+9uOvFzyUrfzP336kHj9p2b/jGudHL1q5vOD1jy\nlab+6g8cv3/9zLz7zNy+qmnAhFvN3HfsIdpu1Cuavr2c9coO1Hjbpq4al86pxjd14JovSy5s\nOl/l65rW5TuqlzStq3c2fYh/z7LHLGo7zcNaljfP17kW69km89g/tsO6ucuy3/962e/nNn2Q\nPaWvtZ71th4bqXGe6+1VYzlL/q7p3JIlL565/aamDxx7xu+njp9fqH533L5h0z5zi9HupA62\nnnNINuvve17Puxn7zEa28Z2XtXvlst9f1RRQTu7IVnq/n8f2nsd+B6siIMFk9gPdF/raUb/q\n4FF2jmkavWili/Sdv8J9n5m5Pft3d9OZ28c2dU86lNscZt5arTRi0AUzt/c0dUm4tPnU+I8r\n3HdF9fQx1fTt+FIXrCub+t6/tHpB0/lStbjtNA9rWd48X+darGebzGP/2A7r5sYzty/rwCiP\nS65t6uKzUvhYz3pbj43UOM/1tnzEts/N3L6kg0dKu7rpQ+3Sh97ZbXnXpu5V91xhGbP2HGH+\nSjbr73tez7sZ+8xGtvHyfeuzyx53ddOAK6sZ4GKl9/va+Pae134HR2SHgcls94YrD9HmqmW/\nH3+Iditd02Sl4VfrwPClS8t92yHa1fRt2DFNH4I2avmwqEvLn7X0zf88ajzU0LL/oelk/idX\n3zJz/3FNw9fet6mbyP2aPgwuajvNw1qWN8/XuZLDfeBc6zaZx/6xHdbN8texkisO8/i1rrf1\n2EiN81xvX132+zWHmbd8/pLbNR1lWOrq+8nqvKb3puPa+Oidm/X3Pc/nnfc+s5FtvJp9a6Vt\nu5KV3u/nsb3nsd/BqghIMJn9JuoGrfwhbvlJnsu/YVuPL87cvrYD17TYbKetcN8Nl/2+1JVh\nHjUeLtT9yZjOqO7d9C3j/TvQD/2OTYNGPL7FbaettpHXuX/Z/SuN1nX6EZa/lm2y1fvwZu0D\ns13JTm7qqrT8A9aNjvAca1lv67GRGrfb387PdeDD8r9U39aBEHB687u8wXY3z31mI9t4Nvit\nd/9fstL7ve3NUeWYRRcA28TsyarH97X9sWsaRnTJhU1v8hv1vpnbJ3RwF4nNdI8V7pt9zV+u\nLhq3t6LGY5qud/Gn1c83fZv6izPzl7pkLGo7bbWNvM5rOvhb4jOWPe7mrRyQl1vtNtnqfXiz\n9oHZC9rubfpgOus2HdwN6VBWu97WYyM1bre/ndkjJm/r4CMkd9rE5W5H691nlh8J3sg2Xr5v\nfeuyx92mjQ0wYntzVBGQYPL3HXzi7W918Mmut+3gUX1eMKflnld9aeb3X1k2/zebgsp7W/mi\nj+v1r5q+rVxyetMFC5e8fgtqfGT1P5u+FX/qCvNnP3hfPn4uajtttY2+ztnzDB7dwQMl/EaH\n7mK3nm2y1fvwZu0Df9/BwfJJy+b/avNdb+uxkRq329/ObDeum8zcPq56yrK2K51TdbRb7z4z\n253v1sses5FtvHzf+pUO3pcOt2+txm7f3hxldLGDyTVNXRj+qumLgwc2nWj6uqbRbx7egdF7\nPlz99pyW+9Wmf2L/cfz+2KZv4N/SNFzyv276p3SDphF85uVTTa/tJU19wB/ewV0vnrUFNb6r\n6ZvD61S/1nTy73uaTkg+o+k6I0uWRmNa1Hbaaht9na+ofnnc/vambfWGplHQ7la9e9xfB39R\ntp5tstX78GbtA19sGgVr6YuCH236xvwfmro93aPpmk5L36JvdL2tx0Zq3G5/O2/pwFDQ96z+\nS9O1ax7VtP5e39TVrKYgeLNWvrjp0Wq9+8zHZ27fuXpN01Gg3206CrTebfyFpiNYPzF+f3j1\n9qZ969ubrrN1Yas7irqS3b69OQotjRF/zoLrgO3g4U3fhu8/xPTWDh61a8nhrs1R9fyZ+S9f\nNm9P9YymDzArLfPLHRhCdiNma/y1phNmly/r2kPUv54aj7ROarqg3+wV11eq5/f62qPdi9hO\n67HR5a33dZ7SNDLV8vZXNK3zP52572nLHruebbIZ+8dmrZvDLfcGHXwh1qXpmupxHXxB3Kcv\ne+x69+W12kiNtTnr7VEz8z7T1/rczPyli56e2sEX81yaLqseWj14hXlHqmOz/r438ryHe+x6\n9pmbdeACs7PT7BDw693Gp3bofesJTV3jlu473HWQVlpHm7G917PfweGc09hnHEGCg7286QPG\nI5r6ap/W9KHyY03XHHndIR73zg6cIPuJFeZ/qOmaDVUfWDZvf1N3hheO5d6h6cT6Tzd9y/ii\nDr72wzxc3XThvEeNn6c2dc14YdM/z+XWU+OR1klN1+R4e9NRhm9r6up3TNM35e8b81caZngR\n22k9Nrq89b7OLzcdKXpcU1fKvWNZz29an2d04CjDhcseu55tshn7x2atm8Mt94tN35Q/rvrO\npq6J/3u8rneNZSz93/z0sseud19eq43UWJuz3i7qwLZaaWjpt3Sg29RFM+3u2nTEY+mcyA9U\nz+tAF9HHNn14Pna8tiPVsVl/3xt53sM9dj37zCebtv+/bzqf8JLR5p9n2qx3G39hPPfPNA22\ncmzT0NovbOoO+G9m2i4fevxI62gztvd69jtYtaV0fc6C6wA212qO6ADAcntyRIad75wcQYKj\n0je3vhNY3znvQnaRjaxz1+EAjha/33T092ZNQ4/PfpH28A5cCuLapkEdYMcSkODo8mOtb0jU\nH5l3IbvIRtb5ZXOuBWCzfLUD3d+e1HSe0nuahvieHeX0RR08WATsSLrYwe6gix0Ah3JC9Zcd\nenCH/dVftPLFp2EnOCdd7GDXWc2gCQDsTldUD2u6SOyPVLdouvzDpdX51SubBpWAHU9Agt3j\nMUduAsAu97/GBLvWRq/HAAAAsGMISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAMPe\nRRcAcBTbW92nnfdl07XVm6qrF10IAGw1AQlg/b57z54955500kmLrmOuLr300vbv3//A6nWL\nrgUAtpqABLB+e48//vhe+cpXLrqOuXrQgx7Uvn37/H8AYFfaad1CAAAA1k1AAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAY9i66gC12vep21WnVCdXl1YXV+dVXF1gXAACwDeyWgPTg6knVvarrrDD/qur1\n1dOrt25hXQAAwDayGwLSk6tnVPuqN1YfqD47fj++ulF1p+qB1dnVT1V/tJBKAQCAhdrpAemW\n1dOq86pHVBcfoe3LqudUr23qegcAAOwiO32Qhgc0dal7TIcPR1X/XD266dykB21yXQAAwDa0\n0wPSqU3nF31ile0/VF1bnb5pFQEAANvWTg9IF1bHVrdfZftvb1onn960igAAgG1rpwek1zYN\n5f3i6qwjtL1b9afVJdVfbXJdAADANrTTB2m4qHp89fym0evO78Aodlc2jWJ3enXH6lZNI9s9\nsvrcIooFAAAWa6cHpKoXVO+tntg0lPcPrdDmM00h6neqD29ZZQAAwLayGwJS1burHxu3T69O\naxqt7oqmcPTZBdUFAABsI7slIC25XnXzDgSky5sGcbis+uoC6wIAALaB3RKQHlw9qbpX03WR\nlruqen319OqtW1gXAACwjeyGgPTk6hlNAzC8sQODNOxrGqThRtWdms5POrv6qeqPFlIpAACw\nUDs9IN2yelp1XvWI6uIjtH1Z9Zym4cEv3PTqAACAbWWnB6QHNHWpe0yHD0dV/1w9uvqn6kFt\n/CjSWdWJa3zMuza4TAAAYAN2ekA6ten8ok+ssv2HqmubRrrbiFtX76/2rPFxxzXVCwAALMBO\nD0gXNo1Sd/umc4+O5NurY6pPb3C5H61OafXr9zuqc1t7oAIAAOZopwek1zYN5f3ipusgffAw\nbe9WvbC6pPqrOSz7kk1qCwAAbJKdHpAuqh5fPb/pCNL5HRjF7sqmUexOr+5Y3appZLtHVp9b\nRLEAAMBi7fSAVPWC6r3VE5uG8v6hFdp8pilE/U714S2rDAAA2FZ2Q0CqendTF7uajhidVp1Q\nXdEUjj67oLoAAIBtZLcEpFkXjWkle5pGoPvCmAAAgF3kmEUXsM0cX32k+neLLgQAANh6AhIA\nAMAgIAEAAAw7/Ryknx7TarlQKwAA7GI7PSCdXt256ZpH+xdcCwAAsM3t9C52f9g0Gt0fNg3r\nfaTp+ospEwAA2A52ekD6dPUz1b+tHrbgWgAAgG1upwekqpdXf9x0FOlmC64FAADYxnb6OUhL\nHtvUfe7SI7S7qvqV6s2bXhEAALDt7JaAdHX1uVW0u6b67U2uBQAA2KZ2Qxc7AACAVRGQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGDYu+gCttB1q/tWt69Oq06oLq8u\nrN5bvam6clHFAQAAi7cbAtJx1dOrn61OPEy7L1W/XT2z2r8FdQEAANvMbghIL60eVr27enn1\ngeqz1b7q+OpG1Z2qH20KSLesHreQSgEAgIXa6QHpbk3h6D9Vv9ihjwz9ZfVb1fOqn6l+r3r/\nVhQIAABsHzt9kIZ7NIWip3bkbnNXV788bt93E2sCAAC2qZ0ekI6vrqkuXWX7L1bXNg3oAAAA\n7DI7PSB9pKkb4dmrbP+wpnVy/qZVBAAAbFs7PSCdW/1L9eLq8dXph2h3s6budf+t+uh4HAAA\nsMvs9EEavlr9QPXK6jlj+nzTKHZXNnXBO726/mj/4er7m0a4AwAAdpmdHpCq3lWdWf1YU1e7\nszpwodgrqk9X/6N6dfWy6qrFlAkAACzabghINR1J+oMxbYVbVG9vukjtaixthz2bUg0AALAq\nuyUgVX1j0xGjL8zcd0JTl7pbVhc2HUX6wtc+dM0+Wf10Uxe+1fimpuswHWkocgAAYBPthoB0\nZvXS6tvG72+qHtkURt7cFI6WfLF66Lh/I66pXrWG9vdsCkgAAMAC7YaA9JLqW5uC0eVNYeSl\n1ceq61W/1jTS3VlNI929rCk0GagBAAB2mZ0ekL6z+vbq4dV/H/fdonrvuP8+TYM4LHld9cbq\n/tVrtqxKAABgW9jp10H65upzHQhHVRc0jVr36Q4OR1XnVV+qbrcVxQEAANvLTg9IJ1eXrHD/\nZdWlh3jMV1v96HMAAMAOstMD0gXVzaobz9y3t+k8pDM7cIHYJTcZbT+1FcUBAADby04PSG9o\nOlr0qqbzkL6vqbvd11f/WL2wafjvqttWf1JdOx4HAADsMjt9kIYvVk+qnlv9+bhvf/WT1Sea\nBmX4VHVlB7rV/YccQQIAgF1ppwekquc1HS16aNPQ3a+s3jfmfXf1S9Vtqouajij94QJqBAAA\ntoHdEJCq3jmm5f5uTAAAADv+HCQAAIBVE5AAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAIa9iy5gi12vul11WnVCdXl1\nYXV+9dUF1gUAAGwDuyUgPbh6UnWv6jorzL+qen319OqtW1gXAACwjeyGgPTk6hnVvuqN1Qeq\nz47fj69uVN2pemB1dvVT1R8tpFIAAGChdnpAumX1tOq86hHVxUdo+7LqOdVrm7reAQAAu8hO\nH6ThAU1d6h7T4cNR1T9Xj246N+lBm1wXAACwDe30gHRq0/lFn1hl+w9V11anb1pFAADAtrXT\nA9KF1bHV7VfZ/tub1smnN60iAABg29rpAem1TUN5v7g66wht71b9aXVJ9VebXBcAALAN7fRB\nGi6qHl89v2n0uvM7MIrdlU2j2J1e3bG6VdPIdo+sPreIYgEAgMXa6QGp6gXVe6snNg3l/UMr\ntPlMU4j6nerDW1YZAACwreyGgFT17urHxu3Tq9OaRqu7oikcfXbOy/uG6tmtfv3ecM7LBwAA\n1mEtAenHq3tWjztMm2OqC6p/2/Y9j+eiMdUUlm5T3az6p6bzleZhX9Ow4ddZQ3sAAGDB1hKQ\nblXd/Qhtvq7p6Mw3tX0C0gnVr1Zvrl437juj+oOm6yQt2Tfue1IbD0pfqX5tDe3vWT1qg8sE\nAAA2aDUB6e3j502rG8z8vtye6pZNAx98YeOlzc1fVmdXv9QUkE6szqtu3dT17l1NIeo+1ROq\nm1Q/uJBKAQCAhVpNQPrr6q7VbZvCxZ0O0/Yr1YuahsveDu7dFI7+n+o/jvt+tCkc/Ur12zNt\nj2sa0OERTa/3nVtWJQAAsC2sJiD95vh5TvUDHT4gbTd3rvZXvzV+1jSk9+eaQtOsK5tGuntE\nU5c3AQkAAHaZtZyD9LzqZZtVyCY5trq2Kfwsubxp5Lr9K7S/qLqmqcsdAACwy6wlIH16TDdq\nOgpzctN5Ryv54JgW7R+bRpL78eoPx31/U/1cdWpfe67U94/2529VgQAAwPax1usgPbOpG9ox\nR2j31KYueYv2N9Vbq/9a3bz6/er11Z83nSf1M9XHm65b9Kim7oQfrc5dRLEAAMBirSUgfUfT\nSHDvq15dfb6p+9pKDjXS3Va7tumo0Eurp4zpU01d7L616ZpNVzYN0FDTtYsemusSAQDArrTW\ngPTJphHejqYA8bnqe6rvrn64qf5bNJ1rtG/MXwp9L6yuWEiVAADAwq0lIJ1QfaCjKxzNeuOY\nAAAAVnSkc4lmvau6XYcemAEAAOCotpaA9LdNIel3quM3pRoAAIAFWksXu/s0DWrw2KYR397T\ndP7OSv5iTAAAAEeNtQSk72oa4rvqlOqBh2n7vxOQAACAo8xaAtJ/qf5b0+hvR/KV9ZUDAACw\nOGsJSJ8fEwAAwI60loB0xpiO5DrVv1QfXVdFAAAAC7KWgPST1W+ssu1Tq3PWXH+o3LkAACAA\nSURBVA0AAMACrSUgval6+iHmfUP1HdUtq6flgqwAAMBRaC0B6bwxHc6/r36oeta6KwJ2qidU\nP7/oIubs6xZdAAAwX2sJSKvx7Opx1f2rc+f83MDR7c5nnXXWrc4+++xF1zE3b33rW3vPe96z\n6DIAgDmad0Cq+nh1xwQkYJkzzjijhzzkIYsuY24+//nPC0gAsMMcM+fnu371bdWX5/y8AAAA\nm24tR5DOHtNK9lSnVt9T3bB68wbrAgAA2HJrCUh3bxqE4XC+0nQS9gfWXREAAMCCrCUgPa96\nzSHm7a8urT5WXbXRogAAABZhLQHp02MCAADYkdYzit2Nqkc1XRj2tHHfhdVbqhdXX5pPaQAA\nAFtrrQHpwdVLqpNXmPej1a9X31/9wwbrAgAA2HJrGeb7lKYjRJdVT6juUJ0+pm+tnlhdp3p5\ndcJ8ywQAANh8azmC9MCm6xzdpXrXsnkXV++t3lS9s3pA9ap5FAgAALBV1nIE6VZN5xotD0ez\n/mf1iep2GykKAABgEdYSkK6pvm6Vz3nt+soBAABYnLUEpA80nYf0g4dp88DqprlQLAAAcBRa\nyzlIr68+2jRQw/Oq85qui7Sn+sbqe6rHVh+u3jDfMgEAADbfWgLSVdVDq1dU/35My/1T9QOj\nLQAAwFFlrddB+mB1++p7q3tWN672Nw3e8PfV/6iunmeBAAAAW2UtAWlPUxi6qnrlmJYc1xSM\nDM4AAAActVY7SMN3NF3f6BsOMf/nqr+rbj2PogAAABZhNQHpW5sGZLhzde9DtLl+da/R7rT5\nlAYAALC1VhOQ/rA6sfrR6i8P0eZXq0dXN6ueM5/SAAAAttaRAtIdmo4cPaf6syO0/ZPqBdXD\nmoISAADAUeVIAenbxs8Xr/L5/qi6TtMIdwAAAEeVIwWkG4+fH1vl8310/DxjfeUAAAAszpEC\n0tIFX49f5fNdd/z86vrKAQAAWJwjBaR/Hj/vvsrnu+/4+fF1VQMAALBARwpIf1vtq365OvYI\nbU+pfqX6cvXGDVcGAACwxY4UkL5Y/X511+rPqxseot1tqtdXt6p+r7p8XgUCAABslb2raPPk\n6i7V91ffU72mek91aXVqdbfqgU2j172+OmczCgUAANhsqwlIl1f3q36zenz1I2Oa9dnqWdUz\nq2vmWSAAAMBWWU1AqgPnIf1mda/qtk0j1n22aQjwNycYAQAAR7nVBqQll1WvGxMAAMCOcqRB\nGgAAAHYNAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYNi76AIA2JZOqm6w6CLm7CvVNYsuAoDtTUAC4CBX\nXnll1Z8tuo5N8Ozq5xZdBADbm4AEwEH279/fz/7sz3aHO9xh0aXMzR//8R/3tre97ZRF1wHA\n9icgAfA1bnKTm3TmmWcuuoy5OeUU2QiA1TFIAwAAwCAgAQAADLuxi92e6rrVCdXl1WWLLQcA\nANgudssRpBtVT63eWV1aXVJ9dtz+SvXm6peq6y2qQAAAYPF2wxGkB1Qvr05uOlr0oaZwtK86\nvik83bW6V/XE6vuaghQAALDL7PSAdP3qpdWXqkdVf11dvUK7E6ofrv5T9ZfVN6XrHQAA7Do7\nvYvdg5uuBP+vq1e1cjiquqJ6UfXI6ibVg7akOgAAYFvZ6UeQzqiuqt6+yvbnVddWt9m0igDY\nchdddFHVfauXLbaSuftY9eRFFwGwk+z0gPSV6tjqtOriVbS/cdNRta9sZlEAbK2LL764m970\npre4053udItF1zIvF198ce94xzsuS0ACmKudHpD+Zvx8VvWY6srDtL1u9Zxqf/WGTa4LgC32\nLd/yLf3CL/zCosuYm7e//e294x3vWHQZADvOTg9IH6z+v+rx1XdWr64+0DSK3ZVNo9idXt2x\nemj19dUzqg8volgAAGCxdnpAqnpC09Dev1Q97jDtPlL9YvXHW1EUAACw/eyGgLS/+s/Vf6m+\npTqr6ZykE5pGr/tM9b7q/Dku84Tqp6sTV9n+5nNcNgAAsE67ISAt2d8UhN63wrzbV/eo3jan\nZd2wekTTABGrcdL4uWdOywcAANZhNwWkw/n56k7VXeb0fJ9qClyrdc/qLU0hDgAAWJCdHpDu\nOKYjuXV1avWo8ft7xwQAAOwiOz0g/WD1G2to/6Lx86kJSAAAsOvs9ID03mpfU9e151Z/d4h2\nP1vdsmkUu5rvgA0AAMBRYqcHpL+ovrV6XvVzTdc5+vnqc8vaPaS6QfWKLa0OAADYVo5ZdAFb\n4EPVfZuG3X5I9U/VoxdZEAAAsD3thoBUUxe7P2i6BtLfVS+sXtfUrQ4AAKDaPQFpyYXVw6sf\naApL72/qcuf6QwAAwK4LSEte2RSQXlD9x3S5AwAA2r0BqeorTaPX3bt6c/XBxZYDAAAs2k4f\nxW413lrdb9FFAAAAi7ebjyABAAAcREACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBh76ILAFZ0z+omiy5izm6x6AIAAI5EQILt6bUnnnji9fbu3Tl/opdd\ndtmiSwAAOKKd8+kLdpbrPOUpT+nud7/7ouuYm0c/+tGLLgEA4IicgwQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAADD3kUXAACs3RVXXFF1bPXLCy5l3q6p/qD6\n8qILAXYnAQkAjkIf//jH27Nnz3G3ve1tf3vRtczTRz7ykfbv3/+B6rWLrgXYnQQkADhKHX/8\n8T33uc9ddBlz9aAHPah9+/btWXQdwO7lHCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBh76IL2ELfVX1vdfvqtOqE6vLqwuq91auqdyysOgAAYOF2\nQ0C6efXn1V1n7ruy2lcdX92l+r7q16pzq0dVn9/iGgEAgG1gp3exO7b66+pO1bOqe1anNAWj\n642fp1b3q/6oemD16nb+egEAAFaw048gPaA6q/rx6kWHaPPF6m/G9J7qP1f3rc7bgvoAAIBt\nZKcfKTmruqZ6ySrb/0G1v/q2TasIAADYtnZ6QLqm6TUeu8r2x1Z7mkISAACwy+z0gPSupsDz\n+FW2/8Xx02h2AACwC+30c5D+vnpL9bvV3ar/Xn2g+mzTSHbHV6dXd6weWZ1dvW48BgAA2GV2\nekC6tnpo9fzqh8d0uLYvqJ6QLnYAALAr7fSAVPWF6ger2zYdITqrAxeKvaL6TPW+6q+qT85x\nuXeojltl22+a43IBAIB12g0BaclHxrQVbt00ZPhaz/Haswm1AAAAq7RbAtKp1XdVJ1X/UJ1/\niHbHNg31/YoxrddHmy5Eu9ojSN9RnZuufQAAsFC7ISA9pOk6SCfN3PeS6meqS5a1vU71E9UF\nbSwgVV02ptVYXgcAALAAOz0gXbfpiNCx1XOajuzcvXpEdbvqftWXFlYdAACwrez0gHT/6kZN\nQ3i/ZOb+P6teWL1ytLly60sDAAC2m51+odhbNZ3Xs7y73F80HUW6d/W8rS4KAADYnnZ6QNrX\nNDLcSoMlvLr6xaZzjn59K4sCAAC2p50ekN4/fj72EPOf1XSO0m9Vv7QlFQEAANvWTj8H6e+q\nd1a/03Th1l+v/mVZm8eNn8+svmfrSgMAALabnX4Eqerh1f9q6kp3oxXmX1v9dPWrTddKAgAA\ndqndEJA+Ud25+lfVhw/T7hnVN1dPqf5288sCAAC2m53exW7JtdWbV9Huo9XTNrkWAABgm9oN\nR5AAAABWRUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgGHv\nogsAAFhyzTXXVD2mus+CS5m3V1RvX3QRwJEJSADAtnH11Vd3m9vc5uGnnHLKokuZmwsuuKDP\nf/7zpycgwVFBQAIAtpWf/Mmf7O53v/uiy5ibZz7zmZ177rmLLgNYJecgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADK6DxE5wveo6iy5izvYsugAAgN1IQOJod+/q7xdd\nBAAAO4OAxNHulOOPP75nP/vZi65jrh73uMctugQAgF1JQOKot2fPns4888xFlwEAwA5gkAYA\nAIBBQAIAABh0sQMA2EQXXHBB1Q9V91lsJXP3ser+iy4C5k1AAgDYRJdccklnnXXWyWefffbJ\ni65lXj72sY/1ile84vRF1wGbQUACANhkZ5xxRg95yEMWXcbcvP3tb+8Vr3jFosuATeEcJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABj2LroAttQzq19adBEA\nALBdCUi7yzfc4x736Cd+4icWXcfcvOY1r+kNb3jDossAAGCHEJB2mVNOOaUzzzxz0WXMzQ1v\neMNFlwAAwA7iHCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAYe+iCwAA\ngG3iptXpiy5iE5xfXbboIo4WuzEg7amuW51QXZ6dBQCAyT9WX7/oIjbBf60ev+gijha7JSDd\nqPq31fdWZ1VfNzPvkuq91Sur36++suXVAQCwHZz4lKc8pbvc5S6LrmNunv3sZ3feeeeduOg6\njia7ISA9oHp5dXLT0aIPVZ+t9lXHN4Wnu1b3qp5YfV/1zoVUCgDAQp144omdfPLJiy5jbo47\n7rhFl3DU2ekB6frVS6svVY+q/rq6eoV2J1Q/XP2n6i+rb0rXOwAA2HV2+ih2D65uUP3r6lWt\nHI6qrqheVD2yukn1oC2pDgAA2Fb2VPvH7adW5yyulE3xK02va7XHFq9TXVn9WvXbG1juLat/\naPVH6PY2dQE8rrpqA8s9kufv3bv335x44s7phrpv376uuuqqTjrppEWXMleXXHJJJ554Ynv3\n7pyDvJdddlnHHHNM9r/tz/53dLD/HT124v535ZVXtm/fvv1NvXR2kuufeOKJe/7/9u48yJay\nPMD4A1y4cO8FZEfWCy4sUpQlQtghxgQhiFGIS0JAljIxqJWCwqXAcihQYoBINIkB40bEshKi\nUYNBIgJCNIQLBJB9D4uXfRlggDt3Jn+8b9fpObdnps+5c6bPmXl+Vad6TndPz9vrfG/39309\nl46/kZERRkdHvw6c2HQsfW4I+BzM/Sp2LwBrA5sDT9SY//XEU7XV7ajhIeKpVd3tuwYRYy+T\nI4DPjo6Ofm94eLjHf2ZWLQC2Gx4evr/pQGbYjiMjIw8BK5sOZAZtPDY2xvDw8DNNBzKDPP4G\nh8ff4PD4GwwLgO0Aj7/BcFvTAQya8fwMNRxHL+xKrNvFTP8UaTHRk90Y8OYexyVJkiSpfwyR\nedFcf4J0O/D3RL/vBwE/JjLoJ4mqdAuJl4HtDhxB9Ht/NnB3E8FKkiRJat5cfoIEUX3tE8DD\ntNa16nM3cGxDMUqSJElqzhDz5AkSxIp+GfgKsBtR7W5zomvvV4DlwK3AnU0FKEmSJKk/zIcE\nqTBOJEK3Nh2IJEmSpP4019+DJEmSJEm1mSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJ\nkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJ\nkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpQWNB2AtJqOBb7VdBCSJGnO+DDw7aaDUHNMkDTongZG\ngAOaDkTT+lwOz2g0CtVxDfAZ4NqmA9GU9gfOxuvfIPD6NziuIcoWmsdMkDToxoEx4IamA9G0\nin847qv+Nwbci/uq322J179B4fVvcIwRZQvNY7ZBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJ\nkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqS0oOkApNX0Wn7U/9xPg8Pz\najC4nwaH+2lweF4JgPH8DDUch9SNNYGlTQehWjbKj/rfUqxhMAi8/g0Or3+DYyle/+arITIv\n8gmSBt0Y8GDTQaiWZ5sOQLU92HQAqsXr3+Dw+jc4Hmw6ADXPDFmSJEmSkgmSJEmSJCUTJEmS\nJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUT\nJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSWtB0ANIM2hB4AzACPAC80mw4msJawL7Ay8AN\nDceiiTYFdgReBe4AXms2HE3hdcBbgYeB+xqORZNbSPxvWgjcDzzfbDiawibADsAw8CBxHdQ8\nNZ6foYbjkLq1HXAJrWN5nLio/TWwqMG4VG0H4FpiPy1rOBa1bAr8K7CS1nn0LPDxJoPSpN5B\nJEbjwLkNx6Jq6wJ/Rdy0K/9/+iGwtLmwVOFtwJVM3E8vA+cQ+1HzwxCt/W+CpIG2AXGXexQ4\nD/g94L3AVcRxfVFjkanKscALwE3ACkyQ+sUawDVEcnQucCDw7hw3DhzXXGhqs5DYR2PA9Zgg\n9bOLif3zI+AI4F3ABTnuHmCd5kJTyRuJJ0bPA58hbj4cBVxN7KtvNheaZtkQJkiaI/6M6uN3\nPeARohC+eJZjUrVNiH31ZaKQ9womSP3i3cS+Oa9t/GLiPHqUqBap5h0JvAScAOyNCVK/2pnY\nN1cSNyDKvp/TDpntoFTpK8T+OKpt/HrAY0SNlIWzHZQaMUTmRXbSoEF3J3Aa8LW28SPAjUQ7\nu81nOyhVeo24i/oJrNfdb96bwwvbxr8EfBfYCthnViPSZB4A9gC+3nQgmtJK4JPA6eTd6JJr\nc7jVrEakyXwb+GPgx23jR4DbiSd96812UGqWnTRo0F2VnyrbEwW838xWMJrSMKv+A1J/eCvw\nInBXxbRlpXmurZiu2XVj0wGolnuI9itVlpbmUfOWUV2bYRPiuncv8NysRqTGmSBprjoa2B04\nH3uzk6azDZPfSHgsh9vOUizSXLYz0abvRuC/Go5Fq9oN2Bp4E/AxonrkCY1GpEaYIGkuegdR\nVehGovqdpKktApZPMm0kh7blk1bPdkQPdqNEla72qndq3lnAe/LnZcAxwP80F46aYhskDYKf\nEm2Nyp/JGowfD1wG3EL0aPfybAQoALZg1f10caMRqa5RJr9hVoz3fUhS9/YEriPeXfU7xPVR\n/eds4APAqUQ545d4o3Ve8gmSBsFTTN+DzJrE+yZOId6JdAytO9+aHWOs+hTimSYCUceeBjaa\nZNrGOXRfSt35INFV9H3A4cQLSNWfrssPwJeIG65nApcT3eprHrGbb80FXyOO48+zapeq6k92\n890/fkIkuBtWTDuZOLeOnNWIVIfdfPe/Y4hz6zJg/YZjUbVFTN6j4AnEOXby7IWjBg1hN9+a\nQ74AnEg8Ej8N63VLnfoZcWPh0Ipp7yaq4P18ViOSBt9hwDeIdkeHEz15qv/cQHSfX5XAbpFD\nqxjPQz5B0iDbj7g755uuB49PkPrHpsALRBWgbUrjjyf+P/jOnf7kE6T+tSHwBHAbvkOn351B\nnEcXM7Ezmt2BJ4kbRG9qIC7NviEyL7INkgbdqcSd772A/55knjOBS2ctIk3mT4CTSt/XIbq8\nLe+3o4BHZjMoAdHO73jipbD3EHXtNwbeAtxMtO1Tf/gSrZf2LsnhHwH7589PEC9kVrOOAzYj\nXop95STzXEr8f1KzzgL2Jc6jw4gONJYAuxLli1PxnVXzjgmSBt2DwNXTzLNyFuLQ9FYy8Z1U\nv6iYx+qRzbkEuAP4CLATcef0AqJ9n+8S6x8raO2PV1j1+vfq7IajSTzH9P+bVsxGIJrWCqLX\n28OJasbbE53SXE48VfLlzPOUVewkSZIkzWdD2EmDJEmSJE1kgiRJkiRJyQRJkiRJkpIJkiRJ\nkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJ\nkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJ\nkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJ\nkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkpqyEDgY2KXhOGZar9ZrUS53\npxrzbp/zbjzDMUjSvDCen6GG45CkdtsRhbxNGo5DvbEN8f/nO00HMsN6tV4753L/sca8p+e8\n7+rwb3jOSZqvhsi8yCdIkvrZ+4ErgT2aDkSaJzznJM17JkiS+tmLORxuNApp/vCckzTvLWg6\nAEmawlSFtQ2ANwNrAQ8AT7RNXwTsldMeyu+7AK8A9wKvTvI3FxNVmRZMstxOLAHeXophI+BN\nwGvAr4HRLmNoX7edgc2Aa0rzrE1Ul9oMeAa4f4q/16ttWdd4DtfL5b46zXKni3d94gnII7mc\nsh2I9jk3Ac+XxneyveoeIzO9XpNZI5e/PnBPxj+Z6dazboK0BVO3sboVeHqaZdSNqaw4h4aB\n+4hzqUqnx3TVOQQzez2QNEBsgySpX/0BcX1aWhq3BPg2sILW9Wsc+HnbfDvk+C8AJxEFqpEc\n93Quu2xd4O+Iwmt5uT9rW24ndstlnAN8kSjMjea45cAhXcZQtEU5E/ha/vzr0vSTcvnlZTwG\nHNf293q1Lesq2up8EzgaeLYUw1MVy60b79tz/PkVf/OsnLZ/aVzd7VV3//RqvaraIL0FuKP0\nOytyvT/Lqm2Q6qxn1TlX5ei25bR/Dp/m9zuJCSJRuYjW+TNOJCvdHtPTnUO9uB5I6m9DtM51\nEyRJfWsJkWSUn3b/B3HN+kviDvFOwKlEwele4m49wLY5323AFUQhH2BX4HGikL+ktNx/JgpV\npxN3xt8A/CnwQi53URfxF4WwxzLu7Yg72gcRhbsXgdd3EUORsFxBPAk5Atg7px2U0y4H9gV2\nBA7M7+PAfqW/16ttWVeRSFxPPPn4Q2J/Hwu8lOu9uIt4O0mQOtledfdPr9arPUFaO5e/Ejgl\n49mPaEN0HxMTpLrrWXXOVVkCvLHtczCROD/FxON6Mp1s+x/muHOBfYB3Ar8CxpiYcNbdllOd\nQ9Cb64Gk/jaECZKkAbQvcb26pGLa53Pah/N7UUh9kag6U3Z+Tjswv+9Bq/DV7uM5rf1OdR1F\ngXYE2LRt2kk57ZQuYijWbSVRXays6L3s4LbxryOSg9/K773alp0olvsaUW2q7IKcdkAX8XaS\nINXdXt3sn5ler/YE6ffz+z+0/d56tJ7KFAlS3fXs1ppEYjYOvKfm79SNaU9aT+TKtiQSn//M\n790c01XnUK+uB5L62xCZF9lJg6RB8s4cfr9i2o9yeFDb+GXAk23jHslh0ZXxoTkcBT7Y9lkn\npx1A95YRd9XLirYOe65GDDcS7SfKHs7hSUR7jcJzRIH0uvzeq23ZjeuIJyFlRduhIrHsJt46\n6m6vbvZPr9drnxxe3jZ+BPhp27i669mtTxOJzleJpz111I2pqIr6722/v5x4Eve7+b2bbVl1\nDvX6eiCpz9lJg6RBsjSH91dMKwo527aNf6xi3qIB+Fo53DGHn5rib285XXBTeLhi3PIcbrEa\nMTxSMc93gfcBRxF38q8j7rD/gGg4X1iaw5nelt2o2j4r2pa7NIedxFtH3e3Vzf7p9XptncNH\nK6b9X9v3uuvZjT2BM4DbaT0RLZxJVDEsO46oHtfptq863ssdXizNYSfbsmqZvb4eSOpzPkGS\nNEjWzmFVz1VFwXNh2/ixDpZ7CFE9qepTt9pQlVcqxhVxFTequonhpYrlrsj5fpuoirU1UXi9\nBfg3Wm0werUtu9HJPuok3jo63V6d7J9er9fabfOVraxYVp317NQSItFZCXyIeHpV9gJxM6D8\nKda1020/Wc92hW62ZdU51OvrgaQ+Z4IkaZAU3RdXVefaOId1uxYuK6q/bUokM1WfqkJoXRtV\njHtdDp/rUQxXAX9O3A3fGfgXolD36Zzeq23ZKzMV72SdSVzF1NurV8fI6qxX0RX3hhXT2tu8\nFa5i6vXs1N8SHTR8kkhs2p1DVL0rf27oMKaptlHZTB0jvb4eSOpzJkiSSXf2cwAABAJJREFU\nBklRsNqrYlrRluemLpa7LIeHVkzbkmjbsDpVkt9WMW63HN4xwzFsQBRYy+4iumUepdUzWK+2\nZa90Em9R7Wpxxbzt7+6pu716dYyszn4o2jftVjFtn7bvddezEx8geub7CfDlLn6/bkw35nBv\nVnUhkaTBzB3Tvb4eSBoA9mInaVBsQNwlfoyJ3QgvAW4mqta8IccVvVR9p2I5f5HTjir9/pPE\nneE9S/OtTfSINU51oWs6Ra9jK4k75IV1gV8wsTe1TmKYat2uIO6A79A2vujZ7aL83qtt2YlO\nlttJvEuIAvatxEtUC/vQeo9Osd3rbq+Z2j+rs17tvdjtkt/vYOJTk/fTeg9Q0Ytd3fWsa3vi\n6edyYPMOf7dQN6YNiXdJPc7EHueOZGIvfjN1TPfqeiCpvw1hN9+SBtQRxBOCp4kC1LeIAtEY\n8NHSfJ0W6g8BXiYKRT/I33uQ1ssku1EUaC8hGuxfQ7zE8u4c/722+evGMNW67QU8T7QFuRy4\nmGj4/irx7qWdSvP2alvW1ely68ZLTh8HLiMa23+VaKh/HhO7Je9ke83E/lmd9ap6UeyFOe5x\nove4a4ik45wcXzwF6WQ96/inXP4tuZ7tn/fVWEYnMb2XSHBeJN519Mv8+3cxsQrrTBzT0Jvr\ngaT+NkTmRWvRSoyuJuoBS1I/u4t4ieMaRK9VS4inMR9lYjfAC4kC2HW0utQubEP0Hncprd6t\n7iMKQa8CWxEvgrweOJlIarqxKfAxojD3IaJ6zo5EYfZvgNPIO1UdxjDVuj1KNJp/gbijvnH+\nvYuI3sPKPdH1alvW1ely68YL0a3zcmKb70Rsl48Qhd5tcv7f0Nn2mon9szrrtYiorvkr4pii\ntJx183MzcALRPmlbovrbwx2uZx3Fu4JGcnntnzuA/51mGZ3EdCet9xttRjzh+QZwIq22WDAz\nxzT05nogqb8dTOm9bD5BkqTeqLrjL0mS+s8QvihWkiRJkiayFxZJqu8gqrvsrjJM9Qs857JO\nt88VPYxFkqSumCBJUn1fJHrYquNO4DCifeddPYuov3S6faq6p5YkqVEmSJJUX9V7WKZz8EwH\n0ce62T6SJPUV2yBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZI\nkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJ\nSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJ\nkiRJSiZIkiRJkpQWlH7eD/hUU4FIkiRJUkP2K35YAxhvMBBJkiRJ6htWsZMkSZKk9P81npLh\np+/4xwAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “'one_person_households' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde5htWV3f609DX8Xmokg3KCCKjYJiKyLSXiCEm3IQCBBRQaIhkYMeMREw\nXnJsRNCnkwdEIFG8IBe1JY3Y4kHwghEwSAhIgCY0LYhyVa520/R97/PHGPXstaur9q7au6pW\n7ar3fZ751Ko5x1r1WzVn7T2/a4w55knVwQAAAOgmyy4AAABgtzh54fFfVm9cViEAAABL8i3V\nN698c3Au5y+rGgAAgCU6v5mLDLEDAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUAC\nAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElA\nAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJ\nQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACA\nSUACtsp95/Ktyy1jV3hXdXAu/2GX/NxjrenMtmffvn2hnp/ewtfdLZZxDBzPz1zWMQuw65y8\n7AKAPePP59dPVV+4zEI4Jl9S3bn6x+rdC+u/LPuWY7PeMQWwqwlIwFa7YtkF7GOPrM6Yjz+y\nyec+p3pU9bvVYxbWX7HOY47sePbFMmxHvesdUwC7moAEbDUn0ctz6TE+7/Orh6yzTUA6Nse6\nL5Zlq+s90jEFsKsJSMBWu3x+vWV17sL6t7b2Cfa5s23Vx6tLVm0/rTqncS3MP1Z/s4Eavqj6\n0uqU6mPV+9dpd1516nz8tln7bRvDgv6++rsN/KzN+NLq7Mb7WKumk6r7LHz/jsawtkXf0Dj5\nrPrbDq/xntXN5uP3N97DkZxZ3aP65g71Htymcb1R1Rurzy60v7zNO6mx/2416zmW3ok7VWdV\n11UfbPz+1rPWPr1pdZfGsXRZh7+nqttVd2gcKx84Si0bPbaOtC/WqrHq9o1haf9Yve8odWzG\nRl53o8fO2Y3f1UnVh6uPVjcsbN/IMXX9Gq+7mX28YvHY+uCsp+orqi+ejz/Y4e95s3/zx/Nv\nyVYed8AOW7ko8/wl1wGc2K5r/Fvymvn9LaorO/RvzJPWeM7JjQCw0uZHF7bdrnpx9bmF7Qer\nD1X/Zp0aHlr99ar2BxsnH49fo/0HF9o8qHpi4+TteCcOWLzg/SnVNzbCzmJNb6nuuup5J69q\n8+A1XvtIkxtsdpKGb+jGv6vFZSW4rt63G/WQRohbfM0/a5ywv+0I76Pq9Or/bQSq1XW9q7X3\nZ42T3MV9es/GyenKuiuq/2e2vXl18arX/uOF971os8fWkfbF6hq/vPrLVa/7tuqr1nmP61n8\nmT+2ydc92iQN39/oZVr9/j9W/VyHwtVGj6k69n1cY398YNVz/nsjcPzWwrqfX/W8jf7Nb3Z/\nb9dxB+yc8zv0NykgAVviNY1Ph39uYd2LO/RvzOvWeM79FrZf1/ikueqOjU+DV7Zd3fhk90Dr\n/5v1fR1+wnFl4xPbxXU/uOo571nY9iPVVQvfb1VAeu4adawsH6m+YOF5Ox2Q7tE4OVz8vR6Y\n665vhNxae98ezf06FKxWL+8+yvv4/OrN6zx3cfnlNX7u4j59UvXJNZ53oNHD8QfrvO7vrnrN\nYzm2jrQvFmt8QoeftK8+Gf+8Nd7jelb/zM287pHq/elu/Pu7dtW6/9E4fjd6TB3PPn5Ah0LN\n6uX/VH+y8P3PrHruRv7mj/ffkq067oCddX6H/h7XPdkAOF7f2qF/Y65vDFdZ9IsL2/9wYf2f\nLqz/o8awnRo9LiufNl9ffc1cf0pjSM7Kc17YOFk7adXP+ESHDy1ePCm8rHGy9NuNUPOIY33T\nq1732sanxXdpDCH6yQ4/KXrWwvN2OiCt+OWFbRdu7C0e1TsXXvOj1bc1hhp9Y2OY5OL7XP0+\nXrSw7YrqsY1P3e9cPX/Vc79r1XMX3+eHG70K31H97KrnvbMRvH+0MUHB4qf9i8fqVhxbR9oX\nH6zeW31345h7w6o6H9fGrX7vR3rd7zvCcxfrPb1DPcE3VP/Xwvv8yg7vGX3swvOOdkxt1T7+\nRKPH5maNf29Wh8Ij/Y2s9Te/Fft7K447YOedn4AE7JDFT1b/7apt71/Y9ui57q4dfkJxzqrn\n/PDCtl+a676gMZRtZbnjQvsvX/V6d1vY9q5V2/7ZMby/tSy+7qc7dC3GilctbL9sYf1eCUhf\n0+HvY/VJ/nes2r74Pm7f4b0Daw3NfPXC9v+5atvi+7yiQz0WdeNP7v/9wrb7rdr2wLl+K46t\nI+2LaxvX36y4+ax7Zfvz13j/6zme112v3jstrP+nRmBadG5jyNkDGsNiVxzpmDqefXz3Dv+d\nP2HV8/7Fqu1H+htZ629+K/b3Vhx3wM47v/m3aJIGYLv9WvWf5uNHNj6RrXESvXIC95nGSUSN\nnoYV1zXuw/NlC+tOWXi80vZT1X+ej79wtv/Sxqe+n9/h1hvn//oO3e9nK/1+41PqRa9qfBJf\n46Tr87vxBdwnsm9Y9f2rV33/msbJ9i26sX/euLh9xVqB7RXVt8/H92ic/K81gcQfzJ+z4i8a\n15aseNnC49c3/mM8aX6/MvRxK46tI3lV4zqtFZc3rht60Pz+1sfwmlv5uh9tXAf4eY3f8/+s\nfme+1lsagf3tm6ztePbxPVa1u3jV93/QCChndnRr/c1vxf7eiuMOWCIBCdhuL24MIzul8Wnp\nFzROQr5zoc3vVtfMx1+ysP6UxhC79dx54fE9G0NgzjtKPSets/6vj/K8Y/WBNdYtzhB2UuPa\nq70UkG678PjKxvUYiw40hiGtFZAWw/CnuvEsfnX4TGI3aRwza92IdPWMbZ9YeHxFh8+Udn3j\npHblpHfx/8fjPbaO5D1rrPvYwuNj/X96q1736uqZc6nxwcbK0NZrG9ceXVj9Zof+ho/mePbx\n6mPr46ued31jIpeNTHCx3t/88e7vrTrugCXxhwhst483PlF9ZOPfnIdXv9EYZrXiJQuPT114\nfG31piO89sHGydM5jU+CV2bS+mBjUojPztdbb9a7RRuZVvhYrDW1+XWrvt/Mv8XHchK+01bv\nw7Vcvc76xSFc6z139e/vtHXafW7V9zccYdvq7Su+suM/to5kreNjrWmwl/m6z2pMkvIfqq9e\nWH9qY/ru+zaGyd2vG4fhtRzPPt7IsbXWvl3LWn/zW7G/t+K4A5ZIQAJ2wq81AlLVw6qLGhfr\n17hg/38stP30wuMDHbp/ypH8aIdOaD5UfV2HTtTOamMnNQc20OZYnLXGui9c9f3KcJyDq9av\nNYPZWq+32ywOdzuzMZxq9Ung2es8d/HT9ls1AvDqfbP6QvbVvQhbaSuOrb3gt+Zyh+pbGr0s\nD+jQdTh3r57R2tcTrXY8+3gx+G322Fptrb95+xvoJssuANgX/rhDw8r+eePagpUPaF6yqu07\nFx6f3uHDcdaz+Kn2mzr8U+xzW661huksXkfxmeof5uMbOvyT8zuset4dOzQV+nbZih6qxZv5\nntw4eV505w4fKrVo8YL807rxNSc1pkpe8dHGiex22c3H1k67SePv+Lerf9f43TxlYft6Q9JW\nH1PHs49XH1tfu+p5d+7wySI2y/4GBCRgRxxoDKur8ensT83HB6uXrmr7ukZoWPETq7b/bCNQ\nvKNDM1QtDrX54oXHp1b/cdXz17ruZTt9y1xWnNW46eaKP17VfvHai8d1+KQUP9P2DLFbHHr1\n5Vvwem/o8KD3tFXbf7L138cbOnxygWd0+AX9X9HhM5f95rGVuGG7+djaCd9T/a9Gr+DT19i+\n+IHG4mQkRzqmjmcfrz62fqLDj6UjHVsbsd/3N5CABOyc3+jQkJaVi7xf340nMfhc44RpxROq\nP2sEowsboeg2jWsFVma++8uF9udVz2vcBPKNjU+Y/2Rh+9OqJx7729iQxZO9j1SvrX69ceH3\nWzs0fOhg9ZxVz/39hcdf33hvz2oEqUdWb1vYvlX/hv/dwuN7NO5J9csdPgnGZny6w2fqekxj\nJq8LGtd3fE/j97Ji8X3c0BimtXKsPKhxMf1/bhxDb+3Qiel7q184xho3arcdWzvtrY2ekzMb\nH2xc1PgbfGrjd/HbC20XZ6M70jF1PPv4U6t+5qOqv2pM+f/Gxv2UPrrpd3nIft/fwOQ+SMBO\n+aMOv+fH96/T7qTq5xsnUgfXWP6pQ9MV15gZ77I12l3ZmC3vIWtsqyPfq+Z4LN4I9UcavWKr\nf/6BbtyzUuPE8N1rtL+6EZB+e2Hdz6167rHeB+n2HboZ6OKyerruzbhVh98sdmW5oXFSuXgz\n4Geu8fxHNXoS19r/BxvXrX3JGs870vt87MK2j3Vjn1jYvnLT0+04to523P3awvaL1ti+nuN5\n3SM995GN3qH19sWBxn2VFoPuRo6pY93HX9D6x9YPN4bGrazbzL3CVl57q/f3sRx3wM47P/dB\nApbglR26+ennWv/k72Bj6MxLqu9u9Dh9XqPX4a2NYXmL9xn5VOOi8SdV957rLmncc2llyNoT\nGic4p8zXqHEfl5ULxhen3j5e/7tD10z87+q/Nk58HtQIDn/bmP58rRn6/qm6VyNEfEvjOotL\nGye3725cl7RyjcXqT8qP9H6OtO2DjUkznty4zumK+bP+tmP36fmaT6zu0/i9/01jn7610Qu4\n8n/QR9Z4/kWNEPXdjetRbtMIie9v3Fdp9dDEFUd6n//Q6MmqtaeW/ssO9Vz8w0K7rT62jnbc\nXbpQ5yVrbF/P8bzukZ77ikYvzb9sTFpwViMMfboRVF7RjadZ38gxdaz7+FPztX+wMYnLKY2p\ntV/SGA74rxfarp56/Gi/o+3Y38dy3AFLpgcJ2Cm/36F/c35zuaUAe9BJ6ZEBjs356UECdthD\nGlN819rX3uw2X9WxXYT9ltzXBLbTrzR6lW/fmHp8cUjbozo0jf6BxqQOAJsiIAHb6dzGdTJn\nNSYcWPGSxtCz3ex7O7Zpfb+rcb0CsD0+16Hhb09rXKf09sYEEIvXNb60wyeLANgwQ+yA7XLf\nbnxB8+IMVQCbdXrjesb1Jnc4WP1ea99oGWA952eIHbADPto4kbl54+LjNzQmG7j+SE8COIKr\nq0c0pt3+rupLG1Pnf7Z6T3VxY1IJgGMiIAHb6dLqXyy7CGBP+t/t/qG6wAnIjWIBAAAmAQkA\nAGASkAAAACYBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQAAAAJgEJ\nAABgEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYB\nCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQAAAAJgEJAABgEpAAAAAm\nAQkAAGASkAAAACYBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQAAAA\nJgEJAABgEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAA\nACYBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGA6edkFsKNuW91t2UWc4C6pPrrsIgAA2B4C\n0v7yjJNPPvlfn3HGGcuu44R01VVXdf311/969YRl1wIAwPYQkPaXm97//vfvaU972rLrOCFd\ncMEFveY1r7npsusAAGD77MeAdFJ1s+r06qrqyuWWAwAA7Bb7ZZKGs6unV2+pPltdUX18Pr68\nemP11OrmyyoQAABYvv3Qg/TA6qLqzEZv0aWNcHRNdVojPN2z+ubqx6qHNoIUAACwz+z1gHTL\n6sLqM9Vjq1dX16/R7vTq0dWzq1dWd8nQOwAA2Hf2+hC7h1S3qv5l9QetHY6qrq5eWn1P9cXV\nt+9IdQAAwK6y1wPSHarrqr/aYPvXVQeqO29bRQAAwK611wPS5dUp1W022P62jd/J5dtWEQAA\nsGvt9YD05/Prc6pTj9L2ZtULqoPVn25nUQAAwO601ydpeHf1X6onVfepXlVd0pjF7trGLHZn\nVXevvrO6dfXz1XuXUSwAALBcez0gVf1wY2rvp1ZPPEK7y6qnVC/eiaIAAIDdZz8EpIPVL1XP\nq766umvjmqTTG7PXfax6Z/WeZRUIAADsDvshIK042AhC71x2IQAAwO601ydpWPGARg/SixrD\n7E5fp91p1QeqH92ZsgAAgN1kP/Qg/XT1jIXv/1XjeqSHd+PepJOqO1a33JHKAACAXWWv9yB9\nSSMgvb96dPX1jRntblX9RfU1yysNAADYbfZ6D9K3NobNPbZ601z319Vr5/JH1b2qDy+lOgAA\nYFfZ6wHp9o3JGd6yav37q4c0QtPF1bdVn9vCn3u76qKOfnPaFac07sd0u+rAFtYBAABswl4P\nSJ9oXFd02+qDq7a9t3pUoyfpd6pHbuHP/VT18kbv1Ubcsfq/G/vj2i2sAwAA2IS9HpDe3OhB\nelZjcoYbVm3/88asdr9WvaL6N1v0c6+ufnET7c9rBCQAAGCJ9vokDZdUv9W4BunS6m5rtPmN\n6vHVd+QeSQAAsK/t9YBU9QONeyCdVd10nTYvre5X/dNOFQUAAOw+e32IXdV11Y807n10pAkQ\n3lDdtfqm6kM7UBcAALDL7IeAtOKaDbS5vnrjdhcCAADsTvthiN1mnNboPfr3yy4EAADYeQLS\n4U6qvri6+bILAQAAdp6ABAAAMO31a5AeOJeNWm+WOwAAYB/Y6wHpvOrHll0EAABwYtjrAemP\nqp+ufr160Qban1r9xbZWBAAA7Fp7PSC9uXpm4x5Iz6vedZT2p297RQAAwK61HyZpeEb1jurC\n6owl1wIAAOxie70HqcbNXx9VfVN16+qDR2h7Q/Xa6m92oC4AAGCX2Q8BqcbNXy/aQLvrqgdv\ncy0AAMAutR+G2AEAAGyIgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJ\nSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAw\nCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAA\nMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQA\nADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AE\nAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOA\nBAAAMAlIAAAAk4AEAAAwnbzsAnbQzar7VnerblOdXl1VfbR6R/X66tplFQcAACzffghIp1bP\nrH6oOuMI7T5T/UJ1QXVwB+riBHP99ddXfWF1jyWXciK7rLp82UUAAKxnPwSkC6tHVG+rLqou\nqT5eXVOdVp1dnVs9phGQ7lQ9cSmVsqtdeumlVQ+dC8fmV/L3BQDsYns9IN2rEY6eXT2l9XuG\nXlk9o3ph9YPV86t37USBnDgOHDjQ/e53v5785Ccvu5QT0nOf+9xe97rXnbbsOgAAjmSvB6R7\nN0LR0zv6sLnrqx+vvr9xrZKAxI2ceuqpnXnmmcsu44R06qmnLrsEAICj2uuz2J1W3VB9doPt\nP10daEzoAAAA7DN7PSBd1ugle/AG2z+i8Tt5z7ZVBAAA7Fp7PSC9pvpQ9bLqSdVZ67S7fWN4\n3Yuq983nAQAA+8xevwbpc9XDq4urF8zlk41Z7K5tDME7q7rlbP/e6mGNGe4AAIB9Zq8HpKq3\nVudU39sYanfXDt0o9urqI9Vrq1dVL6+uW06ZAADAsu2HgFSjJ+lX5wIAALCm/RKQasxMd9/q\nbh3qQbqq+mj1jur1jWF3AADAPrUfAtKp1TOrH6rOOEK7z1S/UF3Q0e+ZBAAA7EH7ISBd2Ji+\n+23VRdUljUkarmlM0nB2dW71mEZAulP1xKVUCgAALNVeD0j3aoSjZ1dPaf2eoVdWz6heWP1g\n9fzqXTtRIAAAsHvs9YB070YoenpHHzZ3feNeSN/fuFbpeALSTauHNHqoNuIux/GzAACALbLX\nA9Jp1Q3VZzfY/tPVgcaEDsfj9tWvtPGAtLIfTjrOnwsAAByHvR6QLmu8xwdXr95A+0dUN6ne\nc5w/9wPVbTfR/rzqLzM5BAAALNVNll3ANntN9aHqZdWTqrPWaXf7xvC6F1Xvm88DAAD2mb3e\ng/S56uHVxdUL5vLJxix21zaGwJ1V3XK2f2/1sMYMdwAAwD6z1wNS1Vurc6rvbQy1u2uHbhR7\ndfWR6rXVq6qXV9ctp0wAAGDZ9kNAqtGT9KtzAQAAWNNevwZps25aPaH6+mUXAgAA7DwB6XCn\nNHqZvnPZhQAAADtPQAIAAJj2+jVIp85lozZ6Y1cAAGAP2usB6Sern1l2EQAAwIlhrwekz8yv\nb2vc++hoblI9YPvKAQAAdrO9HpD+a/Wvqyurh1Q3HKX96dVV210UAACwO+31SRquadwg9hur\nn15yLQAAwC631wNS1Tuqp1SPqM5Zci0AAMAutteH2K14/lyO5prq3tWHtrccAABgN9ovAWmj\nDlZ/tewiAACA5dgPQ+wAAAA2REACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUAC\nAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElA\nAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJ\nQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACA\nSUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAA\ngElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQA\nAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgOnkZRewg25W\n3be6W3Wb6vTqquqj1Tuq11fXLqs4AABg+fZDQDq1emb1Q9UZR2j3meoXqguqgztQFwAAsMvs\nh4B0YfWI6m3VRdUl1cera6rTqrOrc6vHNALSnaonLqVSAABgqfZ6QLpXIxw9u3pK6/cMvbJ6\nRvXC6ger51fv2okCAQCA3WOvT9Jw70YoenpHHzZ3ffXj8/F9t7EmAABgl9rrAem06obqsxts\n/+nqQGNCBwAAYJ/Z6wHpssYwwgdvsP0jGr+T92xbRQAAwK611wPSa6oPVS+rnlSdtU672zeG\n172oet98HgAAsM/s9UkaPlc9vLq4esFcPtmYxe7axhC8s6pbzvbvrR7WmOEOAADYZ/Z6QKp6\na3VO9b2NoXZ37dCNYq+uPlK9tnpV9fLquuWUCQAALNt+CEg1epJ+dS474faN0HXaBtufPr+e\ntD3lAAAAG7FfAlLV7Ro9Rp9aWHd6Y0jdnaqPNnqRPnXjp27aP1QXVKdusP2XV0/r6FORAwAA\n22g/BKRzqgurr5vfv776nkYYeWMjHK34dPWdc/3xuLb6zU20P68RkAAAgCXaDwHpd6qvbQSj\nqxph5MLq/dXNq59qzHR318ZMdy9vhCYTNQAAwD6z1wPSfaqvrx5VvWKu+9LqHXP9tzUmcVjx\nx9WfVQ+o/nDHqgQAAHaFvX4fpK+qPtGhcFT1gcYECh/p8HBU9brqM9VX7kRxAADA7rLXA9KZ\n1RVrrL+y+uw6z/lcG59cAQAA2EP2ekD6QGPK7dsurDu5cR3SOR26QeyKL55tP7wTxQEAALvL\nXg9If9roLfqDxnVID20Mt7t19dfVSxrTf1d9RfVb1YH5PAAAYJ/Z65M0fLoxffYvV/9trjtY\n/UD1941JGT7cmJZ7ZVjds9KDBAAA+9JeD0hVL2z0Fn1nY+rui6t3zm3/vHpqdefGzV1fUv36\nEmoEAAB2gf0QkKreMpfV/mIuAAAAe/4aJAAAgA0TkAAAACYBCQAAYBKQAAAAJgEJAABgEpAA\nAAAmAQkAAGASkAAAACYBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQ\nAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGAS\nkAAAACYBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQAAAAJgEJAABg\nEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYBCQAA\nYBKQAAAAps0EpO+rfnkDr/f31UOOuSIAAIAl2UxA+rLqm47S5vOq21R3OeaKAAAAluTkDbT5\nq/n1S6pbLXy/2knVnarTqk8df2kAAAA7ayMB6dXVPauvqM6ozj1C28url1a/ffylAQAA7KyN\nBKSfnV/Prx7ekQMSAADACWsjAWnFC6uXb1chAAAAy7aZgPSRuZxd3b06s3Hd0VrePRcAAIAT\nxmYCUtUF1Y919Nnvnt4YkgcAAHDC2ExA+sbqqdU7q1dVn6wOrNN2vZnuAAAAdq3NBqQPNma0\nu2Z7ygEAAFiezdwo9vTqkoQjAABgj9pMQHpr9ZWtPzEDAADACW0zAem/N0LSf6pO25ZqAAAA\nlmgz1yB9W/WB6gnVY6u3V59Yp+3vzQUAAOCEsZmA9M8aU3xX3aJ60BHa/k0CEgAAcILZTEB6\nXvWi6oYNtL382MoBAABYns0EpE/OBQAAYE/aTEC6w1yO5qbVh6r3HVNFAAAAS2npAcgAACAA\nSURBVLKZgPQD1c9ssO3Tq/M3XQ0AAMASbSYgvb565jrbvqj6xupO1c9Vf3acdQEAAOy4zQSk\n183lSJ5cPbJ6zjFXBAAAsCSbuVHsRjy30Zv0gC1+XQAAgG231QGp6u+qu2/D6wIAAGyrrQ5I\nt6y+rvqnLX5dAACAbbeZa5AePJe1nFR9QXX/6gurNx5nXdvppOpm1enVVdWVyy0HAADYLTYT\nkL6pMQnDkVxe/bvqkmOuaHucXf3f1XdUd60+b2HbFdU7qourX2m8BwAAYB/aTEB6YfWH62w7\nWH22en913fEWtcUeWF1UndnoLbq0+nh1TXVaIzzds/rm6seqh1ZvWUqlAADAUm0mIH1kLieS\nW1YXVp+pHlu9urp+jXanV4+unl29srpLht4BAMC+s5mAtOLsRtj4xuo2c91Hq7+sXtYII7vF\nQ6pbNYbW/dUR2l1dvbT6WPXH1bc3ep0AAIB9ZLMB6SHV7zSGq632mOqnq4dVbz7OurbKHRpD\n/o4Ujha9rjpQ3XnbKgIAAHatzUzzfYtGD9GV1Q9XX1OdNZevbVy/c9NGz8vpW1vmMbu8OqVD\nPV1Hc9vG78REDQAAsA9tpgfpQY1rer6heuuqbf/YmAnu9Y0JDh5Y/cFWFHic/nx+fU71/dW1\nR2h7s+oFjQkn/nSb6wIAAHahzQSkL2tca7Q6HC36X9XfV1/Z7ghI767+S/Wk6j7VqxpTkH+8\nEZZOa/SA3b36zurW1c9X711GsQAAwHJtJiDd0OH3D1rPTRrX8ewWP9yY2vup1ROP0O6y6inV\ni3eiKAAAYPfZTEC6pHEd0r+ofm+dNg+qvqTddaPYg9UvVc+rvrpxo9jbNK6Turoxc907q/ds\n4c88pfruNn4t1pdv4c8GAACO0WYC0p9U72tM1PDCxoxvH6lOqm5X3b96QmN42m68hudgIwi9\ncwd+1m2rn2wEpY1YCVInbU85AADARmwmIF3XuE7n96snz2W1/1M9fLbdTe7XuO5oJRyd0hhO\n932Na6uuqd5ePbd6xRb8vJXrsDbqvMZ9pA5uwc8GAACO0Wbvg/Tu6m6NG6+e1+gpOdiYvOEN\n1Wur67eywC3ws9V/bASidzZ6aX6/8R6uqz7Q6MH5lupbZ9ufW0ahAADAcm0mIJ3UCEPXVRfP\nZcWpjWC0myZnqDqn+qlGcLtwrvuOufxe9W+rT871X1X9dvUzjWGEH9jJQgEAgOXb6I1iv7Fx\nf6MvWmf7j1Z/0e6bbOCfNd7jD1Qfnuu+rXGz28d3KBzVGB74+EZofOAO1ggAAOwSGwlIX9uY\nkOEejWFoa7ll9c2z3W22prQtcatGz9ZHFtadXL2/+uwa7d/ZmM78C7e/NAAAYLfZSED69eqM\n6jHVK9dp85PV46rbVy/YmtK2xPsagejbFtb9dWMq8rWGF969ummHepsAAIB95GgB6WsaPUcv\nqH73KG1/q/rN6hGNoLQb/H+NsPPbjZnsqi6qPtiYvGFxWu2vr36nuqJ69Q7WCAAA7BJHC0hf\nN7++bIOv9xuNHpjzjrmirfW5xo1tT63+rHGPpl9rXE/11EYP02sbN7Z9a3XnxvVKn1hGsQAA\nwHIdbRa7286v79/g671vfr3DsZWzLf5n455E/656dPW9C9vuNJfLG71Hz6retdMFAgAAu8PR\nAtLKDV9P2+Dr3Wx+/dyxlbNtPtW4v9F/rM6s7lh9fmMCh09Uf5ebtAIAwL53tID0t/PrN1Wv\n2MDr3Xd+/btjLWgHXJFeIgAAYA1Huwbpv1fXVD9enXKUtreofqL6p8b1PgAAACeUowWkT1e/\nUt2z+m+tf3+gO1d/Un1Z9fzqqq0qEAAAYKccbYhd1X+ovqF6WHX/6g+rtzdutPoF1b2qBzVm\nr/uT6vztKBQAAGC7bSQgXdW4h9DPVk+qvmsuiz5ePae6oLphKwsEAADYKRsJSHXoOqSfrb65\n+orGjHUfb0wB/sYEIwAA4AS30YC04srqj+cCAACwpxxtkgYAAIB9Q0ACAACYBCQAAIBJQAIA\nAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUAC\nAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElA\nAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJ\nQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACA\nSUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAA\ngElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQA\nAIBJQAIAAJhOXnYBO+hm1X2ru1W3qU6vrqo+Wr2jen117bKKAwAAlm8/BKRTq2dWP1SdcYR2\nn6l+obqgOrgDdQEAALvMfghIF1aPqN5WXVRdUn28uqY6rTq7Ord6TCMg3al64lIqBQAAlmqv\nB6R7NcLRs6untH7P0CurZ1QvrH6wen71rp0oEAAA2D32+iQN926Eoqd39GFz11c/Ph/fdxtr\nAgAAdqm9HpBOq26oPrvB9p+uDjQmdAAAAPaZvR6QLmsMI3zwBts/ovE7ec+2VQQAAOxaez0g\nvab6UPWy6knVWeu0u31jeN2LqvfN5wEAAPvMXp+k4XPVw6uLqxfM5ZONWeyubQzBO6u65Wz/\n3uphjRnuAACAfWavB6Sqt1bnVN/bGGp31w7dKPbq6iPVa6tXVS+vrltOmQAAwLLth4BUoyfp\nV+eyE+5Y/Y+OfGPaRSv74aTtKQcAANiI/RKQjuYnGr1M379Fr/fh6oeqUzbY/i6N+zAdbSpy\nAABgGwlIw5dXX7OFr3d99fubaH9eIyABAABLtNcD0o/M5Wi+qDFhw9/M739pLgAAwD6y1wPS\nrRq9Q1dXlx6l3SkduqHstdtcFwAAsAvt9YD0vOpLq39VfapxXdD/WaPdr1XnVt+wU4UBAAC7\nz16/UeynGhMv3L+6Q/X26vzq1CXWBAAA7FJ7PSCt+LPGJAy/WP1UIyh9y1IrAgAAdp39EpCq\nrqp+vLpndWX1+uq/VrdYZlEAAMDusZ8C0oq3V99UPaV6XPXO6u5LrQgAANgV9mNAqrqhenb1\n1dW7G71KAADAPrfXZ7E7mg9UD66+rTqw3FIAAIBl2+8BacXrl10AAACwfPt1iB0AAMCNCEgA\nAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlI\nAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJ\nSAAAAJOABAAAMAlIAAAA08nLLgCADfmJ6qnLLuIE95+qn192EQDsbgISwInhnHPPPfdWD3vY\nw5Zdxwnp4osv7u1vf/s5y64DgN1PQAI4QZx99tnd5z73WXYZJ6Q3v/nNyy4BgBOEa5AAAAAm\nPUjAjrjmmmuqblfdf8mlnKhut+wCAGA/EJCAHXHZZZd18sknP/CMM8544LJrORFdeeWVyy4B\nAPYFAQnYEQcPHuz+979/T3va05ZdygnpcY973LJLAIB9wTVIAAAAk4AEAAAwCUgAAACTgAQA\nADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AE\nAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOA\nBAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACT\ngAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwnbzsApbgpOpm1enVVdWVyy0HAADYLfZLD9LZ\n1dOrt1Sfra6oPj4fX169sXpqdfNlFQgAACzffuhBemB1UXVmo7fo0kY4uqY6rRGe7ll9c/Vj\n1UMbQQoAANhn9npAumV1YfWZ6rHVq6vr12h3evXo6tnVK6u7ZOgdAADsO3t9iN1DqltV/7L6\ng9YOR1VXVy+tvqf64urbd6Q6AABgV9nrPUh3qK6r/mqD7V9XHajuvG0VAbAspzY+NOPYfKY6\nuOwiALbbXg9Il1enVLep/nED7W/b6FW7fDuLAmBnvec976kxSuB7llzKiew51b9fdhEA222v\nB6Q/n1+fU31/de0R2t6sekHj07E/3ea6ANhB1113Xfe+9717/OMfv+xSTkgvfvGLe9Ob3qT3\nDdgX9npAenf1X6onVfepXlVd0pjF7trGLHZnVXevvrO6dfXz1XuXUSwA2+cWt7hF55xzzrLL\nOCHd4ha3WHYJADtmrwekqh9uTO391OqJR2h3WfWU6sU7URQAALD77IeAdLD6pep51VdXd21c\nk3R6Y/a6j1XvrN6zhT/ztMa04jfdYPsv38KfDQBb6oorrqg6p/q3Sy7lRPamxvkGsMvth4C0\n4mDjH6ad+Mfp1tW/aeO/38/fxloA4Lh84AMf6OY3v/l5Z5999nnLruVE9LGPfazLL7/8RdUP\nLLsW4Oj2S0B6QOMao8+v3lz9ZqP3aLXTGsPxfnEux+rD1Tdtov151V8ex88DgG113nnn9bSn\nPW3ZZZyQLrjggl7zmtectOw6gI3ZDwHpp6tnLHz/rxrXIz28G/cmnVTdsbrljlQGAADsKjdZ\ndgHb7EsaAen91aOrr2/MaHer6i+qr1leaQAAwG6z13uQvrVDEya8aa776+q1c/mj6l6NIXEA\nAMA+t9d7kG7fmJzhLavWv796SHVGdXH1eTtcFwAAsAvt9YD0icZ1RbddY9t7q0c1bhL7O+39\n3jQAAOAo9npAenOjB+lZrX1Poj9v3Dz2odUrqpvvXGkAAMBus9cD0iXVbzWuQbq0utsabX6j\nenz1HbmBGwAA7Gt7PSDVuCnb86qzWrsXqeql1f2qf9qpogAAgN1nP1x3c131I417Hx04Qrs3\nVHdt3OD1QztQFwAAsMvsh4C04poNtLm+euN2FwIAAOxO+2GIHQAAwIYISAAAAJOABAAAMAlI\nAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJ\nSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAw\nCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAA\nMJ287AIAAPay66+/vuoLq3ssuZQT2WXV5csugv1BQAIA2EaXXnpp1UPnwrH5leqJyy6C/UFA\nAgDYRgcOHOh+97tfT37yk5ddygnpuc99bq973etOW3Yd7B8CEgDANjv11FM788wzl13GCenU\nU09ddgnsMyZpAAAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUAC\nAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElA\nAgAAmAQkAACASUACAACYBCQAAID/v707D5erru84/r7k5mZjTQIJEFCQTQREKQqFh01R9vZh\nVSylpa1VK0vLY6u1yIVHli7qA1hakE3LVlFRghTUkqKo2BBReFhCgLCXEhIgIWS73Ns/vt/p\nnEzmbtzcOXdm3q/nOc9Mzjl35jtnfpk7n/v7nd9JBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJ\nkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUqd\nZRcgSZIk9aenpwdgGrBXyaU0syeA18suolkYkCRJkjRmzZ8/H+DoXPT2XAF8quwimoUBSZIk\nSWNWb28vhxxyCGeeeWbZpTSlSy65hLvvvntC2XU0EwOSJEmSxrSuri422mijsstoSl1dXWWX\n0HScpEGSJEmSUjv2IHUAU4CJwApgebnlSJIkSRor2qUHaSZwHjAXeANYBizK+0uBe4HPARuX\nVaAkSZKk8rVDD9JHgO8AGxG9RfOJcLQKmECEp72B/YCziRlS5pZSqSRJkqRStXpA2hS4GXgN\n+APgDqCnzn4TgROArwK3Ajvj0DtJkiSp7bT6ELsjgc2AE4HbqB+OAFYC/wacDGwNHN6Q6iRJ\nkiSNKR1AX94/D+gur5RR8QXidQ11fsNxwGrgi8DFI3je7YBfMfQeuk5iCGAXsGYEzzuYqzo7\nO/9k0qRJo/gUrWv58uVssMEGePzeHo/fyHj8RsbjNzIev5Hx+I2Mx29kVqxYQU9Pz9XAn5Zd\nyxjXDZwLrT/EbikwHtgCeHkI+29J9KotHeHzPkP0Wg31+HYQNY5mOAI4p6en5+Zly5aN8tO0\nrKm9vb0sW7ZsSdmFNCmP38h4/EbG4zcyHr+R8fiNjMdv5B4uu4Bm05dLd8l1jIZdidd2A4P3\nIk0BfgD0AjuNcl2SJEmSxo5uMhe1eg/SI8DlwGeAA4HZRIJeRAylmwDMAPYAjgGmAxcBj5dR\nrCRJkqTytXIPEsTwtTOA56i+1nrL48CpJdUoSZIkqTzdtEkPEsQLvRS4DNiNGHa3BTG190rg\nJeAh4LGyCpQkSZI0NrRDQKroI4LQQ2UXIkmSJGlsavXrIEmSJEnSkBmQJEmSJCkZkCRJkiQp\nGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmS\nJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKXWWXYAa6pfAPmUXIUmSpIa6\nD9i37CKahQGpvTwFLALOK7sQtaVz89b2pzLY/lQm25/KdC6wrOwimokBqb2sBhYD88ouRG1p\ncd7a/lQG25/KZPtTmRYPvouKPAdJkiRJkpIBSZIkSZKSAUmSJEmSkgFJkiRJkpIBSZIkSZKS\nAUmSJEmSkgFJkiRJkpIBSZIkSZKSAUmSJEmSUmfZBaihVpddgNqa7U9lsv2pTLY/lcn29zb0\n5dJdch0afZvlIpXB9qcy2f5UJtufymT7G5puMhfZg9ReXi27ALU125/KZPtTmWx/KpPtb5g8\nB0mSJEmSkgFJkiRJkpIBSZIkSZKSAUmSJEmSkgFJkiRJkpIBSZIkSZKSAUmSJEmSkgFJkiRJ\nkpIBSZIkSZKSAUmSJEmSkgFJkiRJkpIBSZIkSZKSAUmSJEmSkgFJkiRJklJn2QWoNOOA3wXe\nBOaVXIta32RgZ6LdLQBeL7cctaF35vIQsLjUStRuJgDvytun8PNPjTWFaH8dwEJgabnlNI++\nXLpLrkONsx1wL/G+319yLWptGwAXAsupftasBq4EJpZYl9pHB3A6sIJof0eVW47ayETgH6i2\nvcryAyKsS6NpC+AaYA3VttcL3AK8o8S6xrJuqsfKgNRmTiX+evAA8Z/GgKTRdAHx+XIbcBhw\nMHB1rvtmiXWpPWwJ3El81v0GA5Ia6waqn3/HEJ+BV+S6BUBXeaWpxXUBDxJt7XLgcOAI4o+T\nfcB8YHxp1Y1d3RiQ2tI04r2+lOjqX4kBSaNnOtHG5rLu+Y7fJ/6StWuji1JbuYwYUrIP8HkM\nSGqcXYj2NofoxSz6Xm77aKOLUts4jmhjX6+z7dbcdnBDK2oO3WQucpKG9rKa+CvWGcCqkmtR\n6zuCCOJXEWGo6EriS8OxjS5KbeVOYE/gvrILUdt5C/hr4O/Iv0YX3Ju3WzW0IrWTXwMnAv9Y\nZ1vlvPNNGldO83GShvayDJhddhFqG3vmbb1JQO6v2UcaDT8suwC1rQXU/3IK1fOPFjSmFLWh\nhbnU6iB6jnqIUy3UDwOSpNEyK29frLNtEfEBvU3jypGk0u0C/DHxF/6fl1yL2sMsYhbZrYFT\ngAOBs4FnyixqrDMgSRotk/N2ZZ1tfbl+SuPKkaRSbUvMYNcDfIJ1h95Jo+F44Gt5/0XgD4Eb\nyyunORiQWssM4J6adfOID2Kp0Xrytr/PmU7ivDhJanV7E7PZbQB8CHis3HLURmYDzwIziZkU\nrwdOAk7A38H9cpKG1tILvFSzLCm1IrWzysU4N6uzbTJxjRDbp6RW9zHgp8Rn4geJ4XVSozxJ\nzJx4OTFRVzfVCbvUDwNSa1kEHFSznF5aNWp38/N25zrbdsnbRxtUiySVoTKc6R5gX+DpUqtR\nuxhPnHM0rs62G/L2gMaV03wMSJJGy0/y9og6247O27saVIskNdoRwDXEeUdHETPJSo1wKfA8\n8OE622bkrcPrBuGFYtuXF4rVaPsFcc2tgwrr9gSWEj1MngepRvFCsWqkTYCXgYeBSSXXovZz\nMPF59xBrzxa7OXEdrj7gtBLqGuu6qeYiA1IbOYW4YGJl6QXeqFk3q9+floZvJ+JcuF5gLhGY\neoBXgfeXWJfawz1UP9ueJX7XPVZY111aZWp1ZxHt7TnW/h1bXM4prTq1g/OJNriKOO/tv4Hl\nue671B9+1+66yVzkX2/by1usPeXyT+vs47SjWp8eB3YDPkPM4tQBXAT8C/WvjyStT6uofqY9\nlUvRmsaWozbyGuvOKlvL9qfR9CUiCJ0CbE9cVuNG4HZi2KcGYQ+SJEmSpHbWTeYiJ2mQJEmS\npGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIk\nSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRA\nkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKk\nZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJ\nkqRkQJKkse8AYK+yixgFNwN9wKxRetyZw3yeVj3OkqRhMCBJ0th3B3BZ2UU0kRuBLwDL+tne\nAdwJfKBmvcdZkmRAkqQm8Ab9f9nXum4DLgaW97N9R+CjwNSa9R5nSRKdZRcgSRpU8Yv7vsRn\n98/62Xc/YjjZL2rWb08MOXsdeAx4q5+fHw+8A5gOvAQ8V2ffXYHNgXuAjYE9gIXAC0N6Nf3b\nMZ/3aeB/arbtDkwD7gV6Cus7gAOBV4HfFurbgjgGq+s8zrF5fw9gJfAAcVyGGpA+CEzqZ9sy\nYN4QHqNiGrAt8QfLZ4BX+tmvA9iFON4LgZcHeMwdifenv/d6qO/fUNuMJLWcvly6S65DklTf\nb4Dr8v6/E5/Z9c6V2SG33VpYdxDwCNXP+j5gMXBGnZ8/E/jfmn2fBo6p2a9yTs97iWDSBxw/\nnBdU8zj7EKGi+LzfBiYW9r09129a8xiduf4ndR633jlIlccpLvvnfsXjPJAn6jxGZbl/CD8P\nEUJ/CPQWfrY3121es+8RxPtQfJ7ZwJY1+x0FPFWz3xLifS0a7P07iKG3GUlqFd1UP/MMSJI0\nxm0PbJX3DyU+s+udK/PF3FYJNO8DVhFf2g8FtiF6oP4j9/vzws8em+v+i+iR2Yn4Yv44sIbo\nvaj4JtVQ0k1MbjCT4at8UX8IuCjrPQS4O9f/U2Hf9RWQplD9JXhcPt643K94nAeyLRFGi8sN\n+ZgXDOHnAeYQvVd/RhzbXYDPAm8CPy7s9wHi+C/IevcCziZ60eZRHSq/X66bTwwfnEUEnblZ\n1ycLjznQ+zecNiNJraQbA5IkNaUOYjjUK0BXzbbfEj1AleHTs4nzcGbU7DcJeJ4Y0lXxEeBC\n4st+0UnE74jPF9ZdleuufluvoKoSXK6pWT8FeI3o/aiEl/UVkCBeSx9w2Ajrr/gQ0fvzK4Y+\ndH0NEUZrnUgEoMrrrvQybVez3z/n+gPy3z8iXtPuNfttRgwdXFhYN9D7N5w2I0mtpJvMRZ6D\nJEnNpRIozgeOBr6b63ciziX5GtGTMB74MHFeycF1Huc5YmjbtsCzxBfsHwGbAHsDGxG9E5Uv\nylvUeYzvjfjVhFtq/r2cONfoSCKwzV9PzzMapgHfIkLIyax9ftRAngd+h+jtuauw/tuF+51E\nj9rDrB1wAM4CTidC0ngiKC0geuOKXiXOVzuMGNZXDDi1799w24wktSQDkiQ1n2uBc4E/ohqQ\nTipsgzg/ZSLwLuCmAR5rJvFldyrwr8RQu3HE5AZrqA7hqjfr6fNvq/p1PTHAY89kbAekq4lh\neacCTxbWzyAmQSiaB3wi738S+A4x3fgLwH8Sw9huI4bZkY87kfrHeU3h/pbABOL8o3oqoWgb\n1g5ItY873DYjSS3Jab4lqfk8T/Q6HEa1Z+ck4NdUexDG5+3PiOFR/S1zc7/rgBOIHqiZxBfu\nDYkejP70N432cK2qs64SAMbyH/I+DfweESa+VbOtl5gFsLgsKWz/MXHO01nAo8TQupuIXpqj\nc5/KezhYr1Rlv9oZ+yoqx3JCzfra92+4bUaSWtJY/sUjSerfVcQkCscTJ/y/hxhyVbE4b2cS\nkwEMZFNiBrQHgc/VbJs+4koHt8kA614f5Gc3XM+1DNW7ga8Qs8t9us72RcQkCQNZDFySy0Ri\nEobLgOuJYWyVQDVtkMcZbL/K9Z4W97Odmu1DaTOS1LLsQZKk5jSbmJDhBODjRO/BjYXtrxFD\n13YgrotT61Bg67y/CTH5Q70hWsetp3oH8v4663YjemEez39Xepmm1Oz37tEqagATiN6eLmLI\n3GAhrlYH8Z4UX8tKYia8y4hrE+1OnD/0NHFuWe11lw4lhugdkPstzP1q5WsqsQAAA39JREFU\ne4kgzilbSfRUDWQ4bUaSWpYBSZKaUw8xXfMBwGnEuStLava5ivgyfgHVWdEgpm2+Dbgy//0C\nEUDex9oz430810HMhjZa/oq1ez8Oy+edAyzNdQvydt/CfuOAvyWnZB2GSu9I7fWGhurviWsI\nnc+6F+Qdiv2J4Hd+zfoOqmGxcqHca4kgdW5hv8nAl4nhfU8V9tuQtWcbhDg3akci0NUbylhr\nqG1Gklqa03xLUnPakepn+JF1to+nev2aR4kv0XcR4epp4mT8iq/kfg8CVxCzyD0DvJMIXm8C\n3yCG3FWmia6dEny4Khe9vZAIBDcTPWMrifNjihfD3TXXLwYuBr4E3EdcK+kV4tpJFYNN831g\n/ntRPt/vD6PmHYierbeI0HF9nWUobsoaHidmrruF6gVoLynsN5E4J6hyvajbifOZeonrJlVM\nIAJlX+5/BXGeU2/+XHGo5EDv33DajCS1km7yd+o4qsHoHupfk0GSNDYtAU4hgsNfsG5PSi/x\nRfwRondhK2I41rXAp6j2UkB8mX6BGG43Ffg5cRHTF4nQND0ffzYxXXQXEXCWjaD+92aNpxFB\n4T3E9OJ353M/WNh3ETGkbDJxUdWNiYklvkpMl72Q+GIPEaY2IIYcrij8+yYi6D1DBK3JeTzm\nMPQZ+aZm3c9mrRvXWa4bwuPcCjxAHMepWd/9RG/aNwr79RCh65l87ElEr9Vnge8X9nsr93uS\nmLhjFtE+vk60jaWFfXem//dvOG1GklrJQRTOHbUHSZKa0z7E5/c5ZRciSVKT6yZzkecgSVJz\n2ow4H6TSSyBJktYDp/mWpOayP/CXeTsd+BgxBKpsM1h7AoXBzCWG9EmSNKYYkCSpubxFnDsz\nhzgRf0655fy/vYhzhIbqZGJyAkmSxhQDkiQ1l18Ch5ddRB134O8USVIL8BwkSZIkSUoGJEmS\nJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYk\nSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElK\nBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKnYX7+wF/U1YhkiRJ\nklSS/Sp3OoC+EguRJEmSpDHDIXaSJEmSlP4PKq3ItCqF8AAAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'year_built' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZw1Z13n/U9IQgJMIGwJS4Bhd8IWdgRUZJBVEJFtkHHcEIZBcQCXGX00\noIzrwAjiws4DAiqI7CASZFFBFBEMsgyLggQMa1iy537+qKuf+9yd7rv3Pn2ffr9fr3r1Oaeu\nqvqdU9Xd9T1VddVR1YEAAADoMvMuAAAAYK84ZubxX1bvmlchAAAAc3LX6i5LTw6M4fR5VQMA\nADBHpzdykVPsAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQYH5uUd1tDNeZ\nayUcyR5YHRjDRXOuZTMe3MH6z9uF5e3E792Rvg7WstvraKvLnEe9wAIRkGB+nlK9bQwPXGH8\nXZt24i6/izXBXrSdvwtr/d7BavxNhn3imHkXAPvY11Z5XHVq9c7x+D9UH96VimD3vaW69Xh8\nyQrjt/t34XC/d6xsrXW01+xEvf4mwz4iIMH8HG5H7T/tZiEwR1+t3n+Y8dv9uyAgbdxa62iv\n2Yl6/U2GfURAgvn5+szjc8bPW1RXrR4+M+4O1TWqz1T/t7pWdZMx7kvVB6qjq1tVJ1RvX2FZ\n165OqS6sPt60A7GWzUyzGSdX12065fcT1dnrmOaE6gbVFaovVx9r5Ws/7lhdbjw+q/rICm2u\n1MFvm6v+rkvvOK/ns9jMetmoK1c3rs6tPlqdv8HpN/s+ajqt6MbVZasPVd9YY1mXHe1PbFpH\nn+ngdj7r6tXNxuNLqneMx2v9Lvy7Me+qL1YfXGHeJ1anzTx/byv/3m3EVtfBerfdWn1dXG3M\n49+qTy2b5rgxzfFNn8nhrsE5trpRdZUOvp+vr9ButXV0uBo3ur2s13rme7h6Z61nG13P3+Tl\nNrKOZ5046jlvTHNe0zq6y0ybd1YXj8cb/Zuz3vW909sdHBGWLmQ8fc51wH7z8x38/bvTeO11\nM68tH/7PaPMjM6/9ddM/uw+08gXi31/907L5XFi9qrreKnVtZprNuH/1vi79Pv+6+rZVprlj\n9Wejntlpvl69qClozfqDmTbvW2WeT5hp89Wmf/BLNvJZbGS9bNQJTe9v9n1/sfrx6gEzr622\nnI28jx9e9j6qfrrps1l6/dzqF1dZ1nWaPvdzly3vkurNTddwzFrtgvq1fheeOvP8rFa+pvaJ\nM23ObtpBXOn3bj22ug42uu3WpdfFZapnLJvHX1XXHO0fUn1+ZtxXq0esMN8rV7/bFAZma7mo\n+sOZ+S05XKcHW91eVjO7zKUvLNY737U6adjINrqev8lLNrOOa/qS5sXLpvtS9fimwDQ7r+Nm\nplvv35yNru+d2u5grzu9g9uxgARz8tDqXWO4wXjt1U3/tJb/E7uo+t+jzcNnxv1j9VvL2i55\n6rL5fLZDdy4+03REoS1OsxmzoWSl4cKmnZxZj+jSOx7Lh7Orm89M893Lxq/Ua9k7Z8Y/f+b1\njX4W610vG3VU9eet/p5ftsZytvI+zuzw6+qxy5Z10pj/bJvzlz2/uCkcL1ltZ3at34UbNO3Q\nLo379hXe+ztmxj9jvLbS791atroONrPt1qXXxZNXmfbPmo5qLP+8luqZne/lO7gTfaDpM/xi\nh36WH206QrfkcIFjK9vL4cwu8/NrzPe/HWba5fVudBtdz9/k2vw6Pqqpw5DVpnnGsuez1vM3\nZzPreye2OzgSnN7M79rSg9PnVw8w4xod+o/mW5aNX77jcE71D03fZi7t4H/bTJsLq/uM1y9T\nPW1m3B/NzHcz02zGaR36D/VpTaduXLt64czrX2365rPqpk07OkvjXjNeu1J176ad/Nl/6EtH\nE45t2hlYbUfq5KadoaXx3zle38xnsZ71shnf16Hbw+80fV5X7tLhZ/nO+Vbfx5ebvr3/P9V3\nVT/boTuTH1+2vF+YGfe6pm25ptMcZ3dwP7bK8pbvzK71u/DWmXHPWDbuqh26nd2uzdvKOtjs\ntluXXhdfqn6yqfe95Tu9ZzaFuO+pfnNZTbOfzeNnXv96U4cDVTcc818a95Or1LF8HW1lezmc\n2fl+dY35fuIw0y6vdzPb6Frb4VbW8UOWzfsFTX8Lrz7e7+G2rfX8zdnq+t6u7Q6OBKcnIMGe\ntZGAdKCpx6Zjl7X5o5nxL1027timU5KWdppP2sI0m/GCmeUsv27k2Kbz25fG/9h4/dkzr326\nQ08zqelbzNnP5L4z42anffOy6X5s2XyXdlw281msZ71sxitn5vmxLn0q2d/MjF++A7Ud7+M5\ny6Zb/m3y1WbGvWjm9f+5wnv54epBTae2Lb2PrQSk/zQz7jNN38Yv+S8z485coZaN2Mo62Mq2\nu3xdPGVm3G2Wjft8B6+3q0OPnv3VzOvfXT1pDMs7HnjxzDR/vEodhwtIG91eDmcr8z1cvZvZ\nRtfaDreyjv9k5vVPdelrw/9hZvzhAtJqf3O2ur63a7uDI8Hpje1XJw1w5PtfTTu4s2ZPNzq/\n6VvMWZ9t+qd/THXn6k83Oc1m/MeZx29YNu7Cpk4ElnZMlnYI7jnT5lVd+sL4v2naQT5lPL/7\nzLxfWj1qPL5bdcUOXoj9vTPzeGkHuwTejs9ipfWyGbNHPt7Upbst/sPq9qtMux3vY/m3wG9s\n+hZ+ydWqL4zHs0cIfqHpgvC3Nu0ofbKtHUlbyZ80HSG8atO37nfq4HUwD5hp9/9ucTlbWQdb\n2XaXe/HM4/c1HRFYOjXqlU3X1Cx5ewev5bvKzOuvG8PRTde33LWDO+WzO7ontjkb2V7mMd+d\n2Ea3so5vO9Pu9V06BL20uuU661jpb852rO/t2O7giCIgwZHv75c9P6bp1LElPziG1dxok9Ns\nxtEd3Emo+pcV2lywwjSzFzd/rJV9Ymbes+3f0RQErtXUa9W9m46sXKlpR2XJS8bP7foslq+X\nzbrGzON/XmH8Sp9hbc/7ONCle/773ArLWfL7TWH0lKZv0X9oDDXtIL6u6fS0lXqc24zzm9bb\n48fzBzcFpOOqe43XLungut2sza6DrW67sw407cDP+kIHd1SXz3s2LMyuo2ObviX9rx08hXUl\nRx1m3Go2ur3MY77bvY1udR3PblvL1+9qr61mpb85W13f27XdwRHFxgtHtgurryx77bLLnn+0\n6VSq1Xxxk9NsxvEd+o94PZ0XHLdsmuUBasnsN6ezp7hc0vQN/38fzx/QFJDu18H3/Q8d3CHa\njs9ipfWyGUd16CkzK7331brT3Y73ccEKyzzcOvt80+lEv9IUVq4wM+6U6jFNO6ePq37vMPPZ\niOd2aEB6YtORs6Vlv7X61y3MfyvrYKvb7qwLuvRnf/HM43MPM27W7zWdRlbTzu+bmgLeRU1H\nF261ynTrsdHtZR7z3e5tdCvreD3b1jfXUcPS/Ff6m7PV9b1d2x0cUQQkOLKtdJf4bzb9U1va\nQX5+9WvrmNdmptmobyxbznpOwfjmGC4/nq92DcPVZx4vv5fSyzoYkO7ddArfA2fGzx5h2Ozn\nN2ul9bIZB5pOZzlhPF/pG+BrrPBabc/72Iyzmo5UPbppR/RO1bc2nYZ0haZv3J/ZdCH7Z7dh\nef9Yvaepi+XrNt3TavaUpxdtcf5bXQdb3Xa30zU7eLSk6meq35h5/rttLSAdKbZzG93KOj7Q\n9Ddx6WjMRrat5Vb6m2N9wyatdN8IYG/ZzKkus6eH3GzVVlufZjM+MPP4tiuMf3pTr0h/3sFO\nGt47M/7OK0xz5Q72zlTTOf+z3tvBGzpetWmHaOl6nEu6dAcGu/VZrMfsjShvs8L4lbq3XjKv\n93F00+lv72zaIXtQdf0OnqpzTNOO6Uat9rvw3JnH923q6aymns9etYnlLLeVdbDVbXc73axD\nP8PXLxt/WvvHVrbR5dvhVtbx7La10t/D71ilhvWwvmGTBCTYe5afznDDTczjT2YeP7hDry+5\nWtMpR59oujD5lC1MsxmzvSXdv0N3HG7WdK+U/ziGpWs7Zi+yv3eX3iH95Q6eqvL16hUrLPdl\nM49/sYNHBM7o0t8S79ZnsR5nzDy+T4feW+QmXfp+UbN2830c13T9xiebeiK86rLxZ3fodSPL\nT81ZyXp/F17etN5r6qlr6aL2V7T+U5QOZyvrYDu23e2y/BSu2ftf3bdDb5x7pR2sY142u42u\ntR1uZR0v37ZuPfP8Wzr8trWW/b6+YUuWumM8fc51AAd9vYO/m5+tntXUTWutfZf4mnok+peZ\ndl+ofrvpvPtPzrz+8i1Osxn/rulb06X5fanpouhnd+gNTN8yM80xHdp97HlNOyW/Ub175vUD\nTdcQrOQ/LGu3NPyXFdpu5rNYz3rZjBs17egszfvLTafG/E7TZ/eJmXHLT7PZifdxSod+frNh\n4SUzr3+yaf08qam3sDNmxn22gz1orbW8w/0uzHpOl163d1uh3WZsZR1sZdtd67OZ/T1aPu3j\nZsYtHaU4oemUrqXXPzLaPa0pDMx2Z35h0/2G7rBGHVvZXg5nK/M93LSb2Ubr8NvhVtbxTTp0\n2zqn6VYIz2u6puhTM+MO1833Sp/RTqzv2vh2B0eK0zu4/QpIsAc9s0vv7L1ujFvvjvipHfqP\nbPnwqg7dAdjsNJtxw6ZrR1ZbzuubuuOedWLTZ7DaNN9s+ud8OO9fYZoTVmm70c9ipwJSTddK\nzN7Qdmn4QNMNGmdfW34flO1+H4fbMT2h6dTI1ZZ1oKkXuNlus9da3uF+F2bdcVmbT7W501NX\ns5V1sNltdyd2VGdvHDo7/FnTdvDeZa+fvkYdR1pA2sw2Wmtvh1v5+/SYVt62/rF65MzzjQak\n2v71XQISi+v0xvarkwbYm/570z+XuzWdFnJWB6+lOLvpXhO1eo9JVR9q2jl+aFN31tdq+if9\nqaZTPFa6id9mptmMjzddHPygputFTmnaQfh40/t8+wrTfKXppod3bdohvUnTP/gvNl2k/7Km\nHqoO57c69IjRXzZdp7KSjX4W610vm/H7TV34/kj175uOYLy9qQOCq3Xo53XZDu0xa7vfx/nL\nlveNmcdfa1qf9x4/b9C0Q3p+007nO5rW7+xO11rLO9zvwqz3dLA79zp4E8ztspV1sNltd63P\n5j1NXVPXpU8T/deZaWd78futDu54X7vpVLPXN/XseHH1fU03UL1h0+lmb2zqfXK1OrayvRzO\nVuZ7uGk3s43W2tvhVv4+/V7T/YV+uOk6qK+MOl5Y3WPZe561nr85272+a3PbHRxxZr81AIAj\n0Wkd/H92cZu7dg/2mp/IERnYLafnCBKwBSe0uV7RzmrlG20uOp/Xzjq+6ZvyJX/adDQS9rq7\nNV37c52m2x7cqukoT01HIme76f6L3SwM9jMBCdiM61Q/v4npXt10Mf1+4/PaGb/ZFDxvU500\nXju/+rm5VQQb89Gm0/KWblj7100dPBxoulfbUlfc51X/e9erg33MKXYAHIn+okMvML+wQ79x\nhyPBfZquaVutg4cvNnXLDeys03OKHQBHuLc0fbN+SfWxpo4UPjTXimDj3tjUUc1Dm+5NdK2m\nnhDPajqi9PKm7r+BXeQIEgAAsJ+d3shFl5lzIQAAAHuGgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAMMx8y5gl12x+pbqpOr46tzqrOrD1TfnWBcAALAH7JeAdL/qp6u7VEevMP7C6i3VU6u/\n2sW6AACAPWQ/BKSfrX6lOr96a3VmdfZ4flx1jeq06l7VvatHVc+fS6UAAMDcHRjD6XOuYydc\nv7qoKRidtI6272067e6aO1wXAACwd5zeyEWL3knDPZtOqfuh6t/WaPvJ6j83XZt0nx2uCwAA\n2IMWPSBdpen6on9ZZ/uPVJdUJ+9YRQAAwJ616AHprOrY6mbrbH+bps/ksztWEQAAsGctekB6\nY9M1RS+pTl2j7R2rl1Zfq16/w3UBAAB70KL3Yvf56rHVc5t6r/twB3uxu6CpF7uTq1tWN2jq\n2e4R1RfmUSwAADB/i9yL3ZLbVH/QFHwOrDCcVT2nusm8CgQAAObm9EY2WPQjSEveV33/eHxy\nU5ffx1fnVZ9rOqIEAADsc/slIM36/BhmPai6VvXbu18OAAA76Jqtv8OuRXVm0xlTrMN+DEgr\nuW91WgISAMCi+aVjjjnmRy53ucvNu465OPfcc7voooueV/3ovGs5Uix6QHrAGNZy1+qqTZ05\nVL1mDAAAHNmOvsc97tFP//RPz7uOufj1X//13vSmNx097zqOJIsekG5T/cgG2i+1/UwCEgAA\n7DuLHpBeUz28ul71u9WvN3XMsNwzqltU3zmer9Rmo27Vxj7fK1VnbMNyAQCATVr0gPS+pqDy\nc9XPVt9dPbp627J2F1QXV1/ZpuXesPrbNv75Xra6cJtqAAAANugy8y5gF5xf/UJ166b7IJ1R\nPa+68g4u8+PVsdVR6xzuMqY7agdrAgAA1rAfAtKSM5s6Y/jx6iHVP1UPm2tFAADAnrKfAlLV\nJU1deZ9a/U318urV1dXnWRQAALA37LeAtOQzTd1/P7S6Q+vrChwAAFhwi95Jw1r+uHpL9RPV\nV+dcCwAAMGf7PSDV1HPdU8bjo5p6oPvSGAAAgH1kv55it5rjqo81HVECAAD2GQEJAABgEJAA\nAACGRb8G6cfGsF5u1AoAAPvYogekk6vbVhdUB+ZcCwAAsMct+il2z2vqje551fHrGE6cT5kA\nAMBesOgB6bPVo6v/Wn3vnGsBAAD2uEUPSFWvqF7UdBTpOnOuBQAA2MMW/RqkJT/adPrc19do\nd2H1P6p37XhFAADAnrNfAtJF1RfW0e7i6ld3uBYAAGCP2g+n2AEAAKyLgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwHDPvAubgqOoK1fHVudU35lsOAACwV+yX\nI0jXqJ5cvbf6evW16uzx+JzqXdVPVVecV4EAAMD87YcjSPesXlGd0HS06CNN4ej86rim8HT7\n6i7VE6v7NwUpAABgn1n0gHRi9fLqK9UjqzdUF63Q7vjqIdXTqldVN82pdwAAsO8s+il296uu\nXD20ek0rh6Oq86oXV4+orl3dZ1eqAwAA9pRFD0jXrS6s3r3O9mdUl1Q32rGKAACAPWvRA9I5\n1bHVSetsf82mz+ScHasIAADYsxY9IL1t/Hx6ddk12l6helZ1oPrznSwKAADYmxa9k4YPVb9T\nPbb6juq11ZlNvdhd0NSL3cnVLasHVFerfqX66DyKBQAA5mvRA1LV45q69v6p6jGHafex6knV\ni3ajKAAAYO/ZDwHpQPWM6pnVzatTm65JOr6p97rPVR+sPjyvAgEAgL1hPwSkJQeagtAH510I\nAACwNy16Jw1LvqvpCNILmk6zO36VdsdVn6p+cnfKAgAA9pL9cATp56tfmnn+g03XIz2wSx9N\nOqq6XnXirlQGAADsKYt+BOmUpoD0ieoh1W2aerS7cvX26hbzKw0AANhrFv0I0rc1nTb3yOqv\nx2t/X715DG+s7lj961yqAwAA9pRFD0jXaeqc4b3LXv9Edb+m0PTq6turb27jcq9X/VV1uXW2\nX/T1AAAAR4RF3zH/QtN1RdesPr1s3EerBzcdSXpZ9X3buNx/rf5bdew629+0Q6+TAgAA5mDR\nA9J7mo4g/a+mzhkuXjb+bU292j23emX1qG1a7kXVn26g/Z0TkAAAYO4WvZOGM6s/aLoG6SPV\nzVZo8/zqv1T3zT2SAABgX1v0gFT1w033QDq5OnqVNi+u7l59dbeKAgAA9p5FP8Wu6sLqJ5ru\nfXTJYdq9szq1ulP1mV2oCwAA2GP2Q0Bacv462lxUvWunCwEAAPam/XCK3UYc13T06AnzLgQA\nANh9AtKhjqquXV1x3oUAAAC7T0ACAAAYFv0apHuOYb1W6+UOAADYBxY9IN25euK8iwAAAI4M\nix6Q3lj9fPW86gXraH/Z6u07WhEAALBnLXpAek/11KZ7ID2z+sc12h+/4xUBAAB71n7opOGX\nqg9UL68uN+daAACAPWzRjyDVdPPXB1d3qq5WffowbS+u3lz9312oCwAA2GP2Q0Cq6eavr1hH\nuwure+9wLQAAwB61H06xAwAAWBcBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAIZj5l3ALvrO6r7VzaqTquOrc6uzqg9Ur6n+Zm7VAQAAc7cfAtL1qj+u\nbj/z2gXV+dVx1e2q+1c/V72pemT1xV2uEQAA2AMW/RS7Y6s3VKdVT6/uXF2pKRhdcfy8SnX3\n6vnVvarXtvifCwAAsIJFP4J0z+rU6geqF6/S5svV28bw/uoZ1d2qM3ahPgAAYA9Z9CMlp1YX\nVy9bZ/vnVAeqW+9YRQAAwJ616AHp4qb3eOw62x9bHdUUkgAAgH1m0QPS3zUFnseus/2Txk+9\n2QEAwD606NcgvbP6y+o3qztWr6zOrM5u6snuuOrk6pbVI6p7V382pgEAAPaZRQ9Il1QPqJ5b\nPWQMh2v7wupxOcUOAAD2pUUPSFVfqh5U3bjpCNGpHbxR7HnV56oPVq+vPj2nGgEAgD1gPwSk\nJR8bAwAAwIr2U0D6zuq+1c06eATp3Oqs6gPVa9I5AwAA7Gv7ISBdr/rj6vYzr11Qnd/UScPt\nqvtXP1e9qXpk9cVdrhEAANgDFr2b72OrN1SnVU+v7lxdqSkYXXH8vEp19+r51b2q17b4nwsA\nALCCRT+CdM+mThl+oHrxKm2+XL1tDO+vnlHdrTpjF+oDAAD2kEUPSKdWF1cvW2f751S/Vd26\nrQWkK1VPabrOaT1O3sKyAACAbbLoAeniptPljq0uWkf7Y6uj2vp9kI6trjZ+rscJW1weAACw\nDRY9IP1dU+B5bPW/19H+SePnVnuz+0L1/Rtof+em66AAAIA5WvSA9M7qL6vfrO5YvbI6szq7\nqSe745pOb7tl9YimG8n+2ZgGAADYZxY9IF1SPaB6bvWQMRyu7Qurx7X1U+wAAIAj0KIHpKov\nVQ+qbtx0hOjUDt4o9rzqc9UHq9dXn55TjQAAwB6wHwLSko+NAQAAYEVuiHqoY6uXNB1xAgAA\n9hkB6VBHN/U+d8t5FwIAAOw+AQkAAGBY9GuQbjKG9VrvjV0BAIAFtOgB6RHVL867CAAA4Miw\n6AHpn8bPP6neu472x1S/tHPlAAAAe9miB6Q/rB5a3b760erLa7Q/PgEJAAD2rf3QScOPNQXB\n5867EAAAYG/bDwHpi9XDq7Nau8OGA9X51UU7XRQAALD3LPopdkveMYa1nN90mh0AALAP7Ycj\nSAAAAOsiIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMx8y7gDk4qrpCdXx1bvWN+ZYDAADsFfvlCNI1\nqidX762+Xn2tOns8Pqd6V/VT1RXnVSAAADB/++EI0j2rV1QnNB0t+khTODq/Oq4pPN2+ukv1\nxOr+TUEKAADYZxY9IJ1Yvbz6SvXI6g3VRSu0O756SPW06lXVTXPqHQAA7DuLford/aorVw+t\nXtPK4ajqvOrF1SOqa1f32ZXqAACAPWXRA9J1qwurd6+z/RnVJdWNdqwiAABgz6M6byYAACAA\nSURBVFr0gHROdWx10jrbX7PpMzlnxyoCAAD2rEUPSG8bP59eXXaNtleonlUdqP58J4sCAAD2\npkXvpOFD1e9Uj62+o3ptdWZTL3YXNPVid3J1y+oB1dWqX6k+Oo9iAQCA+Vr0gFT1uKauvX+q\nesxh2n2selL1ot0oCgAA2Hv2Q0A6UD2jemZ18+rUpmuSjm/qve5z1QerD2/jMo+q7tp0hGo9\nbraNywYAADZpPwSkJQeagtAHd2FZ12+6jmmt656WO2oHagEAANZp0TtpWPKA6tlNR5K+c+b1\nH6v+qelI0ier09ue0PiJpqNHR61zuMuY7sA2LBsAANik/XAE6f+pnjLz/Merxzd15f371Ter\nz1anVL9YXa/6oV2uEQAA2AMWPSBdo/ofTTeA/eXq3OoR1ZOrT1e/W/1EdVF1QlNg+sH0ZAcA\nLI4TqpvMu4g5uuq8C+DIsugB6W7V0dVDqy+O197ddErbDasnNIWjqq819XL30KYuwQUkAGAR\n/Eb16HkXAUeKRQ9I160+08FwtOT9Tdf+nLfs9XOaTrc7aedLAwDYFcfd/e537/GPf/y865iL\nxzzmcHd5gUtb9ID0lerKK7x+UnWVFV4/qukw7Dd2sigAgN102ctethNOOGHeZczFZS6zX/ok\nY7ss+hbzD00B6UdnXvvW6l7j9fssa//I6vJjOgAAYJ9Z9CNI76neVj2n+snq/OqW47V/qP60\nelH1qaabtT686Yaxb59DrQAAwJwtekCqqde65zYdLbqwKRQ9pqlHu9OqR820/UT1fdUlu1wj\nAACwB+yHgPS56rurY6uLOzT8fFd1u+pG1eerdzWFKAAAYB/aDwFpyWrB52/HAAAA7HOL3kkD\nAADAum0kIP1A9XvrmN+/VPfbdEUAAABzspGAdIPqTmu0uXzTPYZuuumKAAAA5mQ91yC9e/w8\npeneQe9epd1R1fWr46ovbb00AACA3bWegPSG6vbVjavLNXWNvZpzqhdXL916aQAAALtrPQHp\nKePn6dUDO3xAAgAAOGJtpJvvZ1d/tFOFAAAAzNtGAtJnx3CN6pbVCU3XHa3kQ2MAAAA4Ymz0\nRrG/Xj2xtXu/e3LTKXkAAABHjI0EpDtUP1V9sHpt9cXqklXartbTHQAAwJ610YD06aYe7c7f\nmXIAAADmZyM3ij2+OjPhCAAAWFAbCUh/V31Lq3fMAAAAcETbSED6i6aQ9BvVcTtSDQAAwBxt\n5Bqkb68+Vf1o9cjq/dUXVmn7J2MAAAA4YmwkIH1nUxffVVeq7nWYtv83AQkAADjCbCQgPbN6\nQXXxOtqes7lyAAAA5mcjAemLYwAAAFhIGwlI1x3DWo6uPlN9fFMVAQAAzMlGAtIPV7+4zrZP\nrk7fcDUAAABztJGA9I7qqauMu3p1h+r61S9Xb91iXQAAALtuIwHpjDEczuOr76uevumKAAAA\n5mQjN4pdj99qOpr0Xds8XwAAgB233QGp6p+rW+7AfAEAAHbUdgekE6tbV1/d5vkCAADsuI1c\ng3TvMazkqOoq1T2qq1bv2mJdAAAAu24jAelOTZ0wHM451X+vztx0RQAAAHOykYD07Op1q4w7\nUH29+kR14VaLAgAAmIeNBKTPjgEAAGAhbSQgLblG9cimG8OeNF47q/rL6iXVV7anNAAAgN21\n0YB0v+pl1QkrjHt49fPV91Tv2WJdAAAAu24j3XxfqekI0Teqx1W3qE4ew62qJ1ZHV6+ojt/e\nMgEAAHbeRo4g3avpPke3q/5u2bh/qz5QvaN6b3XP6jXbUSAAAMBu2cgRpBs0XWu0PBzN+tvq\nX6pv2UpRAAAA87CRgHRxdfl1zvOSzZUDAAAwPxsJSGc2XYf0oMO0uVd1Sm4UCwAAHIE2cg3S\nW6qPN3XU8OzqjKb7Ih1VXau6R/Wj1UerP9/eMgEAAHbeRgLShdUDqj+tHj+G5f6peuBoCwAA\ncETZ6H2QPlTdrLpvdefqmtWBps4b3lm9ubpoOwsEAADYLRsJSEc1haELq1ePYcllm4KRzhkA\nAIAj1no7abhD0/2Nrr7K+J+s3l7dcDuKAgAAmIf1BKRbNXXIcNvqrqu0ObG6y2h30vaUBgAA\nsLvWE5CeV12uenj1qlXa/M/qP1fXqZ61PaUBAADsrrUC0i2ajhw9q/rDNdr+QfXC6nubghIA\nAMARZa2AdOvx8yXrnN/zq6ObergDAAA4oqwVkK45fn5infP7+Ph53c2VAwAAMD9rBaSlG74e\nt875XWH8/ObmygEAAJiftQLSJ8fPO61zfncbP/95U9UAAADM0VoB6S+q86ufqY5do+2Vqv9R\nfbV665YrAwAA2GVrBaQvV79f3b764+qqq7S7UfWW6gbVb1fnbleBAAAAu+WYdbT52ep21fdU\n96heV72/+np1leqO1b2aeq97S3X6ThQKAACw09YTkM6t7l49pXps9bAxzDq7enr169XF21kg\nAADAbllPQKqD1yE9pbpLdeOmHuvObuoC/F0JRgAAwBFuvQFpyTeqPxsDAADAQlmrkwYAAIB9\nQ0ACAAAYBCQAAIBBQAIAABgEJAAAgGGjvdgdya5Q3a26WXVSdXzTPZ7Oqj5QvaO6YF7FAQAA\n87cfAtJlq6dW/6263GHafaX61aab3R7YhboAAIA9Zj8EpJdX31u9r3pFdWbTDW7Pr46rrlGd\nVj28KSBdv3rMXCoFAADmatED0h2bwtHTqie1+pGhV1W/VD27enT129U/7kaBAADA3rHonTR8\na1MoenJrnzZ3UfUz4/HddrAmAABgj1r0gHRcdXH19XW2/3J1SVOHDgAAwD6z6AHpY02nEd57\nne2/t+kz+fCOVQQAAOxZix6Q3lR9pnpJ9djq5FXaXafp9LoXVB8f0wEAAPvMonfS8M3qgdWr\nq2eN4YtNvdhd0HQK3snViaP9R6vvaerhDgAA2GcWPSBV/V11k+r7m061O7WDN4o9r/ps9ebq\ntdUfVRfOp0wAAGDe9kNAqulI0nPGsBv+ffXuppvUrsfSejhqR6oBAADWZb8EpKqjm3q0W/Lv\nqvtVN2g6pe791V809WK3VZ+ufqzpFL71uGnTfZjW6oocAADYQfshIF2/elHT0aMXj9fuWb20\nuuqyth9o6snuE1tc5sXVazbQ/s5NAQkAAJijRe/F7tjqrdUdO3j06FrVn1SXr57edG3Sj1Qv\nr27RdC3SfgiOAADAMoseBO7XdATpYU0dMFQ9vOlGsP+xOmOm7fOrv61+s+kI0xt2r0wAAGAv\nWPQjSDduOnL0ypnX/n31zx0ajpY8u+k6oJvteGUAAMCes+gB6bymzhlOmHnt31r9PkcXNwWk\ni3a4LgAAYA9a9ID0tvFztgOEVzUdRTp1hfZPbPpM3ruzZQEAAHvRol+D9I/V71ePq245Hv9N\n9bPVq6tfrj5anVI9snpA9ZbqXfMoFgAAmK9FD0hVj60+0xSK/mDZuBcue/7y6lG7UBMAALAH\n7YeAdEnTkaJnVvepbl9dr+lGsRdVX6g+WL2u+sicagQAAPaA/RCQlny16QjRy+ddCAAAsDct\neicNAAAA6yYgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMBwzLwL2GVXrL6lOqk6vjq3Oqv6cPXNOdYFAADsAfslIN2v+unqLtXRK4y/sHpL9dTqr3ax\nLgAAYA/ZDwHpZ6tfqc6v3lqdWZ09nh9XXaM6rbpXde/qUdXz51IpAAAwV4sekK5f/XJ1RvWf\nqn9bo+0fVc+q3th06h0AALCPLHonDfdsOqXuhzp8OKr6ZPWfm65Nus8O1wUAAOxBix6QrtJ0\nfdG/rLP9R6pLqpN3rCIAAGDPWvSAdFZ1bHWzdba/TdNn8tkdqwgAANizFj0gvbGpK++XVKeu\n0faO1Uurr1Wv3+G6AACAPWjRO2n4fPXY6rlNvdd9uIO92F3Q1IvdydUtqxs09Wz3iOoL8ygW\nAACYr0UPSFUvrD5QPbGpK+/vW6HN55pC1G9UH921ygAAgD1lPwSkqvdV3z8en1yd1NRb3XlN\n4ejsbV7eiU3dix+7zvY6hQAAgD1gvwSkWZ8fw6wHVdeqfnublnF0dcWmELYeJ2zTcgEAgC3Y\njwFpJfetTmv7AtIXqx/YQPs7V3ffpmUDAACbtOgB6QFjWMtdq6s2XYdU9ZoxAAAA+8iiB6Tb\nVD+ygfZLbT+TgAQAAPvOot8H6TXVR5o6Y3h6dc3qyisML67eP/P8V+dRLAAAMF+LHpDeV92q\nqfvux1XvqG5dfWXZcEF18czz8+ZRLAAAMF+LHpBquvnrLzQFoy9UZ1TPazpSBAAA8P/bDwFp\nyZlNnTH8ePWQ6p+qh821IgAAYE/ZTwGp6pKmrrxPrf6menn16urq8ywKAADYG/ZbQFrymabu\nvx9a3aH1dQUOAAAsuEXv5nstf1y9pfqJ6qtzrgUAAJiz/R6Qauq17inzLgIAAJi//XqKHQAA\nwKUISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAADDMfMuAABgh/1q9TPzLgI4MghIAMCiO/l2t7tdD3vYw+Zd\nx1z82q/92rxLgCOKgAQALLyrXe1q3fa2t513GXNx3HHHzbsEOKK4BgkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgOGbeBQAAO+7B1UPnXcQc3X7eBQBHDgEJABbf/U45\n5ZSHnHbaafOuYy7e9ra3zbsE4AgiIAHAPnDzm9+8JzzhCfMuYy7+/u//ft4lAEcQ1yABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDMfMu4A5OKq6QnV8dW71jfmWAwAA7BX75QjSNaonV++tvl59rTp7PD6nelf1U9UV51UgAAAw\nf/vhCNI9q1dUJzQdLfpIUzg6vzquKTzdvrpL9cTq/k1BCgAA2GcWPSCdWL28+kr1yOoN1UUr\ntDu+ekj1tOpV1U1z6h0AAOw7i36K3f2qK1cPrV7TyuGo6rzqxdUjqmtX99mV6gAAgD1l0QPS\ndasLq3evs/0Z1SXVjXasIgAAYM9a9IB0TnVsddI621+z6TM5Z8cqAgAA9qxFD0hvGz+fXl12\njbZXqJ5VHaj+fCeLAgAA9qZF76ThQ9XvVI+tvqN6bXVmUy92FzT1YndydcvqAdXVql+pPjqP\nYgEAgPla9IBU9bimrr1/qnrMYdp9rHpS9aLdKAoAANh79kNAOlA9o3pmdfPq1KZrko5v6r3u\nc9UHqw9v4zIvU31b0/VP63GzbVw2AACwSfshIC050BSEPrgLy7pe9cbqcruwLAAAYJsseicN\nS76r6QjSC5pOszt+lXbHVZ+qfnKLy/tkdfnqqHUOd9ni8gAAgG2wH44g/Xz1SzPPf7DpeqQH\ndumjSUc1Hf05cVcqAwAA9pRFP4J0SlNA+kT1kOo2TT3aXbl6e3WL+ZUGAADsNYt+BOnbmk6b\ne2T11+O1v6/ePIY3Vnes/nUu1QEAAHvKoh9Buk5T5wzvXfb6J6r7NXWi8Oqm64UAAIB9btED\n0heariu65grjPlo9uOkmsS9r8Y+mAQAAa1j0UPCepiNI/6upc4aLl41/W1Ovds+tXlk9ajeL\nA2DXXK6VvyzbL06YdwEAR4pFD0hnVn/QdA3St1bfM16b9fzqwvFzN+6RBMDu+82mTnoA4LAW\nPSBV/XD15eqHqqNXafPipvsfPa86aXfKAmAXXf7bv/3be/SjHz3vOubiCU94wrxLADhi7IeA\ndGH1E033PrrkMO3eWZ1a3an6zC7UBcAuuvzlL981r7k/z7I75pj98O8eYHvsp7+Y56+jzUXV\nu3a6EAAAYG9a9F7sAAAA1k1AAgAAGAQkAACAQUACAAAYBCQAAP6/9u48SNKyvgP4F1iQYxVw\nUUA8FlRAgkqJC+LFmlgihxgPiKIGQYmllCalETTROJQXaGIZNZ4YQfGIseKFiopG8SSIB6Cw\nqKuiIDfCgruwy27+eJ6u6e3tmemenel3Zt7Pp6rrnX777bd/Tz9v777fft/3aaASkAAAACoB\nCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAq\nAQkAAKASkAAAACoBCQAAoBKQAAAAqkVNFwAjdHyS5zddRMPOSXJ200UAAMxVAhJtsnyvvfZ6\n8sEHH9x0HY248MILs3Llyj9EQAIAmJCARKvsvffeOemkk5ouoxG33HJLVq5c2XQZAABzmmuQ\nAAAAKkeQANrh2UmObbqIBi1rugAA5gcBCaAdjtxrr72Oaes1eOeee27TJQAwTwhIAC3R5mvw\nLrjggqZLAGCecA0SAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQGUUO2iJm2++OUkOTHJ6w6U0\n6bwk32q6CABg7hKQoCWuvvrq7Lbbbg/fZ599Ht50LU1YsWJFrr322l0jIAEAkxCQoEUOOOCA\nnHLKKU2X0Yi3ve1tOe+885ouAwCY41yDBAAAUDmC1C4HJXlS00U0qJWnllHceuutSdkGTm24\nlKbY/gFgAAJSu7x0yZIlL1y6dGnTdTTisssua7oEGnTVVVdlyZIlBy5duvTApmtpgu0fAAYj\nILXMsmXLWnsNygte8IKmS6Bhtn8AYCquQQIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQA\nAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQk\nAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgW\nNV1AA7ZIskOSbZOsTnJHs+UAAABzRVuOIO2W5LQkFyW5PcmqJDfUv29L8t0kr05yr6YKBAAA\nmteGI0hPSfKZJPdMOVq0IiUc3ZnkHinhaVmSxyV5VZKnpQQpAACgZRZ6QNopyaeS/CnJ85N8\nOcm6Psttm+SYJO9I8tkk+8SpdwAA0DoL/RS7I5PsnOTYJF9I/3CUJGuSfCzJcUn2SHL4SKoD\nAADmlC2SbKh/n5ZkrLlSZsVrU9q1zYDLb5XkriT/nOT0zXjdPZNcmMGP0C1KOQVwmyRrN+N1\np3LmokWLXrTddtvN4kvMXXfccUe23HLLaL/2t5H2a7/2a7/2t7P9q1evzrp16z6c5MVN1zLH\njSV5Q7LwT7G7LcnWSe6b5PoBlt895ajabZv5ur9LOWo16Pu7RUqNsxmOkuT169at+9SqVatm\n+WXmrHuvX78+q1aturnpQhqi/dqv/dqv/e2k/e1uf5L8vOkC5psN9TbWcB2zYb+Utn08Ux9F\n2iHJ55OsT7L3LNcFAADMHWOpuWihH0H6RZL3JnlZkkOTfDElQd+QcirdPZLsmuQRSY5OskuS\ntya5soliAQCA5i3kI0hJOX3tFUl+n/G29rtdmeT4hmoEAACaM5aWHEFKSkPfleTdSfZPOe3u\nvilDe69Jcm2SS5Nc0VSBAADA3NCGgNSxISUIXdp0IQAAwNy00H8HCQAAYGACEgAAQCUgAQAA\nVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEA\nAFQCEgAAQCUgAQAAVAISAABAtajpAhipHyR5TNNFAAAwUj9MckjTRcwXAlK7rExyQ5LTmi6E\nRryhTvV/O+n/dtP/7ab/2+0NSVY1XcR8IiC1y11JbkpycdOF0Iib6lT/t5P+bzf93276v91u\nmnoRurkGCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACg\nWtR0AYzUXU0XQKP0f7vp/3bT/+2m/9tN/0/Dhnoba7gOZt/O9UY76f920//tpv/bTf+3m/4f\nzFhqLnIEqV1uaboAGqX/203/t5v+bzf93276f0iuQQIAAKgEJAAAgEpAAgAAqAQkAACASkAC\nAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgGpR\n0wXQuF2S7J/kj0lWNFwLo7FFkj3q7Y9Jrk5yd6MVMWq7JnlQkuuT/D76v222SvLYJH9OcnHD\ntTD7tk+yT0q//zLJrc2WQwOW1tulSW5qtJJ5ZEO9jTVcB834ckr/n9l0IYzEsSn/QW7oul2d\n5MVNFsXIPD5lh7i7/69L8pImi2Kk9kzy3ZS+/1HDtTC7tkzyliR3ZPzzfleSDybZtsG6GJ0t\nkrw8yeqU/j+q2XLmvLGMf1YEpBY7LuP9LyAtfM9J6etfJnlRkuUpweg3df7xjVXGKByQsqN0\nY5JXJvnLJCdmvP9PbK40RuT4JLcl+UmStRGQFro3p3y2v5DkqUmelOTDdd7ZDdbFaOye5LyU\nz/pPIyANYiwCUuvdO+X0mi9EQGqLS5PcmXJqXbdHpmwD3x55RYzSp1L6eXnP/EfU+T8YdUGM\n1JKUfn5XknskWRMBaSHbJaWPL8qm15t/Lsn6JPuNuihG6t0pX4A9JslrIiANYiw1Fxmkob3e\nkfKf5GubLoSROSXJs1JOqet2Sco3TDuOvCJG6dyUz/u3euZfkmRVkvuNuiBG6q4kRyd5RcoX\nJSxsR6T8H39mShjq9sGUU6+eOeqiGKnzUs4c+GHThcxHBmlop79KOdXipdl0Z5mF6ysTzH9i\nkq1Tvmlk4TpngvlLkixO8n8jrIXRW5Xki00XwcgcUKf9BuH4Uc8yLExfarqA+UxAap/tknwg\nyffq1FGDdnp8ymmWB6ZcwHlJkn9ptCKacnrKt8nvbroQYMbcv06v6fPYDUnWJXnA6MqB+UVA\nap+xlH8Un5Z6ERqtdG7Gw/Enk/xjypDftMupKQN1vD/J5xuuBZg529fpmj6PbajzdxhdOTC/\nCEgLy67Z9EL7i5M8r/59QMroVW9KcvkI62I0pur/bs9LsnPKb2OcmOTnSZ6bcs4y89Mw/b8o\nyXtShvf+QJKTZ7c0RmCY/mfhW1enE+3nLUq5Lg3oQ0BaWNYnubZn3s11ulWSDyW5MslbR1kU\nIzNZ//fqPjf5PSlDgH4s5ehiv28cmfsG7f+dk3wmZTS71yQ5Y3bLYkSG+fyz8HV+DHTnlBFr\nu22f8jtItg+YgIC0sNyQTYfw7TgpyaNTRq87tmt+5zD8g5M8P8llKTvLzD+T9X+S7JTymb+x\nZ/51Sc5P6f/9kvx4Nopj1k3V/0k5rfL8JPumjGj4uVmuidEZpP9pjxV1uk/X3x371qkzSWAC\nAlJ7PKROXznB48vr7YwISAvRbikX616Y5JA+j+9ap065WLgWpYxitm+Sw5Nc0Gw5wCw6v06P\nSPm9w25Pq9Ovjq4cmH/8UGw7bJMylG/vbY+U/j+r3t+mofqYfd9O6eu/Txm1rOO4lNNzfptN\nf1CQheO1Kf1/fNOFMCf4odiF7/spv3m1vGveAUluSzmq5Evy9vBDsYMZy3guEpBabqeU/j+z\n6UKYdQ9M8vuU/v5Dku+m/Mr2hiS3Jjm0udIYgT+l9PUPJ7nt3lh1zLYXZOO+Xp/k9p5595/w\n2cxHe6dcl7Y+5Xfuvp8yeMMtSR7VYF2Mxrcz/tm+KuXf/yu65o01VtncNZaai3x7wLqUD1Hv\nOcosPFcleWjKEYSDU44e/jTJh5N8JH40eKEb5NRZQ/8vXHdn4wFY+p1iqf8XliuT7J/kZUmW\npZw58NYk70v/30diYbkz45/plfXWbe1oy5l/HEECAADabCw1F7neAAAAoBKQAAAAKgEJAACg\nEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAA\noBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkA\nAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJ\naLvlSZY0XQQz5nVJNiR5atOFVPum1PP+GVrfA2ObBZhVAhLQdv+b5MCu+8cleW9DtbDwXJ/k\ntUk+2zVvc7axY7PpNgvADFrUdAEAc8Cqrr+PSrJXU4Ww4Nyc5PSeeZuzjd1ep6smXQqAaROQ\nAMrO5j1TvpU/JMnqlNOYbknysyTbJzkoyW+S/C7ltKn7JPlOz3p2qI8tqsteP8lrDrPsMHZO\n8tCUNv06yV0TLHevJHsn2arP6++eZJ8kK5Nc1ee5D0zZwV+R5I9d86dq06Dv46C2SPKwlL77\nZUoYmcyw9W1f178mya+S3NlnnVunvB/3qa+/Msm6Puu8JuW96reNXZ/y1bk5rQAACMhJREFU\nfv86ye/7vMYeKX16ZQYPSLvW2idyaZKbplhHx1Rt7DYT218yO585gIFtqLexhusAaMKGJEuT\nPDrj/x52bufXZTrXkbwxyYfq35d1rWPbJP+RsgPd+/ylPa83zLLD2CHJR1N2XDvrvD7JCT3L\nLU5ydpK1Pa//za7Xf3id9z8TvNbn6uP7Ddmmqd7HYfxFksu7XmttkncmeX02vQZp0Pr2rPPf\nkuTklJ381XXeTUn+uqeGk5Nc27POa7Lxe959DdJE29jD6t9fnKCtH6+PP7LW0NlmJ/P8Pq/V\nfTtqiucP08ZkZre/ZGY/cwCDGMv4vyUCEtBq+6d8+7xVkp1SjhZcVP/eoS7T2XH+RpKfJDk6\nyWO61vHplB2+16Xs7D44yUuS3JZy5GH7aS47jM/XGv815QjFk5P8IMn6bLxj/5W63Okp3+Dv\nk+TVKTu2v0qyXV3u0iR/7noPOu6ZEhp+PI02TfU+DmrrlCNGdyd5VX29x6Vcm/PrbBqQBq3v\nAfW5P6817lnn75fkupTAtLjOO7Qu+7Ukj005ovbEen9DrSfZOCBNto19r9a4a09bt611dt7v\nxRnfZiezOMlDem7LU/ruxpSjhFMZtI3JzG9/M/mZAxjEWAQkgL7WJPlhz7z7p/w7eXeSB/U8\ndmDGdwx7vbw+dsI0lh3Gsvrcj/TM3y1lx/Pr9f5j63Kf6bOON9fHXljv/1O9/+ye5Z5X57+y\n3h+mTZO9j8M4Mv1Hhtsu40c7OgFpOvXdnnI6V7d31seeWO93Rstb3rPcTknelOTger/fKHb9\ntrET6nKv6pn/jDr/FX3qH8aWKQFyQ5KnD/icQds4G9vfTH3mAAY1lpqLXIMEMLgfp1wP0e3w\nOl2X5Dk9j21Tp09I2XkcZtlhHFan5/bMvzblCEXn2pkn12m/U+e+kBKKDk1yVpJPpuy0Pisb\n79Aek3JU4JP1/nTa1O99HMYhdfq1nvmrk3w1yd92zZtOfT9KckPPsn+o087w2p1rhU5OuU7t\nlnr/TynBYlifTvLvSY5P8m9d849NOVLyiWmss9trUoLO+1KO9gxi0DbOxvbXsbmfOYChCUgA\ng/tDn3md0chOneR5u01j2WF01tuvvu6BBZbW6co+y3V2Qh9Qp79JOcpxZMppXmtSTq87LOW0\np87gDNNpU786h7FHnV7d57HeQSWmU981fZbpDEqwVZ1+IskzU46wPT3JhSlHSj6bcnrisO5I\nCZ1/l3KE5OKUI2JHpVybdOM01tmxLMlpSX6RTY9QvTEl9HY7IeX0uEHbOBvbX8fmfuYAhuZ3\nkAAGd0efeVvX6WEpO7T9bk+fxrLD6Kx3opHFepfrN7LY2jq9R9e8T6aEoqfU+0enhKVz+qxz\nmDb1ex+H0XnNtX0eu3uCZYepb/0ANaytz3tSkjNTQttpSS5JGcRiu4mfOqEz6/T4Oj0y5Vqi\ns6axro7FKUHn7iTPTTnK1u22lCM93bfO9jFoG2dr+0s2/zMHMDQBCWDzdL7Z3yXlKEu/29pp\nLDuMzvDWSyZdavLl7l2n3UM//1fKjvWz6v1jUgZu6D5FarbaNJnOENc79nlsl577s13ft5K8\nLOWoxr5J/jtl5/w101jXRSnh49iU/5+PSRkc4iubUd97UgZoOKWuu9fbU069675d3LPMtzJ5\nG2dr+5tIE9sc0CICEsDm+VGdHt7nsd1SrrtYNI1lh9EZ4azfiHAfTNlJTsZ3fA/qs9yyOv1J\n17zrUi7sPzIljByWcv3K7V3LzFabJvPLOt2/z2OH9NyfrfrulRI8uq1IGV57XTYe4W0YZ6aM\nZHdEyul152TqIzMT+ZuUo1FfTvKuaTx/0DbO1vY3kSa2OaBljGIHMO5PKUNFd+uMqHXOpotn\nccoF/WsyvpOXlNOAPlOfd9A0lh3GjikX0F+XjUf8elY2HkHtXinf4l+TjYd5XpxyEf5dKcMl\ndzuxruOMOj2i5/Fh2jTZ+ziMzu8GXZ6Nj0Z0BjToHsVupur7h2w8qt83Uo5k7NmzXOe3jj5a\n7/cbxa7fNtaxc8ppcL+rz+sXAgfxoPo61ya57zTXMWgbZ2P7m6nPHMCgxmKYb4C+OkMhfzdl\nZLFk6h37w1JOPVuTcgH7OUl+m/EfupzussN4RsoO5u0pp2R9v65zRcpOd8fRKRfO35Syg3tW\nyg7r+iQv7bPeHTN+2tL16f/N/KBtmqmAlJQjExtSdso/n+Q7KTvzb6/zu48uzER9vQHpoCS3\npoSZr6X8mOvXU97b61N+3yfpH5D6bWPdOj8Me9FEjR/Ax+o6LklpT+/tmQOsY9A2JjO//c3k\nZw5gEGOpuWirjAejb6ecZwzQZt/J+PUQlyf5ZsqF4weljOL1nT7P+XXKDtqdSe6X8iOVF6X8\nVtDZm7HsMK7I+HDc90n5hv0/k7w449fsJGWH9dNJtkgZVWxxkgtSdk57h2lOrXPHlP80zs7m\ntX+q93EYX0o5yrJtvf0syYtS2vqAlNPKOsNUz0R990859a3zulenDH5wW8qRkXunhLWPpowC\n1xkJb/skj0oJDD+o8/ptY922Twkwb8r46WTD6vxW0OpaX+/t8iQ/nWIdg7YxmfntbyY/cwCD\nWJ6u331zBAkA5o7zUo7cLG66EIAWGUvNRQZpAIC540Upp4+9IxsPhgHAiBjlBWDuOTQbX7cx\nmVUpF9PPZ21rbz/vTDkV7wkpp4qd0Ww5AO0lIAHMPWekjBQ2iCsy/ZHO5oq2tbefLVMGHXhT\nyvuxptlyANpLQAKYe/r9nsxC1rb29vOKpgsAoHANEgAAQCUgAQAAVAISAABAJSABAABUAhIA\nAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAIS\nAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEC1qOvvxyU5\ntalCAAAAGvK4zh9bJNnQYCEAAABzhlPsAAAAqv8HUprvfnSIQdcAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'tree_cover_density' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZxleV3f/9cw09OzwcCAzLAIkUXNoAQSWTKgAkFWQURHCRATl18gxCVR\nIEI0tFvMTw38QDGCBkUgjBuERcTBgCyuhERBUBlREZwBRhZn7Z7pmf79cb716Ns1VdW3upZb\nXfV8Ph7nUafuOfecz733VPd53+/3fM8p1ZEAAADoVosuAAAAYKc4bWb+d6r3LKoQAACABXlo\n9ZClX46M6cCiqgEAAFigA41cpIsdAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwHDaogsA\nTnqfV91nzN9cvWuBtZxMvG+ru0P1JWP+SPXOBdayFRbx2W9kn45VYE8RkIB5fWl1+zH/kepj\nY/4rq18Z84eqM7a5rpPVbnnfVjsuNuKh1evH/E3tvv+rFvHZb2Sfu+VYBZiLLnbAvH6weseY\nnrTgWtg5HBecqIdWD6vOWnAdAMfYbd/KAVvn6lXm31bdf8zfvH3lnPR2y/u22nHB6k62z34r\n6r2weveY/4fVn23SdgE2TEAC5rXaifDfV3+0zbXsBrvlfROQ1u9k++y3ot5/vsnbA9g0AhIw\nr2tm5q+amV/rAu47V1845j9TvX/M36G6R/Wp6q+X7Wf/eM4Z1Qeqg8uWz27z6up9Y/7W1b2a\nug7/aXXd8V9Sd6nuWt3YdP3M36+wzkqv4dTqH419HqzOHMuvqP58hW2c29Fv4Bs1n9H8F77f\nuun9Orv6bHVZdXiVdb+guvuYv6r6P8uWzzsAwunVvavbjn1+vGM/9yWrHRfzut3Yz/XVh5uu\ncVmP9bw3W3E8ztrXdAye19HXc80K653I38xZTe/T6dWHqmvXqGM95tnuvIM0zHPMLF2z9pSZ\nxx5YXTDW/4sVtruez3jWbUc9B8dzDjZ9Rg+ZWefdTde51fH/1pf/rcz7eW/1cQdsgSNjOrDg\nOoCd7fs6+u/Fg2ce//qZx5f/J/4tM8t+rym8vKQpkCw9/rvVncb6F1efnFn299VT19jmZU0n\nEi9tOkFZevya6vlrvJanNYWoIzPTjU0DA9x92brfuuw1nNd0gnOk6STtNTPLl4eRJd+97DWd\n0drv25IHVZd27Pu19PpeWd1thef88Mx6v7/C8ifNLF/pJPPzx2uafT+PNJ0Y/2bTNSOzVjsu\njufW4zXMvrZPV99RPfE4NdaJvTdbcTzWFPL+W1MYmK3lcPVLM9tbsp6/marnjn0vPX599YIV\n6ljL7D6XWvrm3e7xjtX1HDNvXrbO7PT/LdvuiXzGNX0h8aplz/tM9V1NgWl2W/tnnne8v/Ul\n6/28t+q4AzbXgY7+3QlIwFy+oXrPmO4x8/haJ09PmVn2weoHuuVJ0ZGmk6AHNp1gLF92uKMt\nHsu3eXn16lW2eaR69gqv40eWrXN5x54kfrypZWml/f1J9eJltX31su19/gr7fPfM8lfM8b7V\ndEK0/MRw+XTlsvemNhaQ7tj0fszu49Cy32+qnjDznNWOi7WcUv3WGq/rtWvUWCf+3mzF8XhW\nR0+il0LBp8fPpcc+XJ0z85z1/M3Mhuvl07NWeG9WM7vPTx5nu/92jecur3e9x8wbuuX7enhM\n/3Vmuyf6GZ/SNGDIas95ybLfZx3vb71O7PPeiuMO2HwHmvm3YWnmwOLqAU5ia508zS77bNO3\nuP+u6SR9+UnGB5tOmr+m+omOPTl4ycw2L172vGubTqZuX/3Tpou9l5ZfU91m5rlfPrPsxuqx\n4/FbVS+cWfbLq7yGTzZ9a/zHTd92v6Kpm82nZ9ZZfnJ5ftMJ4tLyh8/xvn3ReGxp+RvHY+dW\nj2kKcbMnXLMjkm4kIP2nmWVvbur2VFMXwtkT6stW2O56fF3Hfr4/3dTd6HbdMsAur3Ej781W\nHI/fNfP4NU0DDlTdc2x/adm/W6WO4/3NXN10rH1V9b0dGz4+0vxmt/v3x9nuX67x3OX1nsgx\nc0HHvp9fvGybG/mMZ/99OFL9fNMXHp83Xu9ax9bx/tZr45/3Zh13wOY7kIAEbJJ5T/aONA0J\nveQfL1v2yY5ey1PTdQ5Ly353jW1+37J9PnjZ8tmLwX955vH/sex5+5quIVoKT3dcZX9vG+vO\nevnM8t9ctuxfzyz7WEdP5tZ6316+7Dn7ly1/4LKaHjezbCMB6ZUzy1bqovgt1ZOb3uON3Cbi\n12b2c9kK2/rDNWrcyHuzFcfjVze1VD67Ww488KqZ5/zKzOPr+Zv52WXLl7c+3KH5bGS7a9V7\nIsfM8QLSRj7j1808/tfd8lrrP55ZvlZAWu1vfaOf92Ydd8DmO9D4e3MfJGA7vWpm/v907AXN\nv9Z0DcOS2Quiz1tjm69Z9vvvN51kLPnHM/NfMTN/qOnb6KXpnzV1FarppOqiVfb3n5sC1KzZ\nsPWwjm21+tpl680zTPKjZuZf3y0HLvjDpm/Rlzxijm3OY7ZF4j81fWv+tKaBHxq/v67pPd7I\ncM9fNjP/1hW29UtrPHcz35vNOB7f3PRN/4uq/9vRe/s8rGNPdG+7Rh1rWd5q8BvLfp83IG3V\ndrfimNnIZ/xPZuZ/vVuGoOVfjKxlpb/1zfi8t+LfQWATGcUO2C5Hqr9a9tjfdbSv/vJuW383\nM7/av1U3VR9d4fGPNnVtq6MtQafNPFb1r8a0mnut8vj/XeGxdzWFqzs3jeT1mKbWqnM79uTt\n1Wvsb8mpHXvx+Wrd2f6yaQS+Wv1i9fV6WfX/jO3ur755TDWdkL65qTvcBza4nwtm5lf6/P5m\nledt5nuzWcfjvqZvHf9NUxfB1ZyyxrLVHOmWoyJ+YtnvJ/L/+GZud7OPmY1+xrPH1vLPd7XH\nVrPS3/pGP++t+HcQ2GRakIDtckO3/Db3ppn569dYtprrW/lb6Rtm5pe6yJy+bJ0PN307u9r0\n6RW2e2P1uRUev7ljWz2eOH4+fma/f9x8J4n7O/bk6oZV1pv9Znt5F6S1rHWi/smm7kuv7JbD\nPd+1embTSeMz17G/lfY/221ppde32qh+m/nebNbx+DNNXctu13Ty+xtNoeGlTZ/5RtzQLV/j\nPMNbb+d2N/uY2chnPM+xNc/w/0vbX+lvfaOf91b8OwhsMt9GACezc5q6tSw/qbj9zPzSvY2u\nazo5WQosr6j+33Xub60uQq+t/v2Yf0zTF1BPmlk+T+tRTXVe1zRaVq3e1enzZuavnJk/MjN/\nVrd0/gqPzbqiqWXtGU0nvg9uGvziUU33oTm1+smmC+cvX3kTazrS1KXo1uP3lb6Fv2CFx2rj\n781mu1NHW0uq/kP14zO//7eme+jsdpt5zGzkMz7SFNKWWmPWc2wtt9Lfus8b9ggtSMDJ7p8u\n+/02Hds97sMz87MtOPdpc723oze5vH3TSeJjxu83t75rH947M7/StVC36+joWTVdk7FkNize\ntVv+O//AOfZ/atN1H+9uOgF8ctM1JUtdg06bczurmb0Z6D9eYflXrPDYko28N5vtPh3b2vHr\ny5bfbwv3vdNs5JhZ3qq5kc949tiavR5pyVeuUsM8fN6wRwhIwMnuuR37b9n3dGw3m7fNzL9u\nZv7rOzZI3aH626ZrG363o9c3rMdrZ+Zf0NFWkre3vtaWX5yZf0y3DAw/3NHXeE31qzPLZodo\nvl3HtmLdu9VvOLm/6XqRv6o+1bGtcDV9Sz97ncryVrv1ePvM/GM79v4uX9j02axmI+/NZlve\nhWv2/lmP69gb5567hXUsyokeM8u7mN1z2e8b+YyXH1v3n/n9i1v72Dqevf55w56hix1wMru+\nekDTN8hvb/pW+atnll/adMPHJT/ddC3E5zd1zfv96pKme8I8pWmQhbrlKFnzem31/WN+diSu\nebvXLfnFpi5LX94U/i5tGvThk+OxB82s+5ym+6osubTpfVkaUevVTaNmXVt9U1P4W7oX02yw\nPNR0zcU/GL//76YTz082dXd6WEdb665oGpjiRP1M9Z1NJ7n7mlodLmnqIvWUsf2lUdCWf5G3\nkfdms/3fju0O9lNNXcnu0XQR/+uaWlJqal343o49gT/Znegx83dNx+PZ4/eXN41W91dNI8Rt\n5DN+WfUdTcfVaU3XE/5aUyvu141t3P0EX+9e/7xhT3EfJGAj5r2ny0oX3v/FzPLlF3F/+8yy\n2W4zs9u8tmlAhNmbSs4+Z/Yb3iUXLtvv8un1HTtc7/Few3J/tGx713W0JWnW8bZ726Zv51er\n87qm92glz2g6IVz+nHc2nbjNPjb7Rdmtm25Sudo+jzSNOjc7TPeJekbH3kB3aXp/000yZx9b\nfi+aE31vtuJ4nL1x6Ox0adNx9N5ljx84Th3Hq/Guy7b3JSuss5KNbHet557oMfOTK6z35pnl\nGzn+n9nKx9afVE+f+X2t+yCt9re+2Z93ndhxB2y+A42/Ny1IwEZd2dF7dSzvgrLWsqo/6GhL\nzfIuaH8789y/XWXft2q68Pt+TUMNf/HYz7ubvklePqpW1YeaQtI3NA3Bfeemk62/bvr2e/nN\nGI/3GpZ7cfUvZ37/naYWquWOt93PNbWGPbQpMHxh0wnYp5vet9d27P2eZr2s+mDTt/B3G895\nW1Nr0tkde2+V/R09Uby6+qqmbk1f1fTN+K2bWgo+2tQC8PrmC4rH87Kmb+S/takF4rOjrlc2\ndXecrfH0jh217ETfm604Hl/c0RPvuzR1Nfv1phaPm5paLZ7f1I3sE02jnp2xRh3Hq/FQx743\nKx3jK9nIdtd67okeM/++6YT/YU3H4BVjvSUbOf5/pun+Qt/S1BL5uVHHL1SPXPaaZ83zt77Z\nn3dt/N9BYAvMfssBsNOtt0UHYMl3pkUGWNmBxr8PBmkAAHaLh1VvbWpBvaKjN4quqSVydpju\n3962qoCTii52AMBu8eGmbnlLA0D8XtOgD0eaRnRcGor7YPVft7064KQgIAEAu8Xl1cVN9x27\nbdM1UQeWrfOZ6l9Uf7qtlQEnDQEJONmsd9AEYG/5jaZR+b6h6d5Ed24aCfGKphalS6qrFlYd\ncFIwSAMAALCXHcggDQAAAMcSkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nOG3RBWyjh1ePq+5T3bE6o7q+uqJ6f/XG6g8XVh0AALAjHBnTgQXXsVXu3hR8jsxMh6qrxs/Z\nx3+juv1iygQAABbkQCMT7PYudvuqt1T3q15UXVSdW+2vbjN+nlc9onpF9ejqTel6CAAAe9Zu\nbkF6fNNr+xdzrv8dY/1HbFlFAADATnOgPdKCdGF1U/XaOdf/2aY35v5bVhEAALBj7faAdFPT\na9w35/r7qlOaQhIAALDH7PaA9L6mwPOsOdd/9vhpNDsAANiDdvsw3++ufqf6iepB1a9VH6yu\nrG5oGqTh/Oq+1VOrx1SXjucAAAB70G4epKGmUepe17HDea803VT9fHX2YsoEAAAW5EAjF+z2\nFqSqz1RPru7d1EJ0YUdvFHuw+kT1gerXq48tqMbtcqemG+WyPa5Kd00AgJPKXghISy4b0172\nQ6eddtq3nnnmmYuuY9e76aabuu66645Ut66uXXQ9AADMZy8FpIdXj2tqQVlqQbq+uqJ6f/XG\ndv+3/ac+8pGP7LnPfe6i69j1Lrvssp7xjGecUp266FoAAJjfXghId69+pXrAzGM3VIeaBmn4\nsuoJ1X+s3lo9vfr0NtcIAADsALt9mO991Vuq+1Uvqi6qzm0KRrcZP8+rHlG9onp09aZ2//sC\nAACsYLe3ID2qaVCGb6petco6n63eMaY/ql5SPax6+zbUBwAA7CC7PSBd2DR892vnXP9nqxdX\n929jAel21Q81tWDNY391z+rLN7BPAABgg3Z7QLqpqbvcvurwHOvvq05pGgN9I05pGr1s3uHi\nbl89tDq96fooAABgAXZ7QHpfU1h5VvVf51j/2ePnRkez+0z1L9ex/kVN10EBAAALtNsD0rur\n36l+onpQ9WvVB6srm1pq9lfnV/etntp0I9lLx3MAAIA9ZrcHpJurJ1Y/V108prXW/YXq29t4\nFzsAAOAktNsDUk3d3Z5c3buphejCjt4o9mD1ieoD1a9XH1tQjQAAwA6wFwLSksvGBAAAsKK9\nckPU86qvaxo44YvXWG9fUze7J21DTQAAwA6zFwLSV1cfrX61Kfz8afU/mobhXu7UphB1v+0q\nDgAA2Dl2exe7s5tu/rqvemn1kerB1T9vakl6RPW5hVUHAADsKLs9IH1VdUHTEN6vnXn8l6pf\nrN4w1nFzVgAAYNd3sbtH05Dd/3PZ469rakV6aPXy7S4KAADYmXZ7QDpUnVKdvsKyN1XPbrrm\n6Pu2sygAAGBn2u0B6U/Gz29bZfmLmq5R+qHqOdtSEQAAsGPt9muQ3lm9t/rx6kubWoo+vmyd\nZ46fP1Y9cvtKAwAAdprd3oJU9fXVHzd1pbtgheU3V/+6en718G2sCwAA2GH2QkD6m+qfVF9e\nfXiN9X60+ofV91e/vfVlAQAAO81u72K35ObqPXOs95Hqh7e4FgAAYIfaCy1IAAAAcxGQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYDht0QVs\no4dXj6vuU92xOqO6vrqien/1xuoPF1YdAACwcHshIN29+pXqATOP3VAdqvZXX1Y9ofqP1Vur\np1ef3uYaAQCAHWC3d7HbV72lul/1ouqi6tymYHSb8fO86hHVK6pHV29q978vAADACnZ7C9Kj\nqgurb6petco6n63eMaY/ql5SPax6+zbUBwAA7CC7vaXkwuqm6rVzrv+z1ZHq/ltWEQAAsGPt\n9oB0U9Nr3Dfn+vuqU5pCEgAAsMfs9oD0vqbA86w513/2+Gk0OwAA2IN2+zVI765+p/qJ6kHV\nr1UfrK5sGsluf3V+dd/qqdVjqkvHcwAAgD1mtwekm6snVj9XXTymtdb9herb08UOAAD2pN0e\nkKo+Uz25undTC9GFHb1R7MHqE9UHql+vPragGgEAgB1gLwSkJZeNCQAAYEV7KSAt9+XVN1f3\nrK6r/qD6maYWJQAAYA/a7aPY/afqcNNgDLOeW72rKSB9RVPXuxc0DeDwoO0sEAAA2Dl2e0C6\nVXVq01DfS760+i/V5dU3Vnep/mH1vU3XJf1ydfr2lgkAAOwEe7GL3cVNgenrq98bj11e/Vn1\nuaZudo+s3rKQ6gAAgIXZiwHprtWnOhqOZv1yU0C6sI0FpDtWL25qvZrH7TewLwAAYJPsxYB0\nRavf5+i6sezmDe7j+uojzf/+Htrg/gAAgE2wFwPSb1XPr+5V/cWyZf+sqfvdX29wH1dX37eO\n9S+qnr7BfQIAABu0VwLSW5puGPu5melF1RNm1nlS9bKx3m9ud4EAAMDi7faA9Jnqk00tNMuH\n+v6CmflTqkuaRr17anXttlQHAADsKLs9IL1kTDUFpNtVt63O7dghzo9UP1y9qfrj7SwQAADY\nOXZ7QJp1qPrEmFbyw9tYCwAAsAPt9hvFrte+6tXVkxddCAAAsP0EpGOdWj2tuu+iCwEAALaf\ngAQAADDs9muQvnBM89q3VYUAAAA7324PSE+tXrDoIgAAgJPDbg9Ifzp+vq567xzrn1b90NaV\nAwAA7GS7PSD9UvUN1QOqb6s+e5z1z0hAAgCAPWsvDNLwr5uC4M8tuhAAAGBn2wsB6dPVU6or\nOv6ADUeabih7eKuLAgAAdp7d3sVuybvGdDyHmrrZAQAAe9BeaEECAACYi4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAw3oC0jdVPzPH9v6mevwJVwQAALAg6wlI\n96gefJx1zqruWH3RCVcEAACwIKfNsc7vj593rW438/typ1RfUO2vPrPx0gAAALbXPAHpLdUD\nqntXZ1b3W2Pdq6pXVf9j46UBAABsr3kC0g+OnweqJ7V2QAIAADhpzROQlry8+uWtKgQAAGDR\n1hOQLh/TBdV9q1s3XXe0kg+NCQAA4KSxnoBU9WPV93T80e9+oKlLHgAAwEljPQHpgdVzqg9U\nb6o+Xd28yrqrjXQHAACwY603IH2saUS7Q1tTDgAAwOKs50axZ1QfTDgCAAB2qfUEpPdVX9zq\nAzMAAACc1NYTkH67KST9eLV/S6rZHqdU51R3qM5ecC0AAMAOsp5rkL6i+uvq26qnV39U/d0q\n675uTDvFBdW/qR5XXVidNbPs6ur91Ruql1VXbXt1AADAjrCegPTwpiG+q86tHr3Gun/RzglI\nj6p+tem+TddWf15d2XQt1f6m8PSA6iFNr+8J1XsXUikAALBQ6wlIP1n9fHXTHOvulFaY21aX\nVJ9ravV6S3V4hfXOqC6uXli9vvqipjAFAADsIesJSJ8e08nk8dXtmrrWrXVvpoPVq6pPVJdW\nj21qdQIAAPaQ9QSku43peE6tPl595IQq2lx3q25s/hvXvr3p5rf32rKKAACAHWs9AelbqhfM\nue4PVAfWXc3mu6raV92x+tQc69+paWS/ndJFEAAA2EbrCUjvqn5klWWfVz2w+oLqh6v/tcG6\nNss7xs8XVd9c3bDGumdXL62OVL+1xXUBAAA70HoC0tvHtJbvqr6uKZDsBB+qfrp6VvWV1Zuq\nDzaNYndD0yh251f3rZ7YdG+kH60+vIhiAQCAxVpPQJrHi6tnVl9VvXWTt32ivr1paO/nNNW2\nmsuqZ1ev3I6iAACAnWezA1LVR5taZHZKQDpSvaRpmPIvabpR7B2bhvY+2DRy3QeqP1tUgQAA\nwM6w2QHpttX9m+4ltNMcaQpCf9J0vdEZ1fW53xEAADCsJyA9ZkwrOaU6r3pkdfvqPRusa7Nd\nUP2bpvshXVidNbPs6ur91Ruql2UEOwAA2LPWE5Ae3DQIw1quqv5900AIO8Wjmm76euum1qI/\nbxqk4VDTIA0XVA+oHlJ9T/WE6r0LqRQAAFio9QSkl1dvXmXZkeqa6i+bbsy6U9y2uqT6XPX0\n6i3V4RXWO6O6uHphU/fAL0rXOwAA2HPWE5AuH9PJ5PHV7Zq61v3+GusdrF7VNGDDpdVjm1qd\nAACAPeREBmm4oKk15oFNo8FVXVH9TvXqptaaneJuTS1aa4WjWW+vbq7utcH93hl4OZ4AACAA\nSURBVLn6laYufPM4Z/w8ZYP7BQAANmC9Aenx1WubrudZ7inV91VfU/3BBuvaLFdV+5qC3Kfm\nWP9O1a3a+EANn21qgTp9zvXv3tSt78gG9wsAAGzAegLSuU0tRNdWz6ve2dHQcUHTCHbPawoG\n927qtrZo7xg/X1R9c3XDGuueXb20KaT81gb3e/3Y57wuahplDwAAWKD1BKRHNw168GXV+5Yt\n+1TTUNnvahoB7lHVGzejwA36UPXT1bOqr6ze1DTC3pVNYWl/dX7TjW2fWN2h+tHqw4soFgAA\nWKz1BKR7NF1rtDwczfrf1d9UX9zOCEhV3940tPdzqmeusd5l1bOrV25HUQAAwM6znoB0U8fe\nYHU1t2oa6GCnOFK9pPrJ6kuabhR7x6ahvQ82jVz3gerPFlUgAACwM6wnIH2w6TqkJ1evW2Wd\nR1d3bWfdKHbJkaYg9IFFFwIAAOxM6wlIb6s+0jRQw8ubhsS+vGlo6js3DdLwbU3X72x0kINF\n2d/0Gl84JgAAYA9ZT0C6sWkgg/9ZfdeYlvvT6klj3ZPRKdVdqtssuhAAAGD7rfc+SB+q7lM9\nrmlo6js1dV27onp39ZvV4c0sEAAAYLusJyCd0hSGbqzeMKYlpzcFo500OENNw40/ah3rn7pV\nhQAAADvfvAHpgU33E3ps0z2Elvt31ROqf9V0Dc9OcVH1PYsuAgAAODnME5D+UdOADGdXD61e\nv8I6t60eMtZ7QNONY3eC36i+r/rv1c/Psf7p1Tu3tCIAAGDHmicg/ffqzOoprRyOqp7fNLT3\nq6qXVhdvSnUb9wfVjzTdJPYnqz85zvpnbHlFAADAjnWr4yz/0uqfNIWeXzrOuq+pfqH62urz\nN1zZ5vmh6v3VJU1BDwAAYEXHC0j3Hz9fPef2XtE00MFFJ1zR5jtcfX11oLrDcda9qWkkvr/Y\n4poAAIAd6Hhd7O40fv7lnNtbGqDhbidWzpb5ePWrc6x3Y/WYLa4FAADYoY7XgrR0w9f9c27v\n7PHzuhMrBwAAYHGOF5D+avx88Jzbe9j4+dETqgYAAGCBjheQfrs6VP2Hat9x1j23el7199X/\n2nBlAAAA2+x4Aemz1cua7m30K9XtV1nvXtXbqntUP1Vdv1kFAgAAbJd57oP0vdWXVV9TPbJ6\nc/VH1TXVedWDqkc3jV73tqbR4gAAAE468wSk66tHVD9YPav6xjHNurJ6UfVjTUNlAwAAnHTm\nCUh19DqkH6weUt27acS6K5uGAH9PghEAAHCSmzcgLbm2unRMAAAAu8rxBmkAAADYMwQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABhOW3QB2+js6mHVfao7VmdU\n11dXVO+v3lXdsKjiAACAxdsLAen06keqf1uducZ6n6v+S/Vj1ZFtqAsAANhh9kJAuqT62ur/\nVL9afbC6sjpU7a8uqO5XPaUpIH1B9cyFVAoAACzUbg9ID2oKRy+snt3qLUOvr36oenn1jOqn\nqj/ZjgIBAICdY7cP0vBPm0LRD3T8bnOHq/8w5h+2hTUBAAA71G4PSPurm6pr5lz/s9XNTQM6\nAAAAe8xuD0iXNXUjfMyc639t03vyZ1tWEQAAsGPt9oD01urj1aurZ1Xnr7Le5zd1r/v56iPj\neQAAwB6z2wdpuK56UvWG6qVj+nTTKHY3NHXBO7+67Vj/w9XXNI1wBwAA7DG7PSBVva/6wupp\nTV3tLuzojWIPVpdXv1m9qfrl6sbFlAkAACzaXghINbUk/eyYtsPdqkurfXOuf8b4ecrWlAMA\nAMxjrwSklZzb1J3unk0B6g+qd3b84cDncUX1nzsafI7nntVzN2nfAADACdrtAembxvTYju06\n98+autOdt2z9362eXH1yg/u9sfrFdax/UVNAAgAAFmi3B6R7NIWhUzsakM6vXtd0r6P/Vr2n\nuk1Ta9JjmoLTV257pQAAwMLt9oC0kqc1BaJvaRrWe8nPVC+uvrN6UFOXOwAAYA/Z7fdBWsmF\n1TXVL6yw7MfHzwduWzUAAMCOsRcD0lVN90JaaUCEK8bjZ21rRQAAwI6wFwPS+6rP7+jNYWfd\nt2mo7Y9va0UAAMCOsFeuQfre6u+qzzV1r7uq+sGm642WnF/9dNNgDu/c7gIBAIDF2ysB6QUr\nPPaImflbVX/Z1LXuR9OCBAAAe9JuD0gvrC5p6k43O51bXT+z3s3Vu6s3NrUiAQAAe9BuD0hX\njWkej9nKQgAAgJ1vLw7SAAAAsCIBCQAAYNjtXewAAObxkOq7Fl3EHnJD9R3VZxddCCwnIAEA\n1MPOO++8iy+66KJF17HrHT58uLe+9a1VL2q6PyXsKAISAEB15zvfue/+7u9edBm73nXXXbcU\nkGBHcg0SAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADKctugAAYFUXVndedBF7xD0XXQCwMwhIALBzXVrdZdFFAOwl\nAhIA7Fynff/3f38Pf/jDF13Hrvec5zynQ4cOLboMYAdwDRIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAcNqiCwDgpHKb6uLq1EUXskecuegCAPYaAQmA9Xj0rW51q587\n//zzF13HnnDFFVcsugSAPUdAAmA9bnXuuef2mte8ZtF17AmPfOQjF10CwJ7jGiQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABjcKBYAgEW4TXW7RRexR3yuOrLo\nIk4WAhIAANvmxhtvXJp9+yLr2GNeVH33oos4WQhIAABsm6WA9PznP7+73e1uC65m93vlK1/Z\n7/3e72mpWwcBCbbW/aprF13EHvHB6uCiiwBgPne/+927973vvegydr1zzz130SWcdAQk2AKX\nX3750uw7F1nHHvPc6scXXQQAcHITkGALHD58uKpLLrmkM888c8HV7H7Pe97z+tCHPrR/0XUA\nACc/AQm20DnnnNNZZ5216DJ2vVNPPXXRJQAAu4T7IAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAcNqiCwDYqIMHD1Z9SXXxgkvZCx686AIAYCsJSMBJ7/LLL2///v3fePrpp3/j\nomvZ7UYYBYBdS0ACTnpHjhzpaU97Wk9/+tMXXcqu91M/9VO94x3vWHQZALBlXIMEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADCc\ntugCFuCU6uzqjOr66trFlgMAAOwUe6UF6YLqB6r3VtdUV1dXjvmrqvdUz6lus6gCAQCAxdsL\nLUiPqn61unVTa9GfN4WjQ9X+pvD0gOoh1fdUT2gKUgAAwB6z2wPSbatLqs9VT6/eUh1eYb0z\nqourF1avr74oXe8AAGDP2e1d7B5f3a76huqNrRyOqg5Wr6qeWt2leuy2VAcAAOwop1RHxvwP\nVAcWV8qWeF7T6zp9zvVPrW6o/mP1Xzaw3y+o/qD5W+hOa+oCeHp14wb2ezw/d9ppp33rmWee\nuYW7oOrGG2/s4MGDnXPOOZ1yyimLLmfXu+aaazr99NM7/fR5/9Q5UQcPHuzw4cOdc845iy5l\nT7j66qs744wz2rdv36JL2fWuv/76jhw50llnnbXoUna9m2++uWuvvbazzjqrU089ddHl7HrX\nX399hw8f/u/Vty26lh3uQPWC2v1d7K6q9lV3rD41x/p3ampVu2qD+/1oU6vVvO/vKU01bmU4\nqvr+w4cPX3L11Vdv8W5o+kzvec011/zFogvZI+586NChqw4dOnTNogvZA/ZVd7n66qv/etGF\n7BH/4ODBg3978ODBrf7/gTqnus3VV199+aIL2SPudd11132ko1/Us7U+uOgCTjZHxnRgwXVs\nhQubXttrOn4r0tnVG6qbqy/c4roAAICd40AjF+32FqQPVT9dPav6yupNTQn6yqaudPur86v7\nVk+s7lD9aPXhRRQLAAAs3m5uQaqpq9N3Vh/r6Gtdafpw9S8XVCMAALA4B9ojLUg1vdCXVD9Z\nfUlTt7s7Ng3tfbD6RPWB6s8WVSAAALAz7IWAtORIUxD6wKILAQAAdqbdfh8kAACAuQlIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAD/\nf3t3HiVZVR9w/DvSbDM6MAzbILKJsimOhgxrEAybESSJqJwggriFIwIx5qBZtMUlJGKOgFk0\nghuyKBoDKCDIJsIoDGJkG0CGZUBhGIZtYPbOH7/7Tr1+/aq7qvtNVVe97+ecOtV136tbt27d\nrrq/9+69T5IkKTFAkiRJkqTEAEmSJEmSEgMkSZIkSUoMkCRJkiQpGeh2AdRRtwB7dbsQkiRJ\n6qi5wN7dLkSvMECqlweBRcBnul2QGtgZOB94M7C0y2Wpg3OBXwDndbsgNXAI8PF0r7Xvp8CZ\n6V5r1wnAvsD7u12QGpgG3AC8B7i3y2Wpg08Dz3e7EL3EAKleVgCLgXndLkgNDKX7O4DnulmQ\nmngBeBzbdifsCKzEuu6UlcTBLet77TuM+C6xrte+6en+HuD2bhakJhZ3uwC9xjlIkiRJkpQY\nIEmSJElSYoAkSZIkSYkBkiRJkiQlBkiSJEmSlBggSZIkSVJigCRJkiRJiQGSJEmSJCUGSJIk\nSZKUDHS7AOqoFd0uQI2sANYAq7pdkJpYge27U6zrzrK+O8e67pxVxG+k9d0Z1vM4DKXbYJfL\nobVvRrqpM3bodgFqZEtgarcLURMDwLbdLkSNbIsHMztlKvFdos7wN7Jz7P+1ZpAUF/mlWy9L\nul2Amnmw2wWokT90uwA1sgp4uNuFqBHrunNeTDd1hr+RnWP/r03OQZIkSZKkxABJkiRJkhID\nJEmSJElKDJAkSZIkKTFAkiRJkqTEAEmSJEmSEgMkSZIkSUoMkCRJkiQpMUCSJEmSpMQASZIk\nSZISAyRJkiRJSgyQJEmSJCkxQJIkSZKkxABJkiRJkpKBbhdAa8126fZbYHEbz5sDTG2ybQi4\nYUKl6k/rAPsALwLzxpnHdsAs4rO6r5pi9aVNgR2A5cA9wIoWn7ce8Rk1swT4zcSK1hfGW79V\n51EHLwN2BqYDjwCPt/Hc1wJbjbL918Cz4y9a35oNbAz8HFg9jufbtlu3HfZBOmULYFvgSeBR\nxte2t8M+yAhD6TbY5XKoGlOAjwIvEZ/r4W0+fyGNNlG8raqumH1je+Amon5uG8fzZwO3M7ye\nHwAOrKqAfWJT4AfEF39WT0uItt6KHWneroeAayoub6+ZaP1WlUddvJsIiPJt8Fqik9OK8xm9\nPe9XcXl73TTgazTq5+VtPt+23Tr7IJ2zH3FQNl9HTwAfbiMP+yDDDdKoBwOkPjILuBJYCdzB\n+L6cXkjPPazkdkhlJe0PxwHPEUdrV9J+gDQLWET80J4E7Au8lzgC9CKwW2Ul7W1TaBzxPRPY\nHzgipQ0B72shjz3Svt+mvG3vUXmpe0cV9VtFHnVxKFFPdxKB0r7AJ4FlwHxggxbyuBxYQ3lb\nPow4S6Iwhzgivgh4iPYDJNt26+yDdM5sYCnwFPAx4C3ACcACot5PaCEP+yAjDWKA1JfOIf45\n9gI+QftfTgPpOT+qvmh9ZyZRV2cD6xOdm3YDpC+lPI4opM9O6RdPsIz94giiPr5USJ9GHG18\njBjmOJqDUh6nVl663ldF/VaRR13MIzqBWxbSTyXq8MQW8rgJeKbicvWr3wI/I4YkXkn7AZJt\nu3X2QTrnIqKuDiik757Sb2khD/sgIw1igNSX3gZslP4ez5fTpuk536y2WH3pFQz/UhlPgPQg\nMcxmSsm2XxFHh9YbV+n6y3lEu9ypZNu/0tqQoqPSfsdXWrL+UEX9VpFHHWxD1MWFJdumE0OI\nWhnueSdxNkRjO5rGglTjCZBs262zD9I57yHquMxzwMMt5GEfZKRBUlzkKnb95cdMbGJuNizj\nmfT3QcCxxBGKuv2TjOV54LIJPH86MX8pG/tbdBsxUfW1E3iNfjGbOOI+v2Tbbbl9RpNv29sQ\nwe0xwBurKGCPq6J+q8ijDrI6KFvM5TliKFgr9bQx0ZbXJRYfOYboiDq0bqSLiOGI42Xbbp19\nkM45HzijJH0mcQDg/jGebx9kDK5ip7zsyM8BxNHJjXLbFhI/wjd2tkh9a+t032zlqiz9VcTR\n4jrbGvh9k235ehpN1pY/Tgz/yA+JuZmYC7JwvAXscVXUbxV51EEr//e7ABsSk9yb2Yg46nsP\n8Opc+lJiPtM5EyumcmzbnWMfZOLOIL4bxvoOsA8yBs8gKS87erMVcBqwKzFJ75+AzYmjQ9t3\np2h9J1vGdFmT7VnnaFoHyjLZTWXi9ZS17anAO4mleucA3yWOwF9OfecRVFG/VeRRB1X8369D\nHCHenDg7Modoz8cSZ7bPJoaUqhq27c6xDzIxpwEfAP4L+N8x9rUPMgbPIPWWzxKdu7z30dpk\nvFbcCGxGHIXMH728m1iV5gzgI8RR+H63BSOvtzCPOIJVhWy50mb/g1l6Xa6zcRUjlzjejVg5\nahUTr6d/Bs4ihm5kdb+AGMc9k1gh6a1EoFQ3VdRvFXnUQRX/96uJ7+kVxLC8zAJied5biLkJ\nl4y/mMqxbXeOfZDxGQC+Qizv/VWijsZiH2QMnkHqLc8Bfyjcqmy8K4klI8uGdmQ/tnWZs7GG\nkXX9dIX5ZxfOm9Fk+ybpvsrXnMyeYmR9ZxYz8Xp6Mb1G2XU06ta2i6qo3yryqINW/u9XEHNe\nRvMUw4OjzFxiKNIbKJ94rfbZtjvHPkj7ZhAHGD9IHBj5a1qbc2cfZAyeQeotX0y3bljZpdft\nlkWMXD6zSguJo2RlKyNBzEOAmGNQB6OdmZtPnOHZiJETgKuop7q17aIq6ndtf0b9IpvoX/Z/\n/zJiQvR9TGxRgZUYHFXJtj051P17usxGxKqXOwPvoL3l0e2DjMEzSMo7njgS8aaSbfuk+9r+\ns1RsCLiWuGbB1oVtryCCs3k0jvLU2TVEh++tJduOIM4KXTtGHl8ErqD8Ipx1b9tV1G8VedTB\n7cQR2bJ6+hNiDsZVY+Qxh5hf8P6Sba8kVmm8l/KVqdQ+23bnHI99kFYNECvp7ky0zXavHWUf\npAVeB6k/jXUNgrcRFybcKpd2eHrOXOJ6BJldiPHtq/H0djOjXQdpJlHXf1lIP4So70tpdNzX\noXHdjWOrL2ZP2pQYTvQ7hn+Rn0DU07mF/T8MnFxIOzPt+x8MXy72SOLI5OPEymF1VEX9tptH\nnX2BqJNP5tI2AX5NDK/Lr0r3BuK7Y04ubVPi+2YRw7+PZ9C4zs8plZe6P4x1HSTbdnXsg6xd\nnyTq6rgW9rUP0rpBvFBsX7qB+GKZCzxCfK735tIGc/teQvkF7s5O6UuBXwB3ED/aq4GT1l7R\ne86xNOp1LjEk5oVCWvZj+jqiTssuAPlvaduTwHXEae/sQnkOk2k4imiHLxETee8k6ukORl77\npWyu0TRi8voQ8ATxv3J/evw0jaOTdTXR+m03jzrbELiJqJv7geuJDvgqYgWqvJPSfv9YSH9X\n2n8NcVbq5pTHEHABjg7J7Mbw7+RniDr6VS7t7bn9bdsTYx+kc7K2PHeU26y0r32Q1g2S4iLn\nIPWX5TSGVTyYbnn5Mbx3EUdoimOqTwYuJq4+vh3xT3g18C1quhZ+E6sZvjxm2bUZss9iKfHD\n8ZuSfT4G/JSo71nEF9QPgf+prKT94RJiaMWHiDHTi4jVev6bkcuU/oKRR4iXEj/E7yQuPrg1\n0Z7PI44AP7m2Ct4jJlq/7eZRZy8BBxIrkB5MDGf5DtEWixeQfYz47ni4kP494FYioNop5XER\n8b1xxdoqeA8aYnjbu6Nkn9W5v23bE2MfpHPK2nKRfZAJ8gySJEmSpDobJMVFnoaXJEmSpMQA\nSZIkSZISAyRJkiRJSgyQJEmSJCkxQJIkSZKkxABJkiRJkhIDJEmSJElKDJAkSZIkKTFAkiRJ\nkqTEAEmSJEmSEgMkSZIkSUoMkCRJkiQpMUCSJEmSpMQASZIkSZISAyRJkiRJSgyQJEmSJCkx\nQJIkSZKkxABJkiRJkhIDJEmSJElKDJAkSZIkKTFAkiRJkqTEAEmSJEmSEgMkSZIkSUoMkCRJ\nkiQpMUCSJEmSpMQASZIkSZISAyRJkiRJSgyQJEmSJCkxQJIkSZKkxABJkiRJkhIDJEmSJElK\nDJAkaXLbFTgAWK/L5eiUur1fSdIkY4AkSZPL/sAf5R5/CrgO2KQ7xem4yfZ+i5+HJKnPDXS7\nAJKkYX4C/B+wT3p8AXAH8HzXStRZk+39Fj8PSVKfM0CSpMnlBYYHB5emW11Mtvdb/DwkSX3O\nAEmSJpdih3xXYHPgZmBFerwZcAMwJT2eBswHns09byfgFSm92MF/HTAzl8dOwAzgIeD3o5Rt\nB2DL9Dr3AqsL2/Nlmw7sDiwAtgHWBW5sku/+wErglpL3m/ealH+z1399el83Aaty6VOANwNL\ngN8UnjMzle9lwMPAU4XtrQZIewIbNtn2PDCvhTxaLVNmCrAzUdcLgCdHyXOsumv22T1W2G+s\nNiBJfWEo3Qa7XA5JUgwv+2bu8UXEd/SW6fG30uPdgLuIIGIIeBE4nujA/jqX/hLw/sJrXJK2\n7UmjkzsErAEuBjYo7H8AcDeN34shYDFwcmG/rKxvIIKRIeAo4Afp791L3u/stO17Td4vwOHA\ng4XXfxo4pZDX5WnbxoX0gZR+TS5tW+DH6T1nea5JaZvl9it+Hs08UChf/nZbC89vp0wAf0YE\ntPnXuQyYVdiv1bpr9tllDqC1NiBJvWqQxvebAZIkTSI7AFvlHhcDhnPT47nAwcRZhtcTndVn\ngV8SHdsBYDuic7ycOENUzPNB4Gji7M5M4Ksp/Uu5fd+Ynn9ber1XAXsDV6R9P5zbNwveriF+\nU/ZP5T4qpX+m5P1+IW17e5P3uy9xNmg+cCiwNdFZvzXt96FcXu0ESNcBy4APEmdhdgZOIgLN\nq3P7FT+PZrYBdizcvpte9/MtPL+dMs0hzrjdD7yDWETib4l6mkdjAaZ26q7ZZwfttQFJ6lWD\nGCBJUk8oBgxfT4//obDfN1P6OYX0z6X0g0ryPLOw7wAxxG4JjSHYlwFLgS0K+24ILCSGgGWy\nsp1b2HcDIni7k5HuI4aQrVsoW/Z+f5oev77wvBnE8LcFubR2AqSVwPUl5XkXEWysU7KtHX9K\nnP35Ja0PZ2+1TNlZpu0L+/17St8/PW6n7pp9dtBeG5CkXjVIioucgyRJvemGwuPHx0ifwUhX\nFB6vIuYB/QVxBuR3RGD1GHBgyfMfBfYizp48kkv/YWG/ZcCPgPcS853mp/TZxNyY/ySCg6J1\nic7+/cBvC9uWAD8HDiOGprXbSV8I7EGcWbkql/698t3bMhP4NhGE/BXD50NNtEwDwFuI4ZX5\nAAfgVOCjRJA03rorfnbrMr42IEk9ywBJknrTE4XHK8ZILzsj8mhJ2h/S/RbE0K4NgFcDF45S\nli0Z3jleWLLPBUSAdBSNIWfvSvfnN8l3FrA+MRSwTNaxfxXtB0gfIuZiXUl0/n9GBIyXEu97\nIs4lhuUdRwSZmS0YGcDOA45po0xbEZ9JWR3ng8zx1l0x31mMrw1IUs/yQrGS1JuG2kwvs6wk\nbU26H6Ax7O3nxHCqZrdbC3ksLcn3Z8Qqa+/IpR1FdOBvblK+7PWLq9llyaNDFwAABBlJREFU\nsoBg/SbbR3M1Mb/oVOAeIli7kAgajxhHfpkTgSNTXt8ubFtDBKD529Ntlimrk7HOSo237oqf\n3XjbgCT1LM8gSVJ9zWDkUf9s/s4zxMIPEGcHyoKpdqwCvg98hAgCphPD6z47ynOy4GFmk+2b\npPvFTbZnXt4kfTFwVrptQARv5xBntLZh+LLprdiFWODiISJQKlpELJIwmrHKNFadZKqquyrb\ngCT1BM8gSVJ9vakk7XXEmY77iCDpAWI+0mtK9j0YeGUbr5cN0TqCxhLSzYbXQcyVWUAsD152\nluiPiU77Penx8nQ/rbDfLoXHU4j3k99vGbHq3DlE8FZc2GAs6xPvbz1iyFy7wVWrZVpCBGC7\nM/K6SwcTQ/T2p/26a6bqNiBJk54BkiTV198w/Po6byOug3MdjYujfp3ovH+e4fOY9ibmxnyt\njde7mZjvcigxDO1WIhAbzTeIM0CfKKQfR3TYL6QRGN2fK1tmHeDvGT70cL/0uqcX8pxCI2gc\n7YK5Zf6FqLvTaT5kcDTtlOkbRCD16dx+U4kVC4+kMe+onbobTZVtQJJ6gst8S9Lk1WyZ7x0L\n+w2m9P0K6R9I6UeX5PllYh7MxcRSzsuJOSj5M0vr0rjezT1Ep/sqYsjcQ8Tk/UyzsuWdkV5n\niPKLjBbf7/pEwDZEzIP5KjFXZw2xOtumuefuSpwVWZxe51PE9aLOJJYSvza374Upz/uIVeK+\nT+Nir2eNUv4yO6byrE75nl9ya0WrZdqAqIshog4uJz7HNcR1kzLt1N1on107bUCSetUgKS7y\nDJIkTW53EyufZZPt56fHLxX2eyilF4d2/T6lP1mS9xeJi3yuIoaGnUssM317bp+VxJmldxNn\nfF5JDN/6O2KZ7vwqbc3KlvcdYinx64lgqKj4fpcTy0wfRyxWsAMxv+ZEYpjYU4XnziYCjd2J\ngOnLwMeJ4Oiu3L7HAH+eyjE1vf+fEBdXPWWU8jdzIxGEzCIuyFq8taLVMi0jlvr+APGe1wF+\nAOwJfCW3Xzt1N9pn104bkKS+4BkkSaqX7CxNqx13SZL63SCeQZIkSZKk4QyQJEmSJCkxQJKk\n+snm+bSygpkkSbVigCRJ9XM6ccHSRV0uhyRJk44BkiRJkiQlBkiSJEmSlBggSZIkSVJigCRJ\nkiRJiQGSJEmSJCUGSJIkSZKUGCBJkiRJUmKAJEmSJEmJAZIkSZIkJQZIkiRJkpQYIEmSJElS\nYoAkSZIkSYkBkiRJkiQlBkiSJEmSlBggSZIkSVJigCRJkiRJiQGSJEmSJCUGSJIkSZKUGCBJ\nkiRJUmKAJEmSJEmJAZIkSZIkJQZIkiRJkpQYIEmSJElSMpD7e1/gtG4VRJIkSZK6ZN/sjynA\nUBcLIkmSJEmThkPsJEmSJCn5f6lwLFnK4HetAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title “'impervious' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
}
],
"source": [
"# Histogram visualisation of weighted indicators\n",
"index_start = GUID_length+1\n",
"index_end = ncol(indicator_data_weighted)\n",
"indicator_columns <- colnames(indicator_data_weighted)[index_start:index_end]\n",
"for( current_indicator_column in indicator_columns ) {\n",
" indicator_filtered <- indicator_data_weighted[,current_indicator_column] \n",
" indicator_filtered[indicator_filtered == \"NaN\"] <- 0\n",
"\n",
" title <- paste(\"'\", current_indicator_column, \"' domain histogram\", sep = \"\")\n",
" x_label <- paste(\"'\", current_indicator_column, \"' z-score\", sep = \"\")\n",
" y_label <- paste(\"Count\", sep = \"\")\n",
" hist(indicator_filtered, breaks=\"FD\", col=\"grey\", labels = FALSE, main=title, xlab=x_label, ylab=y_label)\n",
" box(\"figure\", lwd = 4)\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "8c6d6526-ffd5-4cf5-abaa-df78e9cee3ba",
"metadata": {},
"source": [
"## Process social vulnerability scores"
]
},
{
"cell_type": "markdown",
"id": "3b30ed1a-947e-4893-915a-68dc9de52f99",
"metadata": {},
"source": [
"### Calculate domain scores"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4a8f2459-ee44-4862-a0ed-a829b8a76824",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 14\n",
"\n",
"\t | CCA | CPRO | CMUN | CDIS | CSEC | age | health | income | info_access_use | local_knowledge | tenure | social_network | housing_characteristics | physical_environment |
\n",
"\t | <int> | <int> | <int> | <int> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
\n",
"\n",
"\n",
"\t1 | 17 | 26 | 1 | 1 | 1 | 0.01055472 | 1.2753218 | -0.3313422 | 0.071438769 | 0.1446865 | -0.5073936 | 0.36130070 | -0.9481277 | -0.8560700 |
\n",
"\t2 | 17 | 26 | 10 | 1 | 1 | 0.26973904 | -1.3865567 | -1.1176156 | 1.619736710 | -1.2514828 | 0.0000000 | 0.30303248 | 0.0000000 | -0.2328068 |
\n",
"\t3 | 17 | 26 | 100 | 1 | 1 | -0.41835186 | -1.3865567 | -1.1176156 | 1.619736710 | -1.2514828 | 0.0000000 | 0.45418041 | 0.0000000 | -0.3822322 |
\n",
"\t4 | 17 | 26 | 101 | 1 | 1 | -0.72575121 | -1.3865567 | -1.1176156 | 1.619736710 | -1.2514828 | 0.0000000 | 0.78526637 | 0.0000000 | -1.5116073 |
\n",
"\t5 | 17 | 26 | 102 | 1 | 1 | 0.07217662 | 0.3880289 | 0.1439333 | 0.138756071 | -0.1091625 | -0.7479582 | 0.41782180 | 1.2637707 | -0.3792937 |
\n",
"\t6 | 17 | 26 | 102 | 1 | 2 | 0.47103144 | 0.3880289 | 0.2297142 | 0.004121467 | 0.1446865 | -0.9688721 | 0.06300444 | 0.7211874 | -0.3696338 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 14\n",
"\\begin{tabular}{r|llllllllllllll}\n",
" & CCA & CPRO & CMUN & CDIS & CSEC & age & health & income & info\\_access\\_use & local\\_knowledge & tenure & social\\_network & housing\\_characteristics & physical\\_environment\\\\\n",
" & & & & & & & & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & 17 & 26 & 1 & 1 & 1 & 0.01055472 & 1.2753218 & -0.3313422 & 0.071438769 & 0.1446865 & -0.5073936 & 0.36130070 & -0.9481277 & -0.8560700\\\\\n",
"\t2 & 17 & 26 & 10 & 1 & 1 & 0.26973904 & -1.3865567 & -1.1176156 & 1.619736710 & -1.2514828 & 0.0000000 & 0.30303248 & 0.0000000 & -0.2328068\\\\\n",
"\t3 & 17 & 26 & 100 & 1 & 1 & -0.41835186 & -1.3865567 & -1.1176156 & 1.619736710 & -1.2514828 & 0.0000000 & 0.45418041 & 0.0000000 & -0.3822322\\\\\n",
"\t4 & 17 & 26 & 101 & 1 & 1 & -0.72575121 & -1.3865567 & -1.1176156 & 1.619736710 & -1.2514828 & 0.0000000 & 0.78526637 & 0.0000000 & -1.5116073\\\\\n",
"\t5 & 17 & 26 & 102 & 1 & 1 & 0.07217662 & 0.3880289 & 0.1439333 & 0.138756071 & -0.1091625 & -0.7479582 & 0.41782180 & 1.2637707 & -0.3792937\\\\\n",
"\t6 & 17 & 26 & 102 & 1 & 2 & 0.47103144 & 0.3880289 & 0.2297142 & 0.004121467 & 0.1446865 & -0.9688721 & 0.06300444 & 0.7211874 & -0.3696338\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 14\n",
"\n",
"| | CCA <int> | CPRO <int> | CMUN <int> | CDIS <int> | CSEC <int> | age <dbl> | health <dbl> | income <dbl> | info_access_use <dbl> | local_knowledge <dbl> | tenure <dbl> | social_network <dbl> | housing_characteristics <dbl> | physical_environment <dbl> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 1 | 17 | 26 | 1 | 1 | 1 | 0.01055472 | 1.2753218 | -0.3313422 | 0.071438769 | 0.1446865 | -0.5073936 | 0.36130070 | -0.9481277 | -0.8560700 |\n",
"| 2 | 17 | 26 | 10 | 1 | 1 | 0.26973904 | -1.3865567 | -1.1176156 | 1.619736710 | -1.2514828 | 0.0000000 | 0.30303248 | 0.0000000 | -0.2328068 |\n",
"| 3 | 17 | 26 | 100 | 1 | 1 | -0.41835186 | -1.3865567 | -1.1176156 | 1.619736710 | -1.2514828 | 0.0000000 | 0.45418041 | 0.0000000 | -0.3822322 |\n",
"| 4 | 17 | 26 | 101 | 1 | 1 | -0.72575121 | -1.3865567 | -1.1176156 | 1.619736710 | -1.2514828 | 0.0000000 | 0.78526637 | 0.0000000 | -1.5116073 |\n",
"| 5 | 17 | 26 | 102 | 1 | 1 | 0.07217662 | 0.3880289 | 0.1439333 | 0.138756071 | -0.1091625 | -0.7479582 | 0.41782180 | 1.2637707 | -0.3792937 |\n",
"| 6 | 17 | 26 | 102 | 1 | 2 | 0.47103144 | 0.3880289 | 0.2297142 | 0.004121467 | 0.1446865 | -0.9688721 | 0.06300444 | 0.7211874 | -0.3696338 |\n",
"\n"
],
"text/plain": [
" CCA CPRO CMUN CDIS CSEC age health income info_access_use\n",
"1 17 26 1 1 1 0.01055472 1.2753218 -0.3313422 0.071438769 \n",
"2 17 26 10 1 1 0.26973904 -1.3865567 -1.1176156 1.619736710 \n",
"3 17 26 100 1 1 -0.41835186 -1.3865567 -1.1176156 1.619736710 \n",
"4 17 26 101 1 1 -0.72575121 -1.3865567 -1.1176156 1.619736710 \n",
"5 17 26 102 1 1 0.07217662 0.3880289 0.1439333 0.138756071 \n",
"6 17 26 102 1 2 0.47103144 0.3880289 0.2297142 0.004121467 \n",
" local_knowledge tenure social_network housing_characteristics\n",
"1 0.1446865 -0.5073936 0.36130070 -0.9481277 \n",
"2 -1.2514828 0.0000000 0.30303248 0.0000000 \n",
"3 -1.2514828 0.0000000 0.45418041 0.0000000 \n",
"4 -1.2514828 0.0000000 0.78526637 0.0000000 \n",
"5 -0.1091625 -0.7479582 0.41782180 1.2637707 \n",
"6 0.1446865 -0.9688721 0.06300444 0.7211874 \n",
" physical_environment\n",
"1 -0.8560700 \n",
"2 -0.2328068 \n",
"3 -0.3822322 \n",
"4 -1.5116073 \n",
"5 -0.3792937 \n",
"6 -0.3696338 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Get the domains and their associated indicator ID\n",
"domain_indicators <- indicator_mapping %>% select('domain', 'indicator')\n",
"\n",
"# Get a vector/array of the unique domain names\n",
"unique_domains <- unique(domain_indicators$domain)\n",
"\n",
"# Initialise the domain score dataset with the GUID\n",
"domain_scores <- indicator_data_weighted %>% select(all_of(GUID))\n",
"\n",
"# Loop through each domain\n",
"for (current_domain in unique_domains) {\n",
" # Identify which indicators are used within this domain (current_domain)\n",
" current_domain_info <- domain_indicators %>% filter(domain == current_domain)\n",
"\n",
" # Count the number of indicators in this domain\n",
" domain_indicator_count <- length(current_domain_info$indicator)\n",
"\n",
" # Get a vector/array of the indicators used by this domain, and add the GUID column name\n",
" current_domain_indicators <- current_domain_info$indicator\n",
" current_domain_indicators <- (c(GUID, current_domain_indicators))\n",
"\n",
" # filter the dataset to only use the indicators in the domain\n",
" current_domain_data <- indicator_data_weighted[current_domain_indicators]\n",
"\n",
" # Calculate the internal weight distribution for the indicators within this domain,\n",
" # using an equal weight distribution across this domain\n",
" internal_domain_weight <- 1.0 / domain_indicator_count\n",
"\n",
" # Internally weight the data for this domain\n",
" current_domain_data_weighted <- current_domain_data %>% mutate_if(is.double, function(x) {x*internal_domain_weight})\n",
"\n",
" # Sum each data row to get the total score for the domain\n",
" index_start = GUID_length+1\n",
" index_end = domain_indicator_count+5\n",
" current_domain_data_weighted[, current_domain] <- rowSums(current_domain_data_weighted[index_start:index_end], na.rm = TRUE)\n",
"\n",
" # Add the current domain score to the overall results\n",
" domain_indicator_score <- current_domain_data_weighted %>% select(all_of(GUID), all_of(current_domain))\n",
" domain_scores <- merge(domain_scores, domain_indicator_score, by=GUID)\n",
"}\n",
"\n",
"# Print the first part of the domain z-scores, which are now collated into one table\n",
"head(domain_scores)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "85066c36-35e5-4aac-b579-111ec7917a37",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde5xlV13n/U8nfUlIOhACuSAgBKIYLgkGUImioggScEQYNIryMCI6jI43\nREUdg8rgAz6gDjqIgIxcVdAJeIkyMojJKCIMAxKQAAJhCLdw69C5p58/9mq7uqjurjqnuqu6\n6v1+vfarTp299jq/Ovv06fM9e+21t1R7AgAAoGPWugAAAID1YuuC25dVl65VIQAAAGvka6vz\n9/6yZywXrVU1AAAAa+iiRi4yxA4AAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQnYqL5hLF+3tmWs2M4OT+1vr/aM5edXsd/14p/a9/f9zFHwmGtRLwDLsHWtCwA4TP7n+Pnp\n6pS1LGSFzuzorZ21dcfq7tUnqsvXuBaAo5aABGx0u9a6gBXadYDbHNyjq+PH7Y+uZSHLdDjq\nfW71mOoPqu9apT4BNh0BCdjojraQISDN5p/XuoAVWu16T6wuWOU+ATYlAQnY6D5/kHW3r+5S\nbas+Vn3gEH1tqb6sOrm6svq/4/6zqi8Zt6+s3n+A7XeM7Xc2DYN63xJtrllm7cup8cPNdnTi\nrtVp1Y1Nf88nDtL2gdX2cfttTTUfW3150997Rfv/TVV3qO7c9Jx/8BC1LHcf3b86Ydz+QNPf\nfrAaq+7UNCztEx14n81iOf0erN6FTm96rrY0vd6uqm5esH5ndV51fvuOSJ3adA5b1aXVTUv0\nu5J9vNcsr/+lnvszmoYCfrj60KLHWO7+PtyvO2CT23uS6EVrXAfAarqx6b3tkiXWPbL63+17\n/9u7fLB6/AH6e+RYv7D9G5s+cL18wX3PXGLbO1T/rdq9aPuPVD+wwtoP5oLqXxY9xl83fWB/\nWwefpOG46j81BarFz8s/deDn5cML2j206YP/FQvu21X9yGh7UnXxor7/qrrNEv2udB8dbNKD\nxTXerbpsUb9vq77iAH/jgSx8zJ9cYb+HmqThCU1HmRb//R+rfqV94ep+S7RZuCx8bmfdxzX7\n6//K9n/uf6gpsC1+Ha50fx+u1x2weV3UvvcIAQnYkC5p+vb8Vxbd/33t/0HpC03fNC+87wcX\nbfOQ9n2oW7y8u3r9gt9/cdG2X9r0Tfve9dc1fWt+Swd+/z1Q7Qfz4PYFq8XL5R18FrsTqzcf\nYNuFy/OXeNz3LFj/5OrqJba7pekIx2sP0O8fLOpzln10sMCxsMYntv+H9sUfxm+1xN94IIsf\ncyX9Hqzen++Ln78bFt33v5pGgZzX9Nq8ZVH7m8Zy69HnPPt4ntf/wuf+P1bXLvh97+twlv19\nOF53wOZ2UQISsAltaxpKtPd97wVNHzK3VL++4P5Ptf8Q5H9atO6hTd/gf11f/KF4cfj4HwvW\n/UXTkKiqs9v3Tf5N1b3n/NveueBxrqoe1DTU6AFNQ/kOVuPvLVi3q3pc07fud6+et2jb71y0\n7cLn5v82HVV4ePVLi7Z7Z1M4/LGmCQoWftt/U9PQqlqdfbQ4cCxcd2X13urC6lHV3y6q83tb\nvsV/+8H6/b6DbLuw3uOaAsKepqF0j1jwd96jeseC7R63YLvnL7j/VUvUulr7eKWv/4XbXtEU\nkF5R/cZ4nlZjf6/G6w7gogQkYBO6bfWUBcuXLlh3t/b/YHXPcf99Ft3/xEV9fkcH/oB49qJ1\nX7Zo2x9esO43Z/+zuveix1n8If/hB6nxTu1/dODJS/T/5wvW/8OidQs/qO5q3xGL+uJv7n9i\nwboHL1r3LeP+WfbR4joOFpBuaDr/Zq+TRt171z9vib//QObp90D13nXB/Z9rCkwLnds05Owh\nTUM39zpYQJpnH8/z+l/8d+6pvnHR+tXY36vxugO4qPHeYJIGYDP5dPVr4/YpTdccukvTt9Un\nLmq79/yE8xbdf/Gi31/b9AFtZ1/sQQtu3zge78wF9207QNuVut+i3/980e+XNH3YvnVf7Jua\nTm7fa6mjD6+pvnXcPq/pw/9SE0i8djzOXn/TdG7JXi9bcPtNTf8RbRm/33b8nGUfrcTrms7T\n2uvzTecNPXT8frsZ+lzNfq9qOlftVk3P8z9Urxx9vaVpqOTbV1jbPPt4ntf/Ym9q3zW+9lqN\n/b0arzuAfyUgAZvN/ZuG7jzwEO32foA6Y8F9X6g+uajdTU2TLSx1Iv4dF9ze1jTE7kDufoh6\nDmZxjVcvWn9L0zCkpQLSwsD26bEstnAmsWOa/q6lLkS6eMa2Ty24vav9Z0q7qelD7d4PvQv/\nP1rpPlqJ9yxx38cW3J71/8XV6ve66hljqeno4N7hlzc0nXv0quol1fXL7HOefTzP63+x/32A\n++fd36v1ugOovDEAm8s9mr7B3jsD2JXVG5pOCN/e0jPKbV9w+4YD9Lv7APcv3vbvDlLbnqYP\nprccpM2BLKfG6w5w/8IhXAfa9sZFv+84QLvFz8PNB1m3eP1es+yjlVjq2lJLTYO9lv3+56aJ\nPH6muteC+7c3Td/9DU3D5B7cF4fhpcyzj+d5/S+21FTiq7G/V+N1B/CvBCRgM/mx9n0Q+0h1\n3/Z9wDytpT+MLfzgu7NpqNLiD1inH+DxPrPg9i3tuzbNals43G2lNS78tv3klg5pi09kX3wU\nYTXNso82opeP5c7V1zYdZXlI+58b98stfT7RYvPs43le/4stFf7tb2DdOWatCwA4ghZ+G/93\n7f/t+7kH2GbhxVy3VucsWn/39j9ZfqF3Lrh9XPsPdVpNi2u8z6L1d2//oVILLTwhf0dffM5J\nTVMl73VV0wfZw2WWfbRRHdN0vZ9XVD/e9Nw8ZcH6Aw1JWzwUbZ59PM/rfznsb2DdEZCAzWTh\nEKEvWXB7e/ULi9ruPV/nb9t/+NHPtv8H0Kd14HMj3lB9dtG2C/1S9fGmqZuXunjrci2u8amL\n1h+sxr9t/8kFfrn9T+g/q/1nLnvJbCUu2yz7aCP57uofm44KPn2J9QtD97ULbi8czne3RdvM\ns4/nef0vx2bf38A6ZIgdsJlc1r5phh9Y/Zem66I8rukk89c3DWOqKWTcqWn65Fc0Ta1c9Zjq\n75suuvmVTdcZuqqlj9Dsbvow+v+N35/YdBTpsqYpvx/b9OHy5KaZuGb1maaZup4wfv+upm/1\n39w0NOtrmq65tPeb/oVfjt3cNEzrz8b9D206mf6vmmb4ekz7Zih7b/Wrc9S5HLPuo43irU1H\nTo6tfq7pb35704QMd266ztJeC2ej+9CC2+dVf9p0FOjXmo4CzbqPP93sr//l2Oz7G1inXAcJ\n2Cxu2/4Xity7fKH6tuqCJdbt3e6dS6y7uelaRn+34L7FR4K2VM8cbRdvv/daNw9tficfpMYf\nav8L1j5jie0f03S0a6ka9zTNnnbHJbY72PWHHrdg3cf6Yp9asH7vRU9n3UfLvQ7S4nVVL1yw\n/tVLrD+Qefo92LaPbjo6dKB9cUvTdZUWBt07te8CswuXhVPAz7qP53n9H+o5Ohz7e5bXHcBF\nuQ4SsAl9uumIypObjqpUvat6QfumOX5i0wezbU3f5u/d7gHVDzZNtLCtaWrh328aDvX9Cx5j\n8dTLe5qGJf1+07f/9266xs1HR/8vbf9ruMzqM6PGH6q+ftT4vvG4b61Obd+ogY8usf2rm0LU\nhU3no5zaNPPdB5quq/RXB3jct7RvEoAPL1r38aZr0tTSU0tf1r5hUx9f0G6WfXSwOg62ruqf\nF9T5riXWH8g8/R5s29c0HaV5bNOkBac1haHPNAWV1/TF06xf2bT/f7TpYqu7RpuFQ+tm3cfz\nvP4P9Rwdjv09y+sOYD+OIAHMbku+kWbz8voHNoqLGu9lJmkAOLTfaRp+dGVffA7OY6pTxu1b\nmk5qh43E6x/YVAyxAzi03e0b/vPUpvM03t40xfETFrR7afufLA8bgdc/sOkYYgdwcMdVf9KB\nT27fU/1x07lFsNF4/QObwUWZpAFg2a6rHtV0kczvrO5S3b66pnpPdXHTSfWwEXn9A5uKgASw\nfP9nLLAZef0Dm4JJGgAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYNi61gUA\nsK59XbVjzj4+Ub1jFWoBgMNOQALgQO5WvemEE07omGNmG3Bw0003de21115d3W5VKwOAw0RA\nAuBAtla95CUv6ZRTTpmpg8suu6xf+IVf8H8NAEcN5yABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwLB1rQsA4LB5cHXK\nHNvfYbUKAYCjhYAEsHH95SmnnLJ1+/btM218ww03dPXVV69ySQCwvglIABvXMU972tO6733v\nO9PGb3nLW/rpn/7pVS4JANY35yABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMW9e6gCPspOoe1anVcdW11VXVe6rda1gXAACwDmyWgHRB9dTq/OrYJdbfWL2+ekb1\nv45gXQAAwDqyGQLSz1TPrK6v/rp6V/XJ8fuO6vTq3Oqh1cOqH6hevCaVAgAAa2qjB6S7Vr9S\nvaG6sPrEIdr+YfVb1V80Db0DAAA2kY0+ScO3NA2pe0IHD0dV/1J9b9O5Sd96mOsCAADWoY0e\nkG7bdH7Rh5fZ/p+rW6rTDltFAADAurXRA9JV1bbqnsts/5VNz8lHD1tFAADAurXRA9JfNE3l\n/bLq7EO0/arqFdWu6s8Oc10AAMA6tNEnafh49eTqhU2z172nfbPY3dA0i91p1X2qM5tmtvvu\n6lNrUSwAALC2NnpAqnpJ9Y7qJ5um8n70Em0+1hSinl2994hVBgAArCubISBVva36nnH7tOrU\nptnqrmsKR59c5cc7oXpKdfwy22+r7lh95yrXAQAArMBmCUgLfXwsC31HdYfqeav0GDubzmna\ntsz2t67uX31f0zA/AABgDWzGgLSUh1fntnoB6WOjz+V6YHVZtWeVHh8AAJjBRg9I3zaWQ/na\n6pSm85CqXjsWAABgE9noAekrq+9fQfu9bT+SgAQAAJvORr8O0murf26ajOG51RnVyUssL63e\nvuD3X12LYgEAgLW10QPS26pzmqbv/uHqTdV9q88uWm6obl7w+3VrUSwAALC2NnpAqmlWuP/U\nFIw+Vb2helHTkSIAAIB/tRkC0l7vapqM4Ueqf1u9O9cdAgAAFthMAanqlqapvM+u/qF6VXVx\ndfu1LAoAAFgfNltA2usjTdN/P7Z6QMubChwAANjgNvo034fyR9Xrq/9YfW6NawEAANbYZg9I\nNc1a90trXQQAALD2NusQOwAAgC8iIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMW9e6AAA2rmuuuabq+Op35uzq0uqlcxcEAIcg\nIAFw2Fx55ZVt3bp1+/nnn/+kefr4wAc+cE4CEgBHgIAEwGG1Y8eOfvEXf3Hm7V/5ylf2gQ98\nYBUrAoADcw4SAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMCw\nda0LOIJOqL6humd1anVcdW11VfWO6k3VDWtVHAAAsPY2Q0DaXj2j+g/V8Qdp99nqV6tnVXuO\nQF0AAMA6sxkC0quqR1Vvq15dvav6ZHV9taM6vTq3+q6mgHTX6ofWpFIAAGBNbfSA9FVN4eg5\n1VM68JGhP6l+uXpB9YPV86p/OhIFAgAA68dGn6Tha5pC0dM79LC5m6qfHre/4TDWBAAArFMb\nPSDtqG6urllm+89UtzRN6AAAAGwyGz0gXdE0jPBhy2z/qKbn5D2HrSIAAGDd2ugB6ZLqI9XL\nqidXpx2g3Z2ahtf9XvX+sR0AALDJbPRJGnZX315dXP3WWK5umsXuhqYheKdVtxnt31v9m6YZ\n7gAAgE1mowekqrdWX1Z9T9NQu7Pbd6HY66qPVn9Zva76w+rGtSkTAABYa5shINV0JOl3x3Ik\n3Ln6q2rbMtsfN35uOTzlAEeh/1Z97Zx9bPRh1ACw6jZLQKra2TSj3e4F922pHtF0VOnjTUeR\nrl6Fx7qq+s/tCz6HcrfqqR16KnJg87jfN33TN515zjnnzNzBc57znFUsBwA2h80QkO5avaR6\nUFMA+Z/V9zYFor+oHrKg7eeazkH6mzkf88bq91fQ/oFNAQngX93rXvfqEY94xMzbC0gAsHKb\nISD9QXX/6t3VJ5rCyO9Xr2wKR79T/X11bvUfqlc1harr1qJYAABg7Wz0gPSgpnD07PYdofnK\n6u+qW1e/Wf3ogvZXVM+rvrn60yNXJgAAsB5s9BN4zx4//98F972tKfzcry8eBvcH4+c9DnNd\nAADAOrTRA9LOpvOOPrvo/ivGzysX3X/NYa8IAABYtzZ6QPpg00x191t0/9ubLh77hUX37233\nwcNaFQAAsC5t9ID0P5pmpntR07lIe68z9Krq29s/IJ1Z/VbTNODzzmIHAAAchTZ6QPpM9bTq\nntU/VKcfoN1jqvdV96l+ufrkEakOAABYVzb6LHZVv129p/r+6lMHaLOruqx6fvXyI1QXAACw\nzmyGgFT1hrEcyF+OBQAA2MQ2S0AC4Ci1e/fuqlOrJ83Z1aXV5XMXBMCGJiABsK5dccUVbdu2\n7a63u93tfmfWPj73uc+1e/fu36v+3SqWBsAGJCABsK7t2bOns846q+c973kz9/GsZz2rSy65\nZMuhWwKw2W30WewAAACWTUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgGEl\nAen7qucvo78PVxfMXBEAAMAaWUlAOrP66kO0uVV1avXlM1cEAACwRrYuo83fj593rE5e8Pti\nW6q7VjuqT89fGgAAwJG1nID059X9q7Oq46tzD9L289VLq1fMXxoAAMCRtZyA9Evj50XVt3fw\ngAQAAHDUWk5A2usF1R8erkIAAADW2koC0kfHcnp1n2pn03lHS7l8LAAAAEeNlQSkqmdVP9mh\nZ797etOQPAAAgKPGSgLSA6qfqt5Zva66urrlAG0PNNMdAADAurXSgHRl04x21x+ecgAAANbO\nSi4Ue1z1roQjAABgg1pJQHprdY8OPDEDAADAUW0lAemNTSHp2dWOw1INAADAGlrJOUgPqj5Y\nPbF6XPX26lMHaPvHYwEAADhqrCQgfWPTFN9Vt64eepC270tAAgAAjjIrCUj/pfq96uZltP38\nbOUAAACsnZUEpKvHAgAAsCGtJCDdeSyHcmz1ker9M1UEAACwRlYSkP5d9YvLbPv06qIVVwMA\nALCGVhKQ3lQ94wDrbl89oLpr9SvVX89ZFwAAwBG3koD0hrEczI9Wj66eO3NFAAAAa2QlF4pd\njt9oOpr0kFXuFwAA4LBb7YBU9aHqPoehXwAAgMNqtQPSbar7Vp9b5X4BAAAOu5Wcg/SwsSxl\nS3Xb6purU6pL56wLAADgiFtJQPrqpkkYDubz1Y9X75q5IgAAgDWykoD0gupPD7BuT3VN9YHq\nxnmLAgAAWAsrCUgfHQsAAMCGtJKAtNfp1eOaLgx76rjvquqy6mXVZ1enNAAAgCNrpQHpguqV\n1c4l1n1X9fPVv6nePGddAAAAR9xKpvm+ddMRoi9UP1zduzptLOdUP1kdW726Om51ywQAADj8\nVnIE6aFN1zm6X/XWRes+Ub2jelP1lupbqteuRoEAAABHykqOIJ3ZdK7R4nC00D9WH67uMU9R\nAAAAa2ElAenm6lbL7POW2coBAABYOysJSO9qOg/pOw7S5qHVHXOhWAAA4Ci0knOQXl+9v2mi\nhhdUb2i6LtKW6g7VN1dPrN5b/Y/VLRMAAODwW0lAurH6tuq/Vz86lsXeXX37aAsAAHBUWel1\nkC6v7lk9vHpgdUa1p2nyhr+t/rK6aTULBDgKndi+C2nPavtqFAIArMxKAtKWpjB0Y3XxWPba\n3hSMTM4AUP+1etxaFwEArNxyA9IDqt+uvrX65BLrf6x6ZPX/NJ2nBLCZHX/BBRf0pCc9aeYO\nHvOYx6xiOQDAci0nIJ3TNCHDCdXXVn+yRJvbVOePdvdvunAswKa1ffv2du7cudZlAAArtJxp\nvl9UHV99V0uHo6qnVd9b3an6rdUpDQAA4Mg6VEC6d3VeU+j5g0O0fXn1kupRTUEJAADgqHKo\ngHTf8fNly+zvxdWxTTPcAQAAHFUOFZDOGD8/sMz+9k7QcOfZygEAAFg7hwpIey/4umOZ/Z0w\nfu6erRwAAIC1c6iA9C/j51cvs79vGD8/NFM1AAAAa+hQAemN1fXVT1fbDtH21tXPVp+r/nru\nygAAAI6wQwWkz1S/03Rtoz+qTjlAu7tXr6/OrJ5XXbtaBQIAABwpy7lQ7M9U96v+TfXN1Z9W\nb6+uqW5bfVX10KbZ615fXXQ4CgUAADjclhOQrq0eXP1S9eTqO8ey0Cer51bPqm5ezQIBYJ34\nsea/jMWepuHoy50dFoAjbDkBqfadh/RL1fnVWU0z1n2y6U3+0gQjADa27zznnHO++uyzz565\ng1e/+tXdeOONr0xAAli3lhuQ9vpC9VdjAYBN5QEPeEAXXnjhzNu/7nWv68Ybbzx0QwDWzEoD\n0tHsG6uHV/esTq2Oaxo+eFX1juq11T+sWXUAAMCa2wwB6UubZuC7/4L7bmgaNrijaQKKR1Y/\nV11SPa66+gjXCAAArAOHmub7aLet+vPq3KZJJB7YdL2mHdVJ4+dtmyaheHHTbHyva+M/LwAA\nwBI2+hGkb6nOrr6veukB2nym+p9jeXv1m9U3VG84AvUBAADryEY/UnJ20+x6r1xm+99tmoL1\nvoetIgAAYN3a6AHp5qa/cdsy22+rtjSFJAAAYJPZ6AHprU2B58nLbP+U8dNsdgAAsAlt9HOQ\n/ra6rPq16quq11TvarrA7Q1NkzScVt2n+u7qYU3XeLpsLYoFAADW1kYPSLdU31a9sPq3YzlY\n25dUP5whdgAAsClt9IBU9enqO6qzmo4Qnd2+C8VeV32semf1Z9WVq/SYW6qvqW61zPb3XKXH\nBQAA5rAZAtJeV4zlSLhr9TdtrucXAACOeht9koa9bls9unp8dY+DtNvWNMzu2+d8vA+0b0a8\n5Sznz/l4AADAKtgMAekR1YeqVzeFn3dXr6h2LtH22KYQde6RKg4AAFg/NvoQsBOaLv66rfqt\n6v3VV1cXNh1JenD12TWrDgAAWFc2ekB6SHV60xTer1xw/x9Uv19dPNrccORLA77cTKIAAB1S\nSURBVAAA1puNPsTuzKYpu//7ovv/uOko0tdWLzjSRQEAAOvTRg9I1zdNgrB9iXWvq57SdM7R\nzx/JogAAgPVpowekfxo/n3iA9c9tOkfpl6ufOiIVAQAA69ZGPwfpb6q3VM+u7t10pOgji9r8\n0Pj5rOqbj1xpAADAerPRjyBVPab6P01D6U5fYv0t1ZOqp1XfeATrAgAA1pnNEJA+XJ1XfV31\n3oO0e2b1FdUvVG88/GUBAADrzUYfYrfXLdWly2j3/upXDnMtAADAOrUZjiABAAAsi4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAw9a1LgBgnblj9a3Vljn6uOsq1QIAHGEC\nEsD+nrRjx45fuO1tbztzB5/4xCdWsRwA4EgSkAD2d8y97nWvnv3sZ8/cwWMf+9hVLAcAOJKc\ngwQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\nw9a1LgBgFT2oenXzvbcdv0q1AABHIQEJ2Ei+9KSTTrr9j//4j8/cwYtf/OJVLAcAONoISMCG\nctxxx/X1X//1M2//mte8ZhWrAQCONs5BAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYtq51AQBwuH3+85+vunf103N0c4fVqQaA9UxAAmDD+9CHPtRJ\nJ5103umnn37erH28733vW82SAFinBCQANoUHPvCBPfWpT515+wsuuGAVqwFgvXIOEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwLB1rQs4wk6q7lGdWh1XXVtdVb2n\n2r2GdQEAAOvAZglIF1RPrc6vjl1i/Y3V66tnVP/rCNYFAACsI5shIP1M9czq+uqvq3dVnxy/\n76hOr86tHlo9rPqB6sVrUikAALCmNnpAumv1K9UbqgurTxyi7R9Wv1X9RdPQOwAAYBPZ6JM0\nfEvTkLondPBwVPUv1fc2nZv0rYe5LgAAYB3a6AHptk3nF314me3/ubqlOu2wVQQAAKxbGz0g\nXVVtq+65zPZf2fScfPSwVQQAAKxbGz0g/UXTVN4vq84+RNuvql5R7ar+7DDXBQAArEMbfZKG\nj1dPrl7YNHvde9o3i90NTbPYnVbdpzqzaWa7764+tRbFAgAAa2ujB6Sql1TvqH6yaSrvRy/R\n5mNNIerZ1XuPWGUAAMC6shkCUtXbqu8Zt0+rTm2are66pnD0yVV+vNtUv1xtX2Z7k0IAAMA6\nsFkC0kIfH8tStlR3qz49llkd2xSSdiyz/c45HgsAAFglmzEgHcyO6orq6dVFc/RzddM1lZbr\ngdWD53g8AABgFWz0WewAAACWTUACAAAYNvoQuyeNZbm2HK5CAACA9W+jB6TTqvOarnm0Z41r\nAQAA1rmNPsTuRU2z0b2oaVrvQy23WZsyAQCA9WCjB6SPVj9Y/fvqUWtcCwAAsM5t9IBU9erq\nvzUdRbrTGtcCAACsYxv9HKS9ntg0fO6aQ7S7sfrZ6tLDXhEAALDubJaAdFP1qWW0u7n61cNc\nCwAAsE5tloAEAGtuz549Nc2weuYc3ZxUfX7OUj7f8r44BNh0BCQAOEJ2795d9fy1rqNpyPnO\ntS4CYD0SkADgCPqJn/iJzjvvvJm2/eAHP9jP/dzP9exnP7s73OEOM/Vx+eWX94xnPOOEmTYG\n2AQEJAA4gk4++eTOOOOMmbb9whe+UNWpp546cx8f//jHZ9oOYLPYDNN8AwAALIuABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAw9a1LgBgOLn6zWrHHH186SrV\nAgBsUgISsF7crXrcwx72sLZune2t6R3veEfXXXfd6lYFAGwqAhKwrvzIj/xIxx9//EzbPve5\nz+3Nb37zKlcEAGwmzkECAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABi2rnUBwIZx9+rWc2z/FatVCADArAQkYDUcV72nOnatCwEAmIeABKyGrdWxz3nO\nc7rb3e42UwdvfOMbe+5zn7u6VQEArJCABKya448/vp07d8607Y4dO1a5GgCAlTNJAwAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nsHWtC4BN7nbVuavQzz9Wn51j+6+ovmSO7Y+fY1sAgHVDQIK19bTqx1ehn6dXF82x/Z9Vd12F\nOgAAjmoCEqytrQ960IO66KKLZu7gp37qp3rrW98677/lrT/7sz/bQx7ykJk2/sxnPtOjH/3o\nOUsAAFh7zkECAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgGHrWhcAzOeqq66q+nfVw+bo5rTVqQZY766++uqqLdU/ztnV31c/PHdBAOuMgARH\nuWuuuaZzzz33jPvf//5nzNrHC1/4wtUsCVjHPv3pT7dly5ae+MQnnjdrH+9+97u79NJLj1/N\nugDWCwEJNoB73eteXXjhhTNv/6IXvWgVqwGOBvO8Z1x88cVdeumlq1gNwPrhHCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgGHrWhcAa2R7dUHz/xv4\nQPXW+csBAGA9EJDYrL6m+uOdO3fO3MENN9zQ9ddf/0/VvVetKgAA1pSAxGZ17JYtW7r44otn\n7uDiiy/uN37jNwxTBQDYQHy4AwAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBh61oXwBH1lOrfr1I/f7IK/RzVPvzhD1fdvXr/HN2csjrVABx1\n/n3T/yfzOKW6vrpmjj72VI+vLpuzFjgcHlX92ir0819XqZ9NQUDaXO559tlnn/mwhz1s5g5e\n+cpXdtVVV335KtZ01PrsZz/bKaecsv3xj3/8mbP28dKXvnQ1SwI4mnzFWWeddeYjH/nImTv4\n7d/+7c4555zOP//8U2ft43d/93fbtWvXmQlIrE9ffsYZZ5x54YUXztzBJZdc0uWXX37PVaxp\nwxOQNpk73/nOPeIRj5h5+0suuaSrrrpqFSs6up144olzPZ8XX3zxKlYDcHQ544wz5noPfeEL\nX9hZZ501Vx8ve9nL2rVr18zbw+F28sknz/Uav/zyy7v88stXsaKNzzlIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAADD1rUuAGawpfru6oQ5+rjHKtUC\nsOns3r276uTqSXN0c6/VqWY+N9xwQ9U3VsfP0c2N1curG2bcfnv1PdW2OWqo+lD1l3P2AZue\ngMTR6LTqZXe5y13avn37TB185jOf6VOf+tTqVgWwSbz//e9v+/btZ9zlLnf5nVn7+NCHPrSa\nJc1s165dnX766U846aSTnjDL9nv27OmKK66oekf11hnLuFf14rPOOqstW7bM1MGuXbu66qqr\nrqzuPGMNwCAgcTTaUvX0pz+9O93pTjN18Ed/9Ec9//nPX9WiADaLPXv2dMYZZ8z1PvoDP/AD\nq1jR7Pbs2dMTnvCEHvKQh8y0/XXXXdfDH/7wmu+0hWOqfv3Xf73jj5/tQNbrX//6nvnMZ86W\nroD9OAcJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYNiMs9htabp+znHVtdUX1rYcAABgvdgs\nR5BOr55evaW6ptpVfXLc/nx1afVT1UlrVSAAALD2NsMRpG+pXl3tbDpa9M9N4ej6akdTeLp/\ndX71k9Ujm4IUAACwyWz0gHSb6lXVZ6vHVX9e3bREu+Oqf1s9p/qT6ssz9A4AADadjT7E7oLq\n5Oqx1WtbOhxVXVe9tPru6kuqbz0i1QEAAOvKlmrPuP306qK1K+Ww+Nmmv2v7MtsfW91Q/Vz1\nq3M87l2rN7f8I3Rbm4YAbq9unONxD+WFW7du/f7jjz9+5g6uueaa9uzZc21TqJzVzmp3dfOM\n22+pbnOrW92qY489dqYObrzxxq677rp27tw5Ywl17bXXdsstt3TCCSfM3McXvvCFjjnmmObd\nJ9u2bWvHjh0z97Fr166OO+64tm3bNtP2e/bs6Zprrmk19smJJ57Yli1bZurjuuuu66abburE\nE0+cafuq3bt3t2XLlrn3ydatWzvuuONm7mPXrl3t2LGj7duX+/a1dB/z7JObbrqpa6+9thNO\nOKFjjpnt+7Trr7++G2+8ca59cu2117Znz55udatbzdzHav1b2759+9z75Pjjj2/r1tkGcNx8\n883t3r17Vf6tef+brNb7X9M5zbP+v3ZsddI873/XX399N9xwwy3V52asoaZTD45t+j96VsdX\ntzSdyjCrE8f283wmOqlpNNA8nzV2Np23vucQbQ/k2OpWo49ZHXfsscceP8/737XXXttNN930\nouqJc9SxGVxU/WJt/ID0H6rnVadVn1hG+ztWV47tfnuOxz2melDLD0hbqlOrl8/xmMtxRnXP\nOfu4Q9Ob7zxDEM+sPtyBj+gtx1nVFXNsf0xTkH3/HH0cV92+6TUzq9tU25rOi5vV6U37Y543\n4C+trmr6gmBWd296Pmf9j2RLdbfqfXPUsL3pdf6hOfrY2TTT5cfm6OP2Tf+xf3aOPu7U9LqY\n58uIM6sPNn1YmdW8/9a2Nv0t/zJHHydUt64+Okcftx0/Pz1HH97/9vH+tz/vf/t4/9tnvbz/\nVb2r6XXOgV3UCEg1/WPe08YLR1VnN/1tL+/QR5FOqC5u+of0ZYe5LgAAYP24qJGLNvokDZc3\nHQl6cvX11euaEvQnm74p2tF0dOk+1bdVt6ueWb13LYoFAADW3kY+glTTYev/2DQMYM9BlvdW\nj1+jGgEAgLVzUZvkCFJNf+hvVv+lulfTsLtTm8ZPX9c0zvad/397dx5syVnXcfgTCYtJGAwE\nZAmSgJK4RLE0CMYFlMUVFbXcdylKqWgJKilFGbdSyq3YLaVEEHcFF1AEZFHKlaBEFEEMKppg\nCIoxmI1k/ON9j/fMyb0zd4aZ6Zvkeaq6+nb3e/r8Ts+Zc+73vt1vV/+wVIEAAMDecFsISCsH\nGkHob5cuBAAA2Jtu7fdBAgAA2DUBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYB\nCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQAAAAJgEJAABgOnnpAuA2\n7hXVI5cuAgA4Lq6v7rh0ERwZAQmWdWn16uq7ly4EtnG/6reqz6quXLgW2M6zq7+rnrN0IbCN\nT6/2L10ER05AgmVdX/1XdfHShcA2rp7zS6rLlywEdnBV473pM5S96MzqpqWL4Mi5BgkAAGAS\nkAAAACYBCQAAYBKQAAAAJgEJAABgEpAAAAAmAQkAAGASkAAAACYBCQAAYBKQYFnXzwn2ouur\nA9UNSxcCO7g+70/2Lt/xt2AH5rR/4TrgtmhfdcbSRcAh3H/pAuAQ7lGdtnQRsIMPqs5augh2\nbX8zF528cCFwW3fV0gXAYVy6dAFwCFcsXQAcwk3VPy9dBEfOKXYAAACTgAQAADAJSAAAAJOA\nBAAAMAlIAAAAk4AEAAAwCUgAAACTgAQAADAJSAAAAJOABAAAMAlIAAAAk4AEAAAwCUgAAACT\ngAQAADAJSLB33K761OoTli4EprOqh1YPXLgO2MlZ1cOquy1bBtzM7aqzqwdX91y4Fo7CgTnt\nX7gOuC07u3p94//iGxauBR5UvbGt74cD1durhy9ZFKw5qbqwuqbx/vy8ZcuBg3xTdVkHf4a+\nqRHm2bv2N/+99CDB8r6u8cF5avX+hWuBe1WvbIT2C6tPabxH71i9rPro5UqDarxH/6D6qeqt\nC9cCmx5XPa96T/W11WdW31s9oHp59ZHLlcaR0IMEy7lb4//fMxq/gF6bHiSW9ZON9+Tnb6x/\n0Fz/aye8IjjYM6t3VA+pLkoPEnvHSY2eo/d089M+v63xXv3RE10Uu7a/mYtOXrgQuK27vnpM\n9XtLFwLTF1WXVy/dWP831V81fhG9Q+O9C0t4efWU6r9zyhJ7yynV06orGyFp3evn/N4ntCKO\nilPsYFn/k3DE3rGvcWrd6vqjTW9o/AJg0AaW9LJGOIK95n3V06tf2mbbWXP+jyesGo6agATA\nyplzftkO21fr73sCagG4tTilemojQD1/4VrYBafYAbByypxfu8P2a+b81BNQC8CtwZ0aPUrn\nVV9V/fuy5bAbAhIcXx9avW5j3cWND0nYa1ajKO703bBa7/ojgMO7R/U71SdW31j9yrLlsFsC\nEhxfN1Xv2lj3n0sUAruwuqj49B2233XOvYcBDu1jG9cY76s+p3H7BG4hBCQ4vt6dUZa45fi3\nxjny5+ywfXX/jrecmHIAbpHOq15bvbd6aPUPi1bDETNIAwArB6pXN/7yeebGtjs3wv7F3Xz4\nWgCG+zZ6i66sLkg4ukUSkABY96zqdtVzGhcXN5ef3ghJT1+oLoBbgudVd2ncbPvyhWvhKDnF\nDpb1NdUT1pbvUJ1b/fnaui9pnPoEJ8Irqp+uvqP61+rvqo+o7lO9oHrRcqVBNQa+ueP8eXXT\nzZ9o3Dy2xo1k95/gmqDqQdWjqqsan5fbubxxQ272MAEJlnVjBw+p/MfbtNnuhp1wPD2xEZS+\nvLpX9ZrqxdVLliwKpuva+ly8dE7rbjix5cBBNkeu3XTdCamCD9iBOe1fuA4AAIAl7G/mItcg\nAQAATAISAADAJCABAABMAhIAAMAkIAEAAEwCEgAAwCQgAQAATAISAADAJCABAABMAhIAAMAk\nIAEAAEwCEgAAwCQgAQAATAISAADAJCABAABMAhIAAMAkIAEAAEwCEgAAwCQgAQAATAISAADA\nJCABAABMAhIAAMAkIAEAAEwCEgAAwCQgAQAATAISAADAJCABAABMAhIAAMAkIAEAAEwCEgAA\nwCQgAQAATAISAADAJCABAABMAhIA6w5Uj1q6iDXf2d6rCYBbMQEJgE3/s3QBa66e871UEwC3\nYicvXQAAe852YeSM6r6N3pxLq6sO8fhzq33V26r3VveoPqp6c3XlRttTZ/uTq3dUV2xs321A\n+tDqIw+x/W+r9xxmHyu3rz6sunv1n43X+/4d2p5efcSs75+q63dot696YHW7tn+dp1QPntv+\npXFM7l79yUa7wx0vAI6BA3Pav3AdACzvQHXW2vKHVa+qbmrr++Km6gXVXTYee171lrV211Tf\nV33LXP7ctbZ3qp5dXbfW/sB8rvXn/8JtatrOV2/sZ3P6vMM8fuUJ1bs2HntZ9Q0b7U6tXtgI\nTqt2V2zT7rTGsbphY5+v3nhN5871P1T93Pz5zWvbd3u8ADg6+9v6bBWQAPh/H9PBZxdc0ugV\nubD66Orjqqc1vjdetNbuDo0ejRurixq/8D+i+vvqr2b7z1pr/+uN0PCURs/PA6rHN3qm3t7o\nUakRMDZr2s5p1YdvTA9rhLQrq3sd9pXXp886X1F9cnX/6tPm8oHqgrW2vzPX/UT10Pla/6wR\nHr9wrd0fzHY/1uhBOqf6rkawenv1wbPd2bPdH1V/XT2mesjafnZ7vAA4OvsTkAA4jNOq762+\ndZttb6n+t61rWR/T+C551ka7sxsBaz0gfUJb4WLThXPbZk/Mkfqg6jVzX1+wy8c8ZbZ/2Mb6\nD6l+uPqkuXz+bPf8jXb3bASfV87lT57tfnOb5/qRue3r5/KZc/nG6n4bbU/E8QK4rdvfzEWu\nQQJgJ1c3fpE/qXGdzb0aPUVV72v0fpzW6MVYhYeXb+zjHY3TwD57bd3q5/dXX77RfrX/T+3m\nAeRIXNQIOs9t9Pbsxjvn/AnVm6r/msvvbYSnlUfP+Us3Hv+uxql3183lR8z5i7d5rt+tvqfR\na/ULa+vf2LgGad2JOF4ATAISAIfypdVPtdXDcc2c32luX/Ug3XvO39nNvamDA9L95/zJh3je\nex5NsdP51Q80Tu970sa2H2q8pnXf0Dg97perx1Zf0uh1+otGb9BLGoM8rKzq/7dtnvu6tZ/P\nmvNLt2m3CkH33Vi/3T6P9/ECYI1hvgHYyfnVrzaufXl4o7fi1Eav0as22q56Mm7YZj//u7F8\n+zl/dKMXartpt6fFbTqtEXRurL6iEejWXdXo6VmfViPP3TCf9+HV86r7NILWJdVvt3W90Kr+\nnUa2W1m1225ku9VxuuPG+vcdYj/H43gBsEEPEgA7+YrGH9KeVL12Y9sZG8ur4bjvvM1+Nns3\nVkN9n1Fd+wHUt51nNQZo+PZGsNn043M6lNe29XrPaavX6aLqqY2hv6vudpj9HKrdXed8N0OP\nH8/jBcAGPUgA7OT0Od88Rezs6uM31q3afNTG+pOqR26se8Ocf3Y3d8/GtTtH8we8L6u+rvr9\n6hlH8fh9jXC17q2NIcTf39Yodm+c84d0cz/b1kAVF8/5g7dpd/6c//Uu6jpexwuAHRjFDoDt\nfF/j++Hxa+tOb9y89M1z29lz/Wqktb9snIa38qTGaWPro9idVr270Rty/lrb2zdGfDvQ9qHi\nUO7XGEzhXY0b0x6NP2r01py9sf4TZ00vnMt3aQzg8B8dPOLcF892PzOX9zV6kS7r4GHGT2tc\nl3V9Y7ju2rrGa33o9PX2x/p4AXCw/RnmG4DDuHfjmp3rql+qfrHxC//3V09sfHf8aaPXpuo3\n5rpLG2HiddU/tnXfpPX7ID26cW3StY1BEF5U/XNbN0s9Ur84H3vJ3Nfm9Nhd7OPB1X83rlt6\nReM1v7Lx+q9onG638kWNgHN1415Hfzqf/61t9bzVGP78usapdC9sjFh3WeN+Sd+y1u5QAamO\n/fEC4GD7M8w3AIdxWeNUuu9o9HS8u3G62e83eonOagz/feNs/5WNUPTIRkh4VeN0swvn9vXB\nCv6wccPTxzVuPnt69bLqV6rXH0Wt/zKfu0bY2LRvF/v4y+q86mvn/IxGj9STq59vhMWVl8y6\nH9d4He9s9OY8t4MHhvjdua9vbtzw9qTGTV9/ofqbtXbXzfrfskNtx/p4AXAIepAAOFZuv826\nFzS+Z87ZZhsA7AX7m7nIIA0AHAv7Gr0tF1enrK0/tzEC3D9Vb1ugLgA4IgISAMfCVdVzGqeT\nva1x6tdL2xrJ7fHNC18BYC8TkAA4Vn6w+ozq99q65ueZ1cc2RogDgD3PIA0AHEuvmRMA3CLp\nQQIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACA\nSUACAACYBCQAAIBJQAIAAJgEJAAAgElAAgAAmAQkAACASUACAACYBCQAAIBJQAIAAJgEJAAA\ngElAAgAAmAQkAACASUACAACYTl77+YLqyUsVAgAAsJALVj+cVB1YsBAAAIA9wyl2AAAA0/8B\n+qcULSy9LPQAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'age' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebxkd13n/1ebdDoEkpAACTuyqkEiSyIKjiKyI1ERFDDCBHFUfvxcBvQn\nqGNYHB1FGXH5uSCioKCIjEEWkUVlEUEUyYAsAkKUEANhJ+lsPX+cb09XX25339t969btus/n\n43EeVbfOt059qs5Jp951zvmcHdWeAAAA6EsWXQAAAMBWcezM/TdVb1xUIQAAAAvyddU99/6x\nZ0znL6oaAACABTq/kYscYgcAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwHLvoAgAOw9nV\ndcf9D1YfWWAtB3IkNW6193dWdb1x/0PVhxdYyzws4vNepu0DYOnsGdP5C64DYNaJ1b3G9J9W\nzPvf7fu368c3taq1O5IaD/e5B/vMjsQ7Zur5yQ1c7laxiO1pEdsHAAd2fuPfVnuQgK3qNtXr\nx/3LqhsssJZ5uHl1u+o/qndv0DKX/TNjfuaxPQIclQQkYKv67AHuL4tnVQ+r/qh6xAYtc9k/\ns3n59uo64/5HF1nIGs2j3nlsjwBHJQEJ2KqW+cv+9aoHz2G5y/yZzdN7F13AOm10vfPaHgGO\nSgISsFV9bub+Z9b4nFs0HSr0H9UH1jB+V3WHpnN3/qP6lzU850bVl1Y7q481nSS/VidWd6vu\n2b49AKc1nTNU9cbq6oM8/1Dv73A+s1k7mj6PU5pO/D+cvRO3rk6vrqouaqr1QO5RHTfu/0NT\nzcdUX9a0bt7f/u+p6qbVLZs++389RC1rXVcHa3qwWo21/m1trday3LU2abhx02e1o/r36uLq\nmpn5h7s9rmcd7zW7bV006qm6fXWzcf+i9n/Pq332N2k6FPAjfXGzkLWu73lvd8AS0KQB2Kqu\navr36VUrHp89Sf2J1W2rN808tqfpi89XHGC5N61+r/rCiuf8W/W9B3jOQ6p/XDF+T9OXpces\nMn61E+nPWuX5s9P1N+D9HegzO5QHN3Wom32N1zZ9Yf+HmcdWa9JwfPXfmgLVyvf0v1v986np\nS+7ecfdv+uL//pnHPlv9v2PsSdWfrVj2q9v3mc3aiHV1oBrXu60dyJGs40M1aTivaS/Tyvf/\nseoZ7QtXa90e6/DXcU3r419XPOevmgLHH8w89rMrnndR+3/2398U2FZuh+td3/Pa7oCj2/nt\n++9cQAK2rFc1/Yr9jBWPr/yCOPtFauUXpBNWPPdWTb9e7x1zRdMv0dd24H8PH71iuZ9v+oV5\n9rHvO0SNNf1af/WK17p2PHZ1dfIGvL8DfWYHc+/2BauV07s7eBe761V/d4Dnzk6/scrrvmdm\n/uOrT6zyvGub9nBccIDl/tGKZW7Uulqtxse1vnVxMEeyjg9W70/2xZ/flSsee3PTESRr3R6P\nZB3ft32hZuX0z9Vfzvz90yueO/vZ/2B1+czfe7fDw1nf89jugKPf+QlIwFFs9gviv1fvqx5Z\nfVv1hvb/IvPoFc99zcy8VzYdZlR1Rvt+Hb+6utN4fGfTIUR7n/NbTV8ud1T/c+bxj7f/YcsH\n+xL7GzPzXrTB7+9wXDizvIurr2861Oirmw47nH29lQHpd2fmfbY6t+lX99tVv7riud95iPf5\nV9WDqqeteN6FTUH2h5saFMz+2n9106FVNZ91NTvvog6+Lr67tTuSdXygeo9vCgh7mg6l++aZ\n9/nl1TtnnnfuzPMOtT1u1Dr+eNMem+s2taFfGQpXbluzz31/U0D6w+qXx+e0Eet7I7Y7YDmc\nn4AEHMVmv+Bc2XROxF4nNX2J2zv/V2fmndH+X4DusGK5T5iZ9+zx2KnVk2amW82Mv+2K5d3x\nADUeSUBaz/s7HHda8R5Wfsl/0Ir5s19ib9H+ewcev8ryXzEz/60r5s2+z8+2b49FffEv9/91\nZt69V8y733h8HutqXuviSJZ7oHpvPfP4p5sC06w7Nx1ydt+mw0z3Otj2eCTr+Mz2/8wft+J5\nD10x/2ABaU/1jSvmb8T63ojtDlgO5zf++9akATjavazp3Jm9PtN0Lsf9x983nJn39TP3r2q6\nbtBtZh7bucrYy6pnjvs3GOO/tOlX6uutqGUe5yWs5/0djrNW/P2KFX+/qunL9sl9sW9qOrl9\nr9XC3kuqB477d2v68r9aA4kLxuvs9ddN55bs9YKZ+3/T9D+xHePvU8ftvNfVvNbFRi334qbz\n6k5o+pzfWr1wLOttTYdKvmOdtR3JOr7binF/tuLvC5oCyokd2t+07xpfe23E+t6I7Q5YMgIS\ncLR7zyqPfWzm/uy/czefub+z6RC7A7ndzP2zmw7ZucchatlxiPmHYz3v73DcZOb+55vOx5h1\nbdNhSKsFpNlwedmYVprtJPYlTetgtQuRruzY9vGZ+59t/05pVzd9qd37pXf2M5jnuprXutio\n5V5R/cyYato7uPdQ0Subzj16UfW8avcal3kk63jltnXpiudd3dQYZS0NLv7xAI8f6freqO0O\nWCL+4waOdqtd7+dArbKPm7l/ZfW3B1nunqYve3do+uV6b+evi6rXNZ0IflwH7nq3Udbz/g7H\nys9kNVcc4PHZQ7gO9NyrVvy96wDjvrDi72sOMm/l/L2+vPmuq3mti41c7n9vajry49VXzjx+\nXFP77ns1HSZ37744DK/mSNbxWrat1dbtalZrJb4R63sjtjtgyQhIwHbyyZn717bvei8H88Pt\n+wL2b9Vd2vfF8vTmH5DmbfZwtxObDqda+SXwxgd47uyv7ac0BcprV4xZeSL7yr0IG2nZ19Va\n/cGYbll9XdNelvu27zycM6unt/r5RCsdyTqeDX7r3bZWWvmaZX0Dc/Iliy4AYBNdOHP/+PY/\nfOhAZn+F/9v2/9X9zhtQ0zwOy1uP2YvjHtv05XnW7dr/UKlZsyfk7+qLzzmpqVXyXhc3fZGd\nl3mvq6PJlzRd7+cPqx9p+myeNDP/QIekrdwej2Qdr9y2vmrF827X/s0i1sv6BuZCQAK2k9dV\nn5r5+8kr5j+tuqSpHfLejlqzhwbdbOb+cdVPrXj+aufprGb28KnbrvE58/KG9j9E6sdWzH9K\nBw5xb2j/5gJPb/8T+m/f/p3Lnnd4Ja7ZPNbV0eRR1d837RV86irzZ38guHzm/sG2xyNZxyu3\nrSe3/7Z0sG1rLbb7+gbmxCF2wHbyhaYveL84/n5c016kNzWda/QdTV/YTmnqbtWYt7e98D2q\nX2m6Hsq5TSeX/2XT4Us1hYtbtPoFM2d9eOb+3ao/b/rV/Znt/6v7ZvhkU6eu88bfj2j6Vf/v\nmg7N+tqm60Pt/aV/9oe1a5oO03r5ePz+TSfTv7qpw9fD2teh7H3Vz83rTQzzWFdHk7c37Tk5\npvqJpvf8jqaGDLdsus7SXrPd6A61PR7uOr6saQ/WY8bfD6ve0rRt3bXpOlsXd+A9lIey3dc3\nMEeugwQcbQ523Zqq58zM/5MV83ZUP9v05X7PKtOn29deuaYvge9fZdznq3OqB68y71A13qJ9\nF/Scnc5aw3MP9f4Oxyntf7HYvdM11fe3/8V1f2aV5z+sac/cap/nnqbuaTdf5XkHe5/nzsz7\nWF/s4zPz9170dB7ral7r4kiWe7DnfnvT3qEDrYtrm66rNBt0D7U91uGv41M78Lb1hKZD49Zy\nHaTVPqN5rO/D2e6A5XB+roMEHMXe1r6Txz+yyvz3Nl3PpOpdK+btaTrU5/ebflG/U9N1Yz7a\n9Av889v/uiiXNe1JeXzT3pS9y/yt9rU3flzTF7KdYxmHqvGipl/Pf6jp4pafbWqL/KE1PPdQ\n7+9wfHLU8/3VNzS9j39p+ozeXp3WviMOPrrK8/+kKUQ9sul8lNOaOt99sOm6Sq8+wOse7H1e\n0r73uFpr6Te177CpS2bGbfS6mte6OJLlHuy5L2naS/MdTU0LTm8KQ59sCiov6YvbrB9qe6zD\nX8eXjWV/X1NTlJ1NrbV/v+lwwO+ZGbuy9fihPqN5rO/D2e6AJWQPEgCw2XZkjwywdZzf+PdI\nkwYAYF5+s+nwu4v64nPQHlbdYNy/tqmpA8DCOcQOAJiXL7Tv8LcfazpP6R1NLb7Pmxn3/PZv\nFgGwUA6xAwDm4fjqpR24ucOe6k+bzgMEWKTz06QBAJizK6pva7pI7HdWX1rdqPpc9Z7qz5qa\nSgBsGQISADBv/zQmgC1PkwYAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABiO\nXXQBAHN21+rUOS7/0uqf5rh8AGATCUjAsnvLCSecsPOYY47Z8AVfffXVXX755Z+urr/hCwcA\nFkJAApbdsc94xjO6853vvOELfstb3tJTnvIU/44CwBJxDhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMxy66gE12UvXl1WnV8dXl1cXV\ne6ovLLAuAABgC9guAenB1Y9V96yOWWX+VdVfVj9TvXkT6wIAALaQ7RCQfrz62Wp39drqXdWl\n4+9d1Y2rO1f3rx5QfW/13IVUCgAALNSyB6RbV8+oXlc9svqPQ4z94+rXqlc2HXoHAABsI8ve\npOF+TYfUndfBw1HVh6rvbjo36YFzrgsAANiClj0gndp0ftFH1jj+vdW11elzqwgAANiylj0g\nXVztrO64xvF3bfpMPjq3igAAgC1r2QPSK5taeb+gOuMQY+9e/WH12erlc64LAADYgpa9ScMl\n1eOr5zR1r3tP+7rYXdnUxe706szqNk2d7R5VfXwRxQIAAIu17AGp6nnVO6snNrXy/vZVxnys\nKUT9QvW+TasMAADYUrZDQKr6h+q7xv3Tq9OautVd0RSOLl1QXQAAwBayXQLSrEvGtJod1a2q\nT40JAADYRpa9SUPVdaqfqS5sutbRi6qvPMDYXWPMD29OaQAAwFayHQLS71dPaQpFp1bfWb29\n6aKwAAAA/9eyB6Svqh5W/UXTeUcnN7X7fkf1e9UjF1caAACw1Sz7OUh3G7ePb18jhn+uvr76\n06YOdxdVb5zDa9+i6SK1a7Wzeu8c6gAAANZo2QPSjao91YdXPL676VC7NzYFpa+pPriBr3vb\n6v1NTR/W49jqmg2sAwAAWIdlD0gfbgopZ1b/uGLe56pzqrdWr6y+oY3rXPeB6mZNDSLW4q7V\ni6tjEpAAAGBhlj0g/VX1heq3q4c3daib9ZHqm6tXV2+qztvA1754HWNvvIGvCwAAHKZlb9Lw\nseqnms5F+mD1tauM+fumvUfHV3+9eaUBAABbzbIHpKpfaupk99rqEwcYc2FTx7vfzSFuAACw\nbS37IXZ7vWRMB/Px6rFjAgAAtqHtsAdpPXZUt2u6oCwAALDNCEj729XUnvsHF10IAACw+QQk\nAACAQUACAAAYlr1Jw38Z01rtmFchAADA1rfsAen0pmsgXVntWXAtAADAFrfsh9j9TnXZuD1+\nDdP1F1MmAACwFSx7QPpo9X3VD1TftuBaAACALW7ZA1LVn1S/17QX6RYLrgUAANjClv0cpL0e\n13T43OcOMe6q6snVG+deEQAAsOVsl4B0dfXxNYy7pvq5OdcCAABsUdvhEDsAAIA1EZAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgOHbRBWyib6weVN2xOq06vrq8urh6Z3VB9daFVQcAACzc\ndghIt6peXJ0989iV1e5qV3VW9ZDqJ6pXVedWn9jkGgEAgC1g2Q+x21m9orpz9azqHtXJTcHo\npHF7anXv6rnV/auXtfyfCwAAsIpl34N0v+qM6tHV8w8w5pPV68f0jurZ1b2q121CfQAAwBay\n7HtKzqiuqV64xvG/Xe2p7jK3igAAgC1r2QPSNU3vcecax++sdjSFJAAAYJtZ9oD09qbA8/g1\njn/SuNXNDgAAtqFlPwfpDdWbqmdWd69eUr2rurSpk92u6vTqzOpR1QOqV4/nAAAA28yyB6Rr\nq3Oq51QPH9PBxj6vekIOsQMAgG1p2QNS1WXVQ6vbN+0hOqN9F4q9ovpYdWH18uqiBdUIAABs\nAdshIO31/jEBAACsajsFpG+sHlTdsX17kC6vLq7eWV2Q5gwAALCtbYeAdKvqxdXZM49dWe1u\natJwVvWQ6ieqV1XnVp/Y5BoBAIAtYNnbfO+sXlHduXpWdY/q5KZgdNK4PbW6d/Xc6v7Vy1r+\nzwUAAFjFsu9Bul9TU4ZHV88/wJhPVq8f0zuqZ1f3ql63CfUBAABbyLIHpDOqa6oXrnH8b1e/\nXN2lIwtIp1TPaO2f7+lH8FoAAMAGWfZDya5peo871zh+Z7WjI78O0o4xAQAAR5Fl34P09qag\n8vjqF9cw/knj9ki72V02XnOt7lF9yxG+JgAAcISWPSC9oXpT9czq7tVLqndVlzZ1stvVdHjb\nmdWjmi4k++rxHAAAYJtZ9oB0bXVO9Zzq4WM62NjnVU/oyA+xAwAAjkLLHpBqOtztodXtm/YQ\nndG+C8VeUX2surB6eXXRgmoEAAC2gO0QkPZ6/5gAAABWtexd7NZrZ/WCpj1OAADANiMg7e+Y\n6ruamjYAAADbjIAEAAAwLPs5SHcY01qt9YKyAADAElr2gPSo6qcXXQQAAHB0WPaA9M/j9k+r\nt61h/LHV0+dXDgAAsJUte0D6o+o7qrOrx1WfPMT44xOQAABg29oOTRr+S1MQfM6iCwEAALa2\n7RCQPlE9orq4Qzds2FPtrq6ed1EAAMDWs+yH2O31N2M6lN1Nh9kBAADb0HbYgwQAALAmAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAzHLroA2CZuUt10jsu/vHr3HJcP\nALAtCEiwOV5a3X3Or3Gr6iNzfg0AgKUmIMHmOO57vud7OuecczZ8wZdddlnnnXde1a4NXzgA\nwDYjIMEm2bVrVyeeeOKGL3f37t0bvkwAgO1qOwWkb6weVN2xOq06vum8jYurd1YXVG9dWHUA\nAMDCbYeAdKvqxdXZM49dWe1uOiTprOoh1U9Ur6rOrT6xyTUCAABbwLK3+d5ZvaK6c/Ws6h7V\nyU3B6KRxe2p17+q51f2rl7X8nwsAALCKZd+DdL/qjOrR1fMPMOaT1evH9I7q2dW9qtdtQn0A\nAMAWsux7Ss6orqleuMbxv13tqe4yt4oAAIAta9kD0jVN73HnGsfvrHY0hSQAAGCbWfaA9Pam\nwPP4NY5/0rjVzQ4AALahZT8H6Q3Vm6pnVnevXlK9q7q0qZPdrur06szqUdUDqleP5wAAANvM\nsgeka6tzqudUDx/TwcY+r3pCDrEDAIBtadkDUtVl1UOr2zftITqjfReKvaL6WHVh9fLqog18\n3ZOqY9Y49sQNfF0AAOAwbYeAtNf7x7QZbjtea8cmvR4AALABtktAunHTxWCvaLre0SfH43dq\nauBw6+ri6vfH/CP1gbHMte5Bumv14g14XQAA4Ahsh4B0TtN1kE4Yf3+q+tbqqqYwdNzM2P9c\n/T/Vr2/A6354HWNvvAGvBwAAHKFlb/N9neo3qk9XT6ueXP1LUzOGn67+vrpndavqgdU7q1+s\nbriAWgEAgAVb9j1I923aO/OV1bvHY7/UdH7QN7Tv0LqqjzSFp/dX96v+cFMrBQAAFm7Z9yDd\npvr39oWjmq5/9NdNQejiFeP/pamr3S03pToAAGBLWfaAdG2rv8fjOvDes+PG8wAAgG1m2QPS\n+6qbVmfNPHaD6j5Ne5fusGL8V1enNu1JAgAAtpllPwfpNU0tt19TvaDaXT2sqc33X1avqP5b\n9a/VHZsaN3yqevUCagUAABZs2QPS1dWjq//V1L676t+q72wKSW+p/mDF+EdUn9vEGgEAgC1i\n2QNS1ZurL62+tmkP0tvGbdVXVI+tbldd0nS9pPdsfokAAMBWsB0CUtUXqteu8vhl1TM3uRYA\nAGCLWvYmDQAAAGsmIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADMcuugA21ZdUJ89x+ddUn5nj8gEAYK4EpO3ll6ofmvNr3Ld6\nzZxfAwAA5kJA2l5O/tqv/doe85jHzGXhT3rSk/rc5z53/bksHAAANoGAtM2cfPLJ3eEOd5jL\nso855pi5LBcAADbLepo0PLr6jTUs7yPVgw+7IgAAgAVZT0C6TfU1hxhzQnVa9WWHXREAAMCC\nrOUQu7eM25tXp8z8vdKO6tbVruqyIy8NAABgc60lIL2iOru6fXWd6s4HGfuZ6vnVHx55aQAA\nAJtrLQHpaeP2/OpbO3hAAgAAOGqtp4vdb1V/PK9CAAAAFm09AemjY7pxdWZ1YtN5R6t595gA\nAACOGuu9DtLPV0/s0N3vntp0SB4AAMBRYz0B6aurH60urF5WfaK69gBjD9TpDgAAYMtab0C6\nqKmj3e75lAMAALA467lQ7PHVuxKOAACAJbWegPT26ss7cGMGAACAo9p6AtJfNYWkX6h2zaUa\nAACABVrPOUhfX/1r9bjq3Ood1ccPMPZPxwQAAHDUWE9A+samFt9VJ1f3P8jYf0lAAgAAjjLr\nCUi/Uv1udc0axn7m8MoBAABYnPUEpE+MCQAAYCmtJyDdckyHckz1b9UHDqsiAACABVlPQHps\n9dNrHPvU6vx1VwMAALBA6wlIf1P9zAHm3aj66urW1TOq1x5hXQAAAJtuPQHpdWM6mB+qvr16\n1mFXBAAAsCDruVDsWvxy096k+27wcgEAAOZuowNS1YerM+ewXAAAgLna6IB0/eou1ac3eLkA\nAABzt55zkB4wptXsqE6t7lPdoHrjEdYFAACw6dYTkL6mqQnDwXym+pHqXYddEQAAwIKsJyD9\nVvXnB5i3p/pc9cHqqiMtCgAAYBHWE5A+OiYAAICltJ6AtNeNq3ObLgx72njs4upN1QuqT21M\naQAAAJtrvQHpwdULqxNXmfeI6ierb6n+7gjrAgAA2HTrafN9ctMeos9XT6juVJ0+pq+qnlgd\nU/1JdfzGlgkAADB/69mDdP+m6xydVb19xbz/qN5Z/U31tup+1QUbUSAAAMBmWc8epNs0nWu0\nMhzN+vvqI9WXH0lRAAAAi7CegHRNdcIal3nt4ZUDAACwOOsJSO9qOg/poQcZc//q5rlQLAAA\ncBRazzlIf1l9oKlRw29Vr2u6LtKO6qbVfarHVe+rXrOxZQIAAMzfegLSVdU51f+qfmhMK/1z\n9a1jLAAAwFFlvddBend1x+pB1T2qm1R7mpo3vKH6i+rqjSwQAABgs6wnIO1oCkNXVX82pr2O\nawpGmjMAAABHrbU2afjqpusb3egA83+4+uvqthtR1Byd1PRevrl6WPXg6q6trTsfAACw5Nay\nB+mrmhoyXLf6uuqlq4y5fnXPMe7spgvHbiUPrn6sqcZjVpl/VVMTip+p3ryJdQEAAFvIWgLS\n71TXqR7R6uGo6ilNrb2fX/1a9fANqW5j/Hj1s9Xu6rVNdV46/t5V3bi6c1OL8jARH1wAACAA\nSURBVAdU31s9dyGVAgAAC3WogHSn6m7Vr1R/dIixf1B9U/Xo6hbVRUdc3ZG7dfWMpj1bj+zg\ne7ZuXf1xU8B7ZVPjCQAAYBs51DlIdxm3L1jj8p7bdAjbPQ67oo11v6Z6zuvQh/19qPru6vjq\ngXOuCwAA2IIOFZBuMm4/uMblfWDc3vLwytlwpzadX/SRNY5/b1MnvtPnVhEAALBlHSog7b3g\n6641Lu+64/YLh1fOhru42tl07aa1uGvTZ/LRuVUEAABsWYcKSB8at1+zxuXda9x++LCq2Xiv\nrC5vOkTwjEOMvXv1h9Vnq5fPuS4AAGALOlSThr9q6vb2/1UXtG+P0mpOrp5cfbqpW9xWcEn1\n+Oo5Td3r3tO+LnZXNu0ZO706s7pN03t9VPXxRRQLAAAs1qEC0ier36x+sHpx9T3VJ1YZd7um\nvS+3abqW0OUbWOORel71zuqJTa28v32VMR9rClG/UL1v0yoDAAC2lLVcB+nHq7Oqb6nuU/15\n9Y7qc01NEO7eFDyOabrY6vnzKPQI/UP1XeP+6dVpTd3qrmgKR5du8Oud1HRh2rV8vlU32+DX\nBwAADsNavsBfXt27elrT4WrfOaZZl1bPqn6+umYjC5yDS8ZUU1i6XdN1m/65jdvztau6bVNo\nXIsbjNsdG/T6AADAYVjrHo695yE9rbpndfumjnWXNrUAf2NbNxgdXz2lqcZXj8duWf1203WS\n9to9HvuxjjwoXdp0Ydq1ukdTCN1zhK8LAAAcgbUGpL0+3xQyXn2ogVvIS6sHVD/aVPd1qtc1\n7eH5h+rtTSHq66snNB3u9tCFVAoAACzUegPS0ebrmsLR/6h+cTz2iKZw9OTq52bGHtfU0OGR\n1dnV2zatSgAAYEs41HWQjnZ3azps7entO3ztzKY23v9jxdgrmzrd1XTIGwAAsM0se0DaWV3b\nFH72urypc91q5/tc0nQu1fHzLw0AANhqlj0g/WNTJ7lHzzz2+qZD7E5dZfy3jPHvmX9pAADA\nVrPsAen11Zur/7+pA9/Nmq7V9OKmC9veaoy7UfUj1e9XH6hetemVAgAAC7fsTRqubdor9KLq\np8b0702H2H1V9a9Nh98dN8Z/qDqnqeU3AACwzSx7QKqpIcN9qm+qHt7Uoe5Lm8412j3mX1i9\nrGkP0hULqRIAAFi47RCQ9nrtmAAAAFa17OcgAQAArJmABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAcu+gCNtE3Vg+q7lidVh1fXV5dXL2zuqB668KqAwAAFm47BKRbVS+uzp55\n7Mpqd7WrOqt6SPUT1auqc6tPbHKNAKzP/apnNL8jIa6tfrJ69ZyWD8AWtewBaWf1iur21bOa\ngtK7qs/MjDmlunNTMDqveln1dU3/cwRgazrr9NNPP/ucc86Zy8IvuOCCLrnkkrMSkAC2nWUP\nSPerzqgeXT3/AGM+Wb1+TO+onl3dq3rdJtQHwGG64Q1v2CMf+ci5LPvNb35zl1xyyVyWDcDW\ntuxNGs6orqleuMbxv13tqe4yt4oAAIAta9kD0jVN73HnGsfvrHY0hSQAAGCbWfaA9PamwPP4\nNY5/0rjVzQ4AALahZT8H6Q3Vm6pnVnevXtLUpOHSpk52u6rTqzOrR1UPaDoh902LKBYAAFis\nZQ9I11bnVM+pHj6mg419XvWEHGIHAADb0rIHpKrLqoc2tfp+QFPjhr0Xir2i+lh1YfXy6qIF\n1QgAAGwB2yEg7fX+Ma3m2Db2fKzbVu9p/Z/vjg2sAQAAWKftFJAO5jeaLhZ71gYt7wNjWWv9\nfM+snptD+wAAYKGWPSCdNKZDOaGpxffNx9+fGdOR+Kd1jN11hK8FAABsgGUPSP+1+ul1jN97\nDtJTq/M3vBoAAGBLW/aA9Olxe0X1R9WnDjDuPtWNqheOv98y57oAAIAtaNkD0rOautj9YlO7\n7x+tfmeVcc9pOgfphzevNAAAYKvZyM5tW9XvVV9RvbIpCL2+qeU3AADAfrZDQKq6tPqu6kHV\nrat3Vk9paswAAABQbZ+AtNcrqzs2tfV+evX26uyFVgQAAGwZ2y0gVX2++pHqa6prqzdX919o\nRQAAwJawHQPSXm9rupjrT1U3XHAtAADAFrCdA1LV1dXPVdev/tOCawEAABZs2dt8r9XuRRcA\nAAAs3nbfgwQAAPB/CUgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAMOxiy5gAXZU162Ory6vPr/YcgAA\ngK1iu+xBunH11Opt1eeqz1aXjvufqd5Y/Wh10qIKBAAAFm877EG6X/Un1YlNe4ve2xSOdle7\nmsLT2dU9qydWD2kKUgAAwDaz7AHp+tWLqk9V51avqK5eZdzx1cOrX6peWn1ZDr0DAIBtZ9kP\nsXtwdUr1HdUFrR6Oqq6onl89qrpZ9cBNqQ4AANhSlj0g3bK6qnrLGse/rrq2ut3cKgIAALas\nZQ9In6l2VqetcfxNmj6Tz8ytIgAAYMta9oD0+nH7rOq4Q4y9bvVr1Z7qNfMsCgAA2JqWvUnD\nu6tfrx5ffUP1supdTV3srmzqYnd6dWZ1TnXD6mer9y2iWAAAYLGWPSBVPaGptfePVt9/kHHv\nr55U/d5mFAUAAGw92yEg7ameXf1K9ZXVGU3nJB3f1L3uY9WF1Xs28DVPqH6gtX++t9rA1wYA\nAA7TdghIe+1pCkIXbsJrnVzdtzpmHeOrdsynHAAAYC22S0C6b9M5Rter/q56XtPeo5V2NR2O\n9z/HdLgurh6wjvH3qN7UFOIAAIAF2Q4B6Serp8/8/Z+bzkf61r54b9KOpsPdrr8plQEAAFvK\nsrf5vnlTQPpg9fDqrk0d7U6p/rq60+JKAwAAtppl34P0n5oOmzu3+tvx2D9WfzGmV1Z3r/59\nIdUBAABbyrLvQbpF03k9b1vx+AerB1fXqf6sqescAACwzS17QPp403lFN1ll3vuqhzVdJPaF\nLf/eNAAA4BCWPSD9XdMepP/e6i23X9908diHVC+pTtq80gAAgK1m2QPSu6o/aDoH6b3VHVcZ\n89zqMdWD2pxrJAEAAFvUsgekqsdWv1Kd3oEv3Pr86t7VpzerKAAAYOvZDufdXFX9YNO1j649\nyLg3VGdUX1P92ybUBQAAbDHbISDttXsNY66u3jjvQgAAgK1pOxxiBwAAsCYCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwHDsogsAAI4qO6vrzXH5e6pPzXH5AAclIAEA6/Hr1ePm/Bpf\nX71hzq8BsCoBCQBYjxPvc5/7dN55581l4Y997GPbvXv3SXNZOMAaCEgAwLqccMIJ3eQmN5nL\nsnfs2DGX5QKslSYNAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAw7GLLgAAgC3hetXOOS7/C9XuOS4fNoSABADATauPVMfM8TX+\nurrXHJcPG0JAAgDgutUxv/qrv9opp5yy4Qt/5Stf2Qte8IKTNnzBMAcCEgAAVZ122mnd8IY3\n3PDlnnSSbMTRQ5MGAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgGE7drHb0dTK8vjq8urziy0H\nAIBt7DrVA5vvNajeWn14jstfKtslIN24+oHqQdUZ1Qkz8z5bvbP6s+o3q89senUAAGxXD9ix\nY8dLrne9681l4ZdffnlXX331c6vvmcsLLKHtEJDuV/1JdWLT3qL3VpdWu6tdTeHp7Oqe1ROr\nh1RvW0ilAABsN8ecdNJJvfSlL53Lwn/+53++V73qVU6rWYdlD0jXr15Ufao6t3pFdfUq446v\nHl79UvXS6sty6B0AAGw7y54mH1ydUn1HdUGrh6OqK6rnV4+qbtZ0HCgAALDN7Kj2jPtPrc5f\nXClz8eSm93XcGscfU/2f9u49Ss66vuP4e5PNPRjuEC7hGqAcQSjKRTiAUIqHKrYgVkSaUtEe\nbAVPK9ZzrLLHFtRaWyTSFgoVRYqntRwrd8QiSFUKCIVySyCJQLiHGDYJe0my/eP7nbOTYWd3\nsjvPPjuz79c5c2bnmd8++5159pmZz/x+z+/pAz4PfGUMf3cv4D4a76HrJIYATgf6x/B3R3JV\nZ2fnx2bNmlXIyru7uwHWUsxjmALMpbhjxGYQ2399QevfasaMGZ3Tpzf6r9i4TZs2sW7dOoA1\nwKam/wGYRjw/awtYN8TBqZuIYa9F2Gb27NlMndr8Y1/7+vro7e0dIHqpizCTeJ1+s6D1zyW+\nIKr35dFYFL3Pzpw6deqs2bNnj9xyFNauXcvAwMCbxPNThLcR+1QR+2wn8b9T1D47Z9q0adNn\nzpxZyMoLfi+ZSkzUVOR7yRSK3Wd7Ke59dt6cOXOYMqX535/39PTQ39+/gTj2uwizideyvoLW\nX+Q+O62jo2NuwccgXQ2cW8gfaB9dwEXQ/kPs3iA+3O0IvNJA+/nEC8RYXzh/RfRaNfr8dhA1\nFhmOAL6wYcOG7+WbTxH2Ap6jmA9bHcA+wNMFrBsioM4BXipo/bv19va+3tvbW1QAWwgsLWjd\nM4CdgGcLWv+OxBv+moLWv8/69euXU9wH0QXAsgLWDdED3kkcN1mEPYAXKeYDRdH77JyNGzfO\n6+7ufqGg9e9C/E8WNdx6X+AZBr+kbKbpxPtZUTNW7dDf37+hv79/dUHr35t4vSkquO9FPPdF\nmEe8ZjbymWM0FgAvU9wXSgvXrVtX1HvJbGBb4PmC1r8zsb8W9SGnyH22c2BgYPfu7u7lBay7\n4rEC192WBvLSVXIdRTiQeGzXMXIv0hxiJrtNwH4F1yVJkiRp4ugic1G79yA9DvwD8EngOOBG\nIkG/SnxjWvlm/GDgVGB74MvAkjKKlSRJklS+du5BghjmcT4x9GtgmMsSYFFJNUqSJEkqTxeT\npAcJ4oFeBiwG3k4Mu9uROIC1hzjm5FHgybIKlCRJkjQxTIaAVDFABKFHyy5EkiRJ0sTU7udB\nkiRJkqSGGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIk\nKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJ\nkiQpdZZdgNSgE4E7yy5CkiSpBf0COKrsIlqFAUmtYl1evxvoK7MQNd3fAc8Cl5ZdiJpqIXA9\ncALwRsm1qLkuIbbpV8ouRE21ALgBOAV4peRa1FwXAd1lF9FKDEhqNQ8BPWUXoaZaA7wMPFh2\nIWqq/rz+X+D1MgtR060mtqn7bHupfJHxCLCyzELUdKvKLqDVeAySJEmSJCUDkiRJkiQlA5Ik\nSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkpc6yC5Aa1Ads\nzIvaS19e1F76gAGgv+xC1HTus+2pr+Za7cNtOgoDeekquQ5pJHuXXYAKsQOwVdlFqBDus+1p\nO2Be2UWoEO6z7WmbvGh4XWQusgdJrWRZ2QWoEK+WXYAK4z7bnlaVXYAK4z7bnlaXXUCr8Rgk\nSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElK\nBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKnWUXII3Snnl5FFhV\naiUai9nA/sBUYCmwptxy1ERTgXcD64EHS65FzTMD2Cevl+E+2y46gF3z8iKwEthYakUqwjuB\nucDPgd6Sa5nwBvLSVXIdUiM6gE8BbxL/t+8rtxyN0hTgEmAdg69BfcCVwMwS61Jz7AXcS2zX\nB0quRc0xE/gbBl97K5f/JL6sUuv6EPEFVfV2XQmcW2ZRarojidA7AOxWci0TVReD+4ABSS1j\nPnAb0A88jAGplV1MbL8fAu8F3gNcncu+XWJdGrtFwBvAQ8S+akBqD9cxuM+eSuy3V+SypcD0\n8krTGHyYwW34MeB4Ihgtz+WLSqtMzTSNGHFT+cxvQBpaFwYktaDFxIv2kcDnMCC1qu2BHuB+\n3noc5A+ATcCB412UmmI7Yr+8jBiC1YMBqR0cQGzXu4he/Go35H0nj3dRaopHiaFWu9Ysfwex\nXe8e94pUhC8QX1jdggFpOF1kLnKSBrWS24BDgF+UXYjG5BTiw/NVRBiqdiXxAey08S5KTdFH\n9C6cj+Pb28lG4LPAX5LfrFa5N693GdeK1CyfBU4nhtRVe4T4QD1v3CtSs+0PfB64FFhSci0t\nw0ka1EpuLrsANcUheT3UgfsP1LRRa+kGbiy7CDXdUuBrde7bs6qNWs+tdZYfSwzLun8ca1Hz\ndRBfPL4AXEQc+6sGGJAkjbdK1/4LQ9z3KrAB2H38ypE0SgcA5wC/BP675Fo0dscA2wKHEZMh\nPQJ8sdSKNFYfJ8LuycSMomqQAUnSeJud1z1D3DeQy+eMXzmSRmEBMYPdBuAs3jr0Tq3nJgaH\n1F0PfIaY8lutaT7wVeBa4I6Sa2k5BiRNJH8FnFGz7Bxivn61jw15Xe/1p5M4lkXSxPQuYja7\nKcCJwJPllqMmOQvYhjhm5Y+Ax4AzieN/1XoWE++3f1Z2Ia3IgKSJ5A3gpZplflBuP5UT+24D\nvFJz32zifCuvj2tFkhr1YeBbwDPELKIrSq1GzVR9nO83idNpXEsMeR6qx18T1weIyTfOBl4r\nuZaWZEDSRPI16h8IrPbxVF7vX/VzxQF5/cT4lSOpQX8AXEMM1zmDmJRDrW1r4rNg7Yfol4E7\ngY8Sp1345TjXpdHrBC5n8MuLj1bdV3mP/T1gNfCvvHU2WWFAkjT+7szrU4hhOtXen9e3j185\nkhpwCvAvxHFHZzA4VFata2dispz7gKOGuH+nvHYkR2uZyeB5ra6t0+ayvP4+9g7W5Yli1Yo8\nUWxr+xlxnpzjq5YdQgyzfAq/vGkXnii2PcwjhsM+BswquRY1193Ee+kFbH4S4I8QPQsreOsJ\nvTXxza1zuZzY3vvlbW2ui8xFfghRK7mbOMEoDJ6U8G+JkxdCHEjaNc41aXT+ELgH+C/ifEj9\nwOHEkJ0z8dvpVnU28CdVt6cTQzqqT+78QeD58SxKY3YOsAPxpcZdddrcTEy0o9ZyNjFF+6XA\nhUQg2pU4v9UbwCIcgtWK1tZZ3p/X64dpI/yWVq2ll8GpZJflpVo/ahVLgLcDnyRmxOoAvgz8\nI0OfH0mtYSObD9e4Z4g2Tgfden5NfEE1HF9/W9OzwEIiCB1BhKOHgauJyThWlleaCvA0sS/3\nll1IK3CInSRJkqTJrIvMRY4rlSRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECS\nJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRk\nQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmS\npGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIkSZKkZECSJEmSpGRAkiRJkqRkQJIk\nSZKkZECSJEmSpGRAkiRJkqRkQJKkyWd/4HhgVok1HJg1zBih3USoVZI0iRiQJKn9HQscVnX7\nQuAuYNdyygHgi1nDDiO025Jaax+nJElbzIAkSe3vFmBx2UWMoAO4DTh8DOtohccpSZrgDEiS\n1P7WAt1lFzGChcDJwLZjWEcrPE5J0gTXWXYBkqTC1QsOA3m9B7Az8Czw4jDr2TvbrQGeBDbW\naTct17k98BLw3DBtAQ4CTsufDwZ6gIfy72xJrY0GpCOof0xTN/BgA+uo2A5YQHzh+CvgtTrt\nOoADgLcBy4FXhlnnQmLoYb3n+cC8/+5c38G5zpU17RrdXpKkGgN56Sq5DklSMR4Grqm6fRXx\nun8ocDuD7wMDwA+AuTW/fzzweE27VcD5Q/ytC4CXa9quAE6tafe9vG834Kaa9gPAMaOotfZx\n1vP0EH+vcnmggd+HCGo3A5uqfndTLqs9ruoU4jmo/js3AvNr2r0PWFbT7nXiOa1Wee7eAazO\nnz9Ydf/xNL69JEmhi8HXTAOSJLW5vYFdqm5XQsfPgcuIHpUjiA/tA8QEChWHAr1EcDgJ2B04\nCrg12/5xVdvTctlPgOOA/YhwsAToJ3pQKqoD0hwG35hOB7YGpo6i1trHWc8CYN+ay3W5vosb\n+H2IiSN6gI/n4zoA+FNgPfCjqnaHE499aT62w4A/BzYQPVWVoe5H57KniKGGuxFB5/6s6xNV\n6/x2LruTeN6OJXqKYMu2lyRpUBcGJEmatCqh45qa5fNz+Y+rlt0IrAN2qmk7C3ieGFZW8dvA\nJUTgqPb7ud7PVS2rDkjkfQPAe8dQ62idSPT+3EfjQ8/7iSBY60NEAKoEvEov01417S7P5cfm\n7TuIx3NQTbttiKGDy6uWVZ6Tq4f4+1uyvSRJg7rIXOQxSJI0eV1bc/tFogdk+7w9Dfgt4tiW\n9wzx+88BRxI9Ms8SH/LvAOYB7wK2InpIKh/Wdyyw1tHaDvgOEUI+QvTiNOJ54J1Eb8/tVcv/\nrernTuAE4DE2DzgAnwY+RYSkaURQWgo8WtNuNfBTIjjuweYB54aatlu6vSRJQzAgSdLk9dwQ\ny/oZ7P2YD8wE9gGuH2Y9lUkTtgX+iRhqNxXoy/VVhpGNZebUkWodrauJYXmLgGeqlu9ETIJQ\n7UHgrPz5E8D3ianJVxI9WbcCPySCG7nemUSYGqr2ivnECXOX1amxEop2Z/OAVLveLd1ekqQh\nOM23JE1em0a4f1pe/5QYolXvcn+2uwY4A/h74kP4DGIShRPGodbROA/4ABEmvjPE33up5vJ6\n1f0/Io55+jTwBDG07noiyL0/21Sev5F6pSrt+urcXwlTM2qWr6uznka3lyRpCPYgSZLqWZXX\nOxMTEgxna2IWtkeAC2vuG+swuCL8BvB1Yna584a4/1VikoThrAK+kZeZxCQMi4HvEsPYKoFq\nuxHWM1K7yrmhVtW5n5r7G9lekqQ67EGSJNXza2JK7H2Jc/PUOgnYNX+eR5zrZ6hhYqcXUt3o\nzSB6e6YTQ+bWDN/8LTqI52NO1bIeYia8xcS5iQ4ijh9aQZynqPa8SycRQ/SOzXbLs11tLxHE\n8Vw9RE/VcLZke0mS6jAgSZKGcxURCC5m8+N9jiKOt7kyb68kppc+lAgeFWfmMogZ2eqp9HjU\nnkOoCF8lziH0JeBno/j9Y4ipy79Us7wD+M38uXIS228RQeqiqnazgb8mhvctq2o3l81n+oM4\nNmohEeh6G6it0e0lSRqG03xL0uRSmSa6djpuiF6I/6u6PY3Bc+g8QXyQv504rmYFMSFAxdez\n3SPAFcC9xKQCexLDyNYD/0wMuaud5vu4vP0qMVX1746i1kbsSxxftJEIHd8d4tKI67OuJcTM\ndf/O4Alov1HVbiZxTNAAMUPdTcTxTJuI8yZVzCDOrTSQ7a8gjnPalL9XPUxxuOdkS7aXJGlQ\nF5mL7EGSpMnnKWKGtjeHuO9eNj+Ivx/4HeJcRvcTQ7RWE8cZHcLmM799hpjd7UliBrc7iamw\nVxBD2X5M9KZsAB7PGiq9IncT017/DxF8XhpFrY26hwgh84mAVntpxFlEiPsJ0SM0HbiFOOHr\nBVXteohJKs4lHvNU4D+Ik91+s6pdLzFF9yJiooe9iVB5HjHE7rWqtsM9J1uyvSRJddiDJEmS\nJGky68IeJEmSJEnanAFJkiRJkpIBSZIkSZKSAUmSJEmSkgFJkiRJkpIBFjsLfAAAAMRJREFU\nSZIkSZKSAUmSJEmSkgFJkiRJkpIBSZIkSZKSAUmSJEmSkgFJkiRJkpIBSZIkSZKSAUmSJEmS\nkgFJkiRJkpIBSZIkSZKSAUmSJEmSkgFJkiRJkpIBSZIkSZKSAUmSJEmSkgFJkiRJkpIBSZIk\nSZKSAUmSJEmSkgFJkiRJkpIBSZIkSZKSAUmSJEmSkgFJkiRJkpIBSZIkSZJSZ9XPRwN/UVYh\nkiRJklSSoys/dAADJRYiSZIkSROGQ+wkSZIkKf0/fFb2XH7vmxMAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'health' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZxleV3f/1czW88GA+LMsCozbAFFRRACKGB0ZNewBRGTaCQhhLgEiMaY\nOBiVxI0AQgQRQUxEZVE2UREEGQKSqAEGgWFwQTaHZZjpWZrp6f79cb71m9s1VdVV3VV1q289\nn4/Hedxb53zvuZ8691b3fd/v93zPnupQAAAAdJN5FwAAALBTnDhz/6LqnfMqBAAAYE4eUN1/\n6YdDY7lwXtUAAADM0YWNXGSIHQAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMBw4rwLAFjF\nl1d3H/cPVu+YYy2s7JbVV437h6q3z7GWrTCP9+CxPKe/GYBNICAB8/bV1ZeN+5dWHx/3H1j9\n9ri/v9q7zXUtmtWO87F4QPXacf/6Fu//lHm8B4/lOf3NAGwCQ+yAefuJ6m1j+Y4517LIHGeO\n1gOqB1WnzbkOgG2xaN/2AcefK1e5/4fV1437B7evnIW12nFmdcfbe3Ar6r1b9Sfj/j+oPrRJ\n+wXYsQQkYN5W++D+xeovtrmWRSYgbdzx9h7cinq/c5P3B7DjCUjAvO2buX/FzP21Tji/dXXn\ncf/z1fvG/dOqO1UnVx+srlrH859T3b5pyPHHqsvW8Zgzq/Oq06svVJdUB1Zpu1qttxz7+Pvq\nr5c95pTxmL3V+6trj1DPbarbVtc1nV/0xRXarHac1+vmTcf2muojTee4bMROOmYnVXesbtEN\nv8++Fdpt13twPdaz3/VO0nDy2NdZTa/F33Xj98TSOWtPmFn3DdW5o/1HV9jvRl7jWWeNeq4d\nj7m26TW6/0ybP2k6z61WPvYnVF8zalg+Wch6X+/t+FsFjhOHxnLhnOsAdqcf64Z/h+47s/6x\nM+uXf+j43plt/3us+/dNwWBp/TXVj6/xvI+s/mym/ez+vnGVx9yn+oOmIDL7mH3Vy5uC1nLL\na71J9bxl+3hXdavR/nHVZ2a2fbF64ir1fFf1l8tqua5p4oSvWNZ2teN8JGeO32223s9V/7Z6\n1My61T4I76RjdvPqfzSFgdlaDlS/ObO/JVv9HlzJ7HMu9fStd79r1Vt1u+p/jsfP/v4Hq99v\nOs9oyRuWtZld/vuy/R7Na1x1s+oVyx73+eoHmgLT7L5OmXncv+jwY3+LpjCz/H240dd7K/9W\ngZ3vwm74exaQgLl6fPXOsZw3s36tD3tPmNl2cfXvuvGHuKXlqSs851rtl0LGY5c95ond+APg\n8uWybpj2erVan7XKY/+g6Rv6AytsO7DCfn9qWZtPdviH6L9r6llastpxXsue6i1r/L6/sazG\n5XbSMTutGz5EL4WCz43bpXUfqc6YecxWvgdXM/ucnznCfv/NGo9dXu/ZTe+R2cfvX/bz9U1f\nHFT9bjc+rgfG8vMz+z3a13hP04Qhqz3mect+njV77D9QPXdZjXV0r/dW/a0Cx4cLm/k3Z+nO\nhfOrB+BG1vqwN7vtC03ftP/36lurH+nwD36XLnvs13b4B5tfaBpCc5vqZTPrv9j0DXTVXUYN\nS9teN9bdrHpIUxiZ/WA1O0Po8lo/X/1g00xyyz/AXdwUSL69+rkO/+D1vJl9fuPM+uuqh471\nNxm/z9K23+rYPGZZDS9sOlY378YBbXlA2mnH7Adm1u9rmnCg6vyx/6VtP7hKHZv5HlzL7H6/\neIT9fmyNxy6v9z/PbHtD01C5qlM7PIRdMvOYczv8eN512T6P5TV+3LJ9/2rT3+CXj993rffW\n8hB5RfX/xuNeOtoc6+u9We874PhxYQISsMOt98PpoeqXl21f/s3vLWe2/erM+vcve9xJTecZ\nLG3/l2P9i2fWfbzDh/vU9G3y7PM9bI1af2Jm2z2XbftM0wfWJe+Y2faumfW/NbP+f63wO3yq\nG8LT2R29V888zyXd+NIQfzqzffmH2J12zB5RPWMsyyceeMXMY357Zv1WvQfXciz7Xavel89s\n+9EVnvd7q0c3Db9cep2PFJCO5TV+zcz6v+7G50T/v5ntawWkQ02z9520rM2xvt6b9b4Djh8X\nNv6OXQcJWATLv7H9vWU/z36I/Ecz99+0rN11TZMdnDqWpW+jL5hp89puPEHBnzZ9W77km9eo\n9RUz9/+sw08Wf3XT+SFLZk82v8XM/W+aub+/6dv6peUfNQ2lqulD5/3WqOVI7jVz/83deOro\n31zjsTvtmL2h6Zv+51R/3g3X9nlQh3/QPWuNOtaykffgPPY724v1n5ve299V3WGse2lTaHl3\n658i/Fhe46+fuf/GbhyClgf/tfx009/urM14vTfjfQcch8xiBxzvDlUfXrbu08t+Xvq37oSm\nALTkb1fY35eW/XxCh59kfkkr+9jMvlc7Kf1Q9VfL1n22G86DWL7vz87cP3Hm9pyZ9f98LKu5\n4xrbjuTcmft/s8L2lY5f7bxjVlMPw4XVv+6GoZMr2bPGttVs5D04r/2+qHpy0/E+pfqesdQU\nYt7QNIRyea/qao71NZ59by1/fVdbt5o/X2Hdsb7em/W+A45D/oiB492XunGoWW1Gtb0d/oFo\nPVMQn7LsMcufa8nsN9jLhxrNPnb5c14/c/+aNbYtOXnZzx9pGlK3ms+tsW0tezp82NJKv/dq\nUxrvtGNW9UtNw8hq+vD75qaAd6Cpd+FrVnncemzkPTiv/X6macjbs5uGkp0+s+221VOaAtTT\nmo7VkRzLa7ye99bV66hhaf+Xr7D+WF/vzXrfAcchAQnYTa5q+uCzFDLWMxTm6rGcNn5ebUjT\nl8/cX8+1lI7W1R3+O7y0+m9b8DxLJ7efOX5e6Vv4c1dYVzvvmN2qG3pLqn64+tmZn/9HxxaQ\njhefaupt/FdNYem+1T9sGip3elOv0PObJlv45Mq7+P8dy2t8qOlvcak3ZiPvreVWGg7o9QaO\niXOQgN3mfTP3v36F7c9pmp3qLd0wScN7Z7avdE7Pzbthlqyazr3YSrPDoO6+aqtjN3sx0Huu\nsP2bVli3ZCcds7t3eG/HG5dt/9otfO6d5oSmc4X+pCk0PLrpPKSl4WQnNoWnlSwfjnYsr/Hs\ne2ulv8MHrlLDeni9gWMiIAG7zeysVY/s8A9wd2+6Zs0/GsvSOTa/NtPmId04GPxkNwwZ2le9\narOKXcVrZu4/tsPPM7pl9Ymmcz/e1eHnXG3UW2fuP7TDr+9y5258rahZO+mYLR/CNXt9qId1\n+IVzb7aFdczLKU3nGP1V0yyNX7Zs+2Udfm7T0vCx5UPMzl/287G8xsvfW1838/NdW/u9dSS7\n/fUGjpEhdsBu88KmnqHzm4apXVS9sunfw3/SDUPX3tJ03kJNHwT/edP1h27SdKHI32o6r+Mb\nq/vM7P+ZTddP2UovbDpn5HZNM3K9u+l3uLLpYpe3Hu2WzyK2Ub9UfX/Th9yTmnodXtk0ROoJ\nTUO2lmZBW/6F2046Zn/e4cPBfrFpKNl5TSfxv6apJ6Wm3oUf6fAP8Me7/U3n6Xzl+Pn/NIWV\nzzQdkwc1DbWr6TV9x7j/2aahcEvnK724aba6v2qaIe5YXuMXVf+26X11YtMscK9uGjL3mLGP\nrzjK33e3v97AJnAdJGAnWu81aFaaKOC2HX7NkuVXtj+/+sCyNrPLG6ubLnvMWU3fwq/2mKub\nTnDfyO9R01Cjpe1PWbbtaTPbPrps292WPXb58toOn874aP2rphPQl+//fU0XyZxdt/xaNDvp\nmM1eOHR2+YOm4/TeZesvPEIdx/oeXM2x7Hetx57ZFPpXey0ONc1UeK9lj3v+Cu3eMLP9aF/j\nml67ld5bH6ieNPPzWtdBWm2ikM1+vevo/1aB48OFjb9jPUjATnVZN1xbZPmQmbW21fSN+ex1\nSa5atv3SppO0H119a9OHzuvH+tcue+ySy5suPvmApmBw56YPWp+r3lP9RtO33hv5PRqPXerl\nWX5i/CdmHvuJZds+2BSSHt90fZlbN30Y/eum3oHNuljli5q+kf8XTT0QXxg1vbxpON/ssTq5\nw2ct20nH7Lnd8MH7Nk1Dzd7Y1ONxfVOvxY82hedPN11vaO8adRzre3A1x7LftR57ZdN7/SHj\n9rym0LS/KRi9o+m9vzwY/FDTB/4HNQ3V+9Rot+RoX+Oaeij/rGm2uTuMfb2jeln1Lct+51lH\nOka1+a93Hf3fKnAc0oMEAOwk358eGWB7Xdj4d8ckDQDAdntQ0zl+Fzf1Sp09s+3kDp+m+4+3\nrSqATNIAAGy/jzQNy1uaAOJ/N036cKj6jm6Yivva6ue3vTpg1zPEDgDYbg9tOqdttQkePtc0\nLTfAdrgwkzQAAHP0e00TpDy+6dpEt26aCfFTTT1Kr6yumFt1wK4lIAEA83JV9atjAdgRTNIA\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAADDifMuAIDjyinVA6o98y5klzhU\nvbPaP+9CAHYLAQmAjXjEnj17XnXGGWfMu45dYd++fR06dOix1avnXQvAbiEgAbARJ5511lm9\n+tU+r2+HxzzmMX3hC1/wfzXANnIOEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwnzruAOdhTnV7t\nra6prppvOQAAwE6xW3qQzq2eVb232lddWV027l9RvbN6ZnXTeRUIAADM327oQbqgelV1ZlNv\n0YebwtH+6pSm8HTv6v7V06tHNgUpAABgl1n0gHRW9crq8upJ1ZuqAyu021s9rvqF6rXVXTL0\nDgAAdp1FH2L38Orm1eOr17VyOKq6tnpF9cTqNtVDt6U6AABgR1n0gHT76rrq3ets/9bqYHXH\nLasIAADYsRY9IF1RnVSdvc72t2o6JldsWUUAAMCOtegB6W3j9jnVyUdoe3r1gupQ9ZatLAoA\nANiZFn2Shg9WL6yeWj2wen11cdMsdl9qmsXunOoe1aOqW1bPrj4yj2IBAID5WvSAVPW0pqm9\nn1k9ZY12l1TPqF6+HUUBAAA7z24ISIeq51XPr76qulvTOUl7m2av+3T1/upD8yoQAADYGXZD\nQFpyqCkIfaDpfKO91TW53hEAADAs+iQNS86tnlW9t9pXXdl0HtK+phnr3tk0BO+m8yoQAACY\nv93Qg3RB9arqzKbeog83haP9TZM0nFvdu7p/9fTqkU1BCgAA2GUWPSCdVb2yurx6UvWm6sAK\n7fZWj6t+oXptdZcMvQMAgF1n0YfYPby6efX46nWtHI5qmqzhFdUTq9tUD92W6gAAgB1l0XuQ\nbl9dV717ne3fWh2s7niMz3vbpmF96z2+J1e3bppd7+AxPjcAAHCUFj0gXVGd1BQ8/n4d7W/V\n1Kt2xTE+72XVi1v/8T2/+vej/ZeO8bkBAICjtOgB6W3j9jnV97R2+Di9ekHTdOBvOcbn3V+9\ndAPt79cUkAAAgDla9ID0weqF1VOrB1avry5u6uH5UtMsdudU96geVd2yenb1kXkUCwAAzNei\nB6SqpzVN7f3M6ilrtLukekb18u0oCgAA2Hl2Q0A6VD2ven71VdXdms5J2ts0e92nq/dXH5pX\ngQAAwM6wGwLSkkNNQej98y4EAADYmRb9OkgbdUr1d9W/m3chAADA9hOQDren6UKxN513IQAA\nwPYTkAAAAIZFPwfpgrGs1wlbVQgAALDzLXpAul/19HkXAQAAHB8WPSD9XvVj1a9Uv7qO9idX\nb9/SigAAgB1r0QPSe6qfarpI7POrDxyh/d4trwgAANixdsMkDf+lel/1yurUOdcCAADsYIve\ng1R1oHpsdd/qltXH12h7ffX71Ue3oS4AAGCH2Q0BqaaLv75qHe2uqx6yxbUAAAA71G4YYgcA\nALAuAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nJ867gG120+qu1dnV3uqa6lPVh6qr51gXAACwA+yWgPTw6t9X969OWGH7ddUfVj9VvWsb6wIA\nAHaQ3RCQfqR6drW/+qPq4uqy8fMp1bnV11bfVj2kenL10rlUCgAAzNWiB6Q7VD9ZvbX6zurv\nj9D2t6oXVL/XNPQOAADYRRZ9koYLmobUfU9rh6Oqv6q+u+ncpIducV0AAMAOtOgB6RZN5xf9\n7Trbf7g6WJ2zZRUBAAA71qIHpE9VJ1V3X2f7ezYdk09uWUUAAMCOtegB6feapvL+9epuR2h7\nn+p/VVdWb9ziugAAgB1o0Sdp+Ez11OolTbPXfagbZrH7UtMsdudU96jOa5rZ7onVZ+dRLAAA\nMF+LHpCqXla9r3p601Tej1mhzaebQtTPVh/ZtsoAAIAdZTcEpKo/q75r3D+nOrtptrprm8LR\nZZv8fF9WPWc8x3rbAwAAc7ZbAtKsz4xlybnVfZsmdPibTXqO66svNp3/tB4nb9LzAgAAx2A3\nBKTTq/9SPaKpx+i11U+NbS9ruoDskrePn4/1IrGXV/92A+3vV337MT4nAABwjHZDQPrV6nHV\ngaZrIv3n6rZNQ+ueUP1h9XdNs9w9sClA3XculQIAAHO16NN83716bPVzTT1JpzdN0vBd1fdW\n31NdMO7ft2kih/s09egAAAC7zKIHpHtXV1U/2jSt96HqNU1D6Q5VL1/W/r83nTd0r22sEQAA\n2CEWfYjdOU0TMly3bP3HW3nmuINNM9qducV1AQAAO9Ci9yB9srpVN55u+x9UX1mdsGz9qaP9\n57e8MgAAYMdZ9ID0ruqU6vnVl1c3rZ7ZNPTui9WPzbQ9ofpv1UnVRdtbJgAAsBMs+hC7S6sX\nV/+6+r6Z9c+tPly9sHpi0/WP7lrdrnpj9b7tLRMAANgJFj0gVX1/9bGm6wztb5rG+380nW90\ni+qHqzs3TeLw69VT51MmAAAwb7shIB1omub751bY9lPVs6uzmy7ueu021gUAAOwwuyEgHcnB\npovGAgAAu9yiT9IAAACwbgISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwnzrsAAGBl+/btq3pe\n9dNzLmW3eGP1/fMuApgvAQkAdqjrr7++hz/84Wff5S53OXvetSy697znPV100UX3nHcdwPwJ\nSACwg93znvfswQ9+8LzLWHiXX355F1100bzLAHYA5yABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwHDivAtgW31n9b3zLmIXuaz67ur6eRcCAMD6CEi7ywXnnXfet9znPveZdx0L7wtf+EJvfvOb\nq55SXTHncgAAWCcBaZe5853v3JOf/OR5l7HwLrnkkqWABADAccQ5SAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMOzGC8XuqU6v9lbXVFfNtxwAAGCn2C09SOdW\nz6reW+2rrqwuG/evqN5ZPbO66bwKBAAA5m839CBdUL2qOrOpt+jDTeFof3VKU3i6d3X/6unV\nI5uCFAAAsMssekA6q3pldXn1pOpN1YEV2u2tHlf9QvXa6i4ZegcAALvOog+xe3h18+rx1eta\nORxVXVu9onpidZvqodtSHQAAsKMsekC6fXVd9e51tn9rdbC645ZVBAAA7FiLHpCuqE6qzl5n\n+1s1HZMrtqwiAABgx1r0gPS2cfuc6uQjtD29ekF1qHrLVhYFAADsTIs+ScMHqxdWT60eWL2+\nurhpFrsvNc1id051j+pR1S2rZ1cfmUexAADAfC16QKp6WtPU3s+snrJGu0uqZ1Qv346iAACA\nnWc3BKRD1fOq51dfVd2t6ZykvU2z1326en/1oU18ztOawthJ62z/FZv43AAAwFHaDQFpyaGm\nIPT+bXium1X/uDp1ne3PGLd7tqYcAABgPXZLQPrmpvOOlsLRSU3D6f5pdV61v/qL6rnVqzfh\n+T5VfeMG2t+vuqgpxAEAAHOy6LPYVf1E9UfVBePnPdXvVD9dnV/9TXV59YDqVdWPzaFGAABg\nB1j0gHTn6j9Wv1+9cqx72Fhe03Tdozs3XVD27k29SD9efeV2FwoAAMzfogekBzf9jt9bfWKs\n+6bqquqfVZ+bafuXY92J3dDbBAAA7CKLHpBuXh2oPjmz7sTqY9W+Fdq/v7q++rKtLw0AANhp\nNhKQ/mn1S+vY399WDz/qijbXpU2B6Jtm1v15ddtWnqDiHtUJ3dDbBAAA7CIbCUjnVfc9QpvT\nmq4xdJejrmhzvbEp7PyvppnsapqI4eNNkzfMTqt9z+o3qiurN21jjQAAwA6xnmm+3z1ub9s0\nZO3dq7TbU92hOqX6/LGXtimurh5dvaFpJrtLqj+t3ls9s3rCWHfbpgvIXlc9sfrsPIoFAADm\naz0B6U3Vvas7NV349GvXaHtF9YqmHpud4k+ru1Y/VD2u+q6ZbXcYyxVNvUc/XX1guwsEAAB2\nhvUEpJ8YtxdW39HaAWmn+nz1n8ZyZvUV1RlNEzh8tulaSC7SCgAAu9x6AtKSF1e/tVWFbKMr\n00sEAACsYCMB6ZNjObdptrczO3ySg1kfHAsAAMBxYyMBqepnqqd35NnvntU0JA8AAOC4sZGA\n9A1NM7+9v3p99bnq4CptV5vpDgAAYMfaaED6eNOMdvu3phwAAID52ciFYvdWFyccAQAAC2oj\nAen/Nl1PaLWJGQAAAI5rGwlIf9wUkn62OmVLqgEAAJijjZyD9E3VX1ffVz2p+oumi6yu5DVj\nAQAAOG5sJCA9uGmK76qbVd+2RtuPJiABAADHmY0EpOdXv1pdv462VxxdOQAAAPOzkYD0ubEA\nAAAspI0EpNuP5UhOqP6uuvSoKgIAAJiTjQSk761+fJ1tn1VduOFqAAAA5mgjAekd1U+tsu3L\nq2+o7lD9ZPVHx1gXAADAtttIQHrrWNbyA9VjquccdUUAAABzspELxa7Hc5t6k751k/cLAACw\n5TY7IFX9TXWPLdgvAADAltrsgHRW9XXVFzd5vwAAAFtuI+cgPWQsK9lT3aL6lurLqnceY10A\nAADbbiMB6b5NkzCs5Yrqh6qLj7oiAACAOdlIQHpx9YZVth2q9lUfq6471qIAAADmYSMB6ZNj\nAQAAWEgbCUhLzq2e1HRh2LPHuk9VF1W/Xl2+OaUBAABsr40GpIdXv1GducK2J1Q/Vn179Z5j\nrAsAAGDbbWSa75s19RBdVT2t+urqnLF8TfX06oTqVdXezS0TAABg622kB+nbmq5zdK/q/y7b\n9vfV+6p3VO+tLqhetxkFAgAAbJeN9CCd13Su0fJwNOv/VH9b3fVYigIAAJiHjQSk66vT1rnP\ng0dXDgAAwPxsJCBd3HQe0qPXaPNt1W1zoVgAAOA4tJFzkP6wurRpooYXV29tui7SnurW1bdU\n31d9pHrL5pYJAACw9TYSkK6rHlX9TvUDY1nuL6vvGG0BAACOKxu9DtIHq7tXD09ED3IAACAA\nSURBVKvuV92qOtQ0ecOfVL9fHdjMAgEAALbLRgLSnqYwdF31u2NZcnJTMDI5AwAAcNxa7yQN\n39B0faMvX2X7D1Zvr87fjKIAAADmYT0B6WuaJmT4+uoBq7Q5q7r/aHf25pQGAACwvdYTkH6l\nOrV6QvXaVdr8aPXd1e2qF2xOaQAAANvrSAHpq5t6jl5Q/eYR2v7P6mXVP24KSgAAAMeVIwWk\nrxu3v77O/b20OqFphjsAAIDjypEC0q3G7cfWub9Lx+3tj64cAACA+TlSQFq64Osp69zf6eP2\n6qMrBwAAYH6OFJD+atzed537e9C4/ZujqgYAAGCOjhSQ/rjaX/1wddIR2t6s+g/VF6s/OubK\nAAAAttmRAtIXqhdV965+u/qyVdrdsfrD6rzqF6trNqtAAACA7XLiOtr8SHWv6turb6neUP1F\nta+6RXWf6tuaZq/7w+rCrSgUAABgq60nIF1TfXP1E9VTq38yllmXVc+pfqa6fjMLBAAA2C7r\nCUh1w3lIP1Hdv7pT04x1lzVNAf7OBCMAAOA4t96AtOSq6g/GAgAAsFCONEkDAADAriEgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwnzruAOdhTnV7tra6prppvOQAAwE6xW3qQzq2e\nVb232lddWV027l9RvbN6ZnXTeRUIAADM327oQbqgelV1ZlNv0YebwtH+6pSm8HTv6v7V06tH\nNgUpAABgl1n0gHRW9crq8upJ1ZuqAyu021s9rvqF6rXVXTL0DgAAdp1FH2L38Orm1eOr17Vy\nOKq6tnpF9cTqNtVDt6U6AABgR1n0HqTbV9dV715n+7dWB6s7bllFwFb4Z9X95l3ELnH+vAsA\ngK206AHpiuqk6uzq79fR/lZNvWpXbGVRwKZ78h3ucIf73/72t593HQvv0ksv7aqrjEAGYHEt\nekB627h9TvU91ZfWaHt69YLqUPWWLa4L2GQPfvCDe9KTnjTvMhbeL/7iL/a2t73tyA0B4Di1\n6AHpg9ULq6dWD6xeX13cNIvdl5pmsTunukf1qOqW1bOrj8yjWAAAYL4WPSBVPa1pau9nVk9Z\no90l1TOql29HUQAAwM6zGwLSoep51fOrr6ru1nRO0t6m2es+Xb2/+tAmPudNqodVp66z/V02\n8bkBAICjtBsC0pJDTUHo/Stsu3v1D6v/vUnP9RXVrzRNELEeS6/Dnk16fgAA4CjspoC0lh+q\nvra61ybt76+azm1ar/tVFzWFOAAAYE4WPSDdYyxHcn51i2ppCqz3jQUAANhFFj0gPbr68Q20\nf8W4fVYCEgAA7DqLHpDeV+1vGrr2S9XbV2n3b6o7NM1iV5s7YQMAAHCcWPSA9Jrqa6oXVz/Y\ndJ2jH6o+u6zdI6qbV7+zrdUBAAA7yk3mXcA2+HD1oOpfNgWhv6y+e54FAQAAO9NuCEg1DbH7\n5aZrIL29+rXqD5qG1QEAAFS7JyAt+VT12Oo7msLSB5qG3Ln+EAAAsOsC0pLfbQpIL6t+PkPu\nAACAdm9Aqrqiafa6B1TvrD4433IAAIB5W/RZ7NbjXdU3z7sIAABg/nZzDxIAAMBhBCQAAIBB\nQAIAABicgwRb4ODBg0t3/3l17fwq2TXOmXcBAMBiEJBgC3ziE5+o6txzz33unj0us7XVPv3p\nT8+7BABgQQhIsAUOHTpU1Ute8pJOO+20OVez+B7xiEfMuwQAYEE4BwkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAACGE+ddwDZ6cPWw6u7V2dXe6prq\nU9X7qtdVfzq36gAAgLnbDQHpK6rfru49s+5L1f7qlOpe1SOr/1i9uXpS9bltrhEAANgBFn2I\n3UnVm6qvrZ5T3a+6WVMwuum4vUX1zdVLq2+rXt/iHxcAAGAFi96DdEF1t+qfVq9Ypc0XqreN\n5S+q51UPqt66DfUBAAA7yKIHpLtV11e/sc72v1w9t/q6BCQA2DX27dtXdZvqh+dcym5xVfXi\nptMeYEdZ9IB0fdNwuZOqA+tof1K1pzq0lUUBADvLpZde2qmnnvqVt7vd7f7rvGtZdAcPHuyj\nH/1o1buqP5tzOXAjix6Q/m9T4Hlq9fPraP+McWs2OwDYZc4///ye97znzbuMhXf11Vf3iEc8\noqbPaLDjLHpA+pPqournqvtUr64uri5r6tI9pTqnukf1xOoh1R+MxwAAALvMogekg9WjqpdU\njxvLWm1fVj0tQ+wAAGBXWvSAVPX56tHVnZp6iO7WDReKvbb6dPX+6o3VxzfxeW9bnbzOtrfe\nxOcFAACO0m4ISEsuGct2OL/66FE8zlhcAACYo90SkG5RPbg6o3pP9aFV2p3UNNX374zlaF3a\n1IN0yjrb37P67QztAwCAudoNAekRTddBOmNm3W9U/6q6clnbE6p/Vv11xxaQqj6xgbbnHuNz\nAQAAm2DRA9LpTT1CJ1UvaOrZuW/1ndVdq2+uLp9bdQAAwI6y6AHpW5t6Z57Y1Gu05DerX6t+\nd7RxFWcAAKCbzLuALXZe03k9y4fLvaapF+kB1Yu3uygAAGBnWvSAtL9pZriVptt+ffWMpnOO\nfmw7iwIAAHamRQ9IHxi337fK9uc0naP0X6pnbktFAADAjrXo5yC9vXpv9bPVVzf1FP3dsjZP\nGbc/U33L9pUGAADsNIveg1T12Or/NQ2lW2k67YPVv6x+tOlaSQAAwC61GwLS31ZfX31j9ZE1\n2j27+gfVf6r+eOvLAgAAdppFH2K35GD1znW0u7T6yS2uBQAA2KF2Qw8SAADAughIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAADDifMuAACAXekbqpvPu4hd\n4n3V38+7iOPFbgxIe6rTq73VNdVV8y0HAGD32L9//9LdF86zjl3mJdWT513E8WK3BKRzq39d\nPay6W3XazLYrm1L171Yvqq7Y9uoAAHaJ66+/vqoXvehF3elOd5pzNYvvZ37mZ3rzm9+8Wz7z\nb4rdcLAuqF5VndnUW/Th6rJqf3VKU3i6d3X/6unVI6v3zqVSAABgrhY9IJ1VvbK6vHpS9abq\nwArt9laPq36hem11lwy9AwCAXWfRZ7F7eNPJf4+vXtfK4ajq2uoV1ROr21QP3ZbqAACAHWVP\ndWjcf1Z14fxK2RL/oen3Onmd7U+ovlT9x+q/HsPz3qF6T+vvoTuxaQjgydV1x/C8R/KSE088\n8V+ceuqpW/gUVF133XVde+21nXHGGe3Zs2fe5Sy8ffv2dfLJJ3fyyev9U+doXXvttR04cKAz\nzjhj3qXsCldeeWV79+7tpJNOmncpC++aa67p0KFDnXbaaUduzDE5ePBgV111VaeddlonnHDC\nvMtZeNdcc00HDhz4ler75l3LDndh9eO1+EPsrqhOqs5ufVMb3qqpV+1YJ2r4m6Zeq/Ue3z1N\nNW5lOKr6TwcOHHjllVdeucVPQ9Nrev6+ffs+Ou9Cdolb79+//4r9+/fvm3chu8BJ1W2uvPLK\nv553IbvEV1577bWfuPbaa7f6/wfqjOqmV1555SfnXcguccerr7760m74op6tdfG8CzjeHBrL\nhXOuYyvcrel3+58duRfp9KaZ7A5Wd97iugAAgJ3jwkYuWvQepA82zbH/1P6/9u48yLKqPuD4\nd2TYZgSEGZZhHZDIJouGjAgEwQBiAElFRCuAg4AQKgiUMYVUFjuLkSikCjCpaASRoKBBYwDZ\nRdlHZWAMyKqswzoM+7DM1vnj93vVt2+/1/26+/Z70+9+P1Wvut+55513+te3X5/fveeeCx8C\nriAy6EXEVLo1gY2BXYCPATOBrwAPdaOzkiRJkrqvl88gQUx1OgV4koGftdnjIWBul/ooSZIk\nqXv6qMkZJIgf9FzgPOC9xLS7jYilvd8CngXuAR7oVgclSZIkrRrqkCA19BOJ0D3d7ogkSZKk\nVVOv3wdJkiRJktpmgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQp\nmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJ\nkiQpmSBJkiRJUpra7Q6oo+4A9uh2JyRJktRR84APdrsTk4UJUr08AiwC/r7bHamB7YGLgQ8B\nS7rclzo4H7gNuKDbHamBA4Ev5FdNvOuAs/KrJtaxwF7Acd3uSA1MB24CjgIe6HJf6uBLwGvd\n7sRkYoJUL0uBxcD8bnekBvrz6wLg1W52pCZeB57GfbsTtgWWYaw7ZRlxcMt4T7yDiM8SYz3x\n1s2v9wN3dbMjNbG42x2YbLwGSZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkg\nSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZLS1G53QB21tNsdqJGlwEpgebc7UhNLcf/uFGPd\nWca7c4x15ywn/kca784wzmPQn4++LvdDE2/9fKgztul2B2pkE2BatztRE1OBrbrdiRrZCg9m\ndso04rNEneH/yM5x/NeePjIv8kO3Xl7qdgdq5pFud6BGnu12B2pkOfB4tztRI8a6c97IhzrD\n/5Gd4/hvlLwGSZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIk\nSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVKa\n2u0OaMLMzsc9wOJRvG4OMK3Ftn7gpnH1qjetBuwJvAHMH2Mbs4FZxO/qoWq61ZNmAtsAbwP3\nA0vbfN0axO+olZeAX4+vaz1hrPGtuo06eAewPbAu8ATw9Che+x5g02G23w28Mvau9azdgHcB\ntwArxvB69+32zcYxSKdsDGwFPA88ydj27dk4BhmiPx99Xe6HqjEF+BzwJvF7PWSUr1/IwD5R\nfiyvrps9Y2vgViI+d47h9bsBdzE4zr8F9quqgz1iJvBD4oO/EaeXiH29HdvSer/uB26ouL+T\nzXjjW1UbdfFJIiEq7oM3EoOcdlzM8Pvz3hX3d7KbDnyTgfi8c5Svd99un2OQztmbOChbjNFz\nwImjaMMxyGB9DMTBBKmHzAKuAZYBCxjbh9Pr+dqDmjwOrKynvWEu8CpxtHYZo0+QZgGLiH+0\nJwN7AZ8mjgC9AexUWU8ntykMHPE9C9gHODTL+oHPtNHG7ln3Iprv27tX3uvJo4r4VtFGXXyE\niNO9RKK0F3AG8BbwILBWG21cCayk+b58EHGWRGEOcUR8EfAYo0+Q3Lfb5xikc3YDlgAvAJ8H\nPgwcCzxKxP3YNtpwDDJUHyZIPek84o9jD+CLjP7DaWq+5sfVd63nzCBidS6wJjG4GW2CdHa2\ncWipfLcs//44+9grDiXicXapfDpxtPEpYprjcPbPNk6rvHeTXxXxraKNuphPDAI3KZWfRsTw\npDbauBV4ueJ+9ap7gJ8SUxKvYfQJkvt2+xyDdM6lRKz2LZXvkuV3tNGGY5Ch+jBB6kkHA+vl\n92P5cJqZr7mw2m71pHUY/KEylgTpEWKazZQm235JHB1aY0y96y0XEPvldk22fZX2phQdnvWO\nqbRnvaGK+FbRRh1sScTikibb1iWmELUz3fNe4myIRvYpBhakGkuC5L7dPscgnXMUEeNmXgUe\nb6MNxyBD9ZF5kavY9ZafML4LcxvTMl7O7/cHjiaOUNTtj2QkrwFXjOP16xLXLzXm/pbdSVyo\n+p5xvEev2I044v5gk213FuoMp7hvb0kkt0cC76uig5NcFfGtoo06aMSg2WIurxJTwdqJ07uI\nfXl1YvGRI4mBqFPrhrqUmI44Vu7b7XMM0jkXA2c2KZ9BHAB4eITXOwYZgavYqahx5Gdf4ujk\neoVtC4l/wjd3tks9a/P82mrlqkb5FsTR4jrbHHimxbZinIbT2Je/QEz/KE6JuZ24FmThWDs4\nyVUR3yraqIN2/u53ANYmLnJvZT3iqO/9wLsL5UuI65nOG183VeC+3TmOQcbvTOKzYaTPAMcg\nI/AMkooaR282BU4HdiQu0vtbYCPi6NDW3elaz2ksY/pWi+2NwdH0DvRlVTeN8cepsW9PAz5B\nLNU7B/gucQT+Sup7HUEV8a2ijTqo4u9+NeII8UbE2ZE5xP58NHFm+1xiSqmq4b7dOY5Bxud0\n4HjgP4D/HaGuY5AReAZpcvlHYnBX9BnauxivHTcDGxJHIYtHL+8jVqU5E/gL4ih8r9uYofdb\nmE8cwapCY7nSVn+DjfK63GfjWoYucbwTsXLUcsYfp68A5xBTNxqxf5SYxz2DWCHpo0SiVDdV\nxLeKNuqgir/7FcTn9FJiWl7Do8TyvHcQ1yZcNvZuqsB9u3Mcg4zNVODrxPLe3yBiNBLHICPw\nDNLk8irwbOlR5c67jFgystnUjsY/27pcs7GSobF+scL2GzfOW7/F9g3ya5XvuSp7gaHxbljM\n+OP0Rr5Hs/to1G3fLqsivlW0UQft/N0vJa55Gc4LDE6OGuYRU5F2pfmF1xo99+3OcQwyeusT\nBxg/SxwY+XPau+bOMcgIPIM0uXwtH92wrEvv2y2LGLp8ZpUWEkfJmq2MBHEdAsQ1BnUw3Jm5\nB4kzPOsx9ALgKuJUt327rIr4TvTvqFc0LvRv9nf/DuKC6IcY36ICyzA5qpL79qqh7p/TzaxH\nrHq5PfBxRrc8umOQEXgGSUXHEEci3t9k2575tbZ/LBXrB24k7lmweWnbOkRyNp+Bozx1dgMx\n4Ptok22HEmeFbhyhja8BV9P8Jpx137eriG8VbdTBXcQR2WZx+kPiGoxrR2hjDnF9wXFNtm1G\nrNL4AM1XptLouW93zjE4BmnXVGIl3e2JfXO0945yDNIG74PUm0a6B8HBxI0JNy2UHZKvmUfc\nj6BhB2J++wo8vd3KcPdBmkHE+k9L5QcS8b6cgYH7agzcd+Po6rs5Kc0kphP9jsEf5McScTq/\nVP9E4JRS2VlZ998ZvFzsYcSRyaeJlcPqqIr4jraNOvtnIiZnFMo2AO4mptcVV6XblfjsmFMo\nm0l83ixi8Ofx+gzc5+fUynvdG0a6D5L7dnUcg0ysM4hYzW2jrmOQ9vXhjWJ70k3EB8s84Ani\n9/pAoayvUPcymt/g7twsXwLcBiwg/mmvAE6euK5POkczENd5xJSY10tljX+m7yVi2uwGkP+a\n254Hfkac9m7cKM9pMgMOJ/bDN4kLee8l4rSAofd+aXat0XTi4vV+4Dnib+XhfP4iA0cn62q8\n8R1tG3W2NnArEZuHgZ8TA/DlxApURSdnvb8plR+R9VcSZ6Vuzzb6ge/h7JCGnRj8mfwyEaNf\nFso+Vqjvvj0+jkE6p7EvzxvmMSvrOgZpXx+ZF3kNUm95m4FpFY/ko6g4h/c3xBGa8pzqU4Dv\nE3cfn038EV4PfIearoXfwgoGL4/Z7N4Mjd/FEuIfx6+b1Pk8cB0R71nEB9SPgP+prKe94TJi\nasUJxJzpRcRqPf/J0GVKb2PoEeIlxD/iTxA3H9yc2J8vII4APz9RHZ8kxhvf0bZRZ28C+xEr\nkB5ATGf5L2JfLN9A9inis+PxUvkPgF8RCdV22calxOfG1RPV8Umon8H73oImdVYUvnffHh/H\nIJ3TbF8ucwwyTp5BkiRJklRnfWRe5Gl4SZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIk\nSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIy\nQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIk\nSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkg\nSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIk9bYdgX2BNbrcD0mSJgUTJEnqLfsAv194\n/nfAz4ANutOdrivHQ5KkYU3tdgckSZW6Cvg/YM98/j1gAfBa13rUXeV4SJI0LBMkSeotrzM4\nGbo8H3VVjockScMyQZKk3lJOCHYENgJuB5bm8w2Bm3L71rn9ceDZFm1OAbYH1gUeBZ4f5v1/\nL9t/BXgAWFHaXnz/Kfl8OvBgvqZhO2CdLB8uwdkG2GSY92s3QfoAsHaLba8B89too2EGsCUx\njf1x4IUW9SYqrusCu2SbT5XqjRQvSRLQn4++LvdDkjR+C4ALC88vJT7jN8nn38nn2wC3AMuA\n5Vn2Y+Cdpfb+GHiMgf8V/cAVwKxSvUOAR0r1XgROLdVrvP9OwG+IpK0feAM4Jvt1d6H8TeC4\nJj/nvsB9pfdbDJxSqleORyu/LbVVfNzZxusBtgJ+AqwsvHZllm1Yqlt1XBu/512Bl/L7wwvb\n96W9eElSXfUx8PlogiRJPWQbYNPC83KCdH4+nw/MBdYiVrg7O8u/VHjtHCKBehj4OLHYwV8S\nCdV8Bhb62SvLHgQ+AmxODMh/lW2eUGiz8f7zgAOyjZ2JwforwC+Igf1UYDaRHLwNrF9o431Z\ndme2sQXwQeDqbPvEYeLRypbAtqXHd7O9L7fxeojFMN4CPkucGdoeOJlI/q4v1JuIuDYSzxuI\n/+f7MPA7H028JKmu+jBBkqRaKCdI38rnXy3VWz/LbyyUNc6GbF2q+29Zvk8+vy5fu3OTNl8n\npno1NN7/r0t1L8zy80rl/5Tl+xfKrgCWABuX6q4NLCSmtY3XHxE/4y9ofzr6MuDnTcqPIBKg\n1fL5RMb1/Cbv34l4SdJk10fmRV6DJEn1dFXp+UvEIHpGPp8KfJiYBvdoqe5pwOeIwfzqxID+\nYeCeJm3eAhxETD8rDsRvKtV9eoTyxhmk1Ylk6Slgv6E/Fk8CexBnhJ5osr0dM4CLiCTkz4iz\nOO1YCOxOnO25tlD+g8L3Ex3XH5XqdiJektRTTJAkqZ6eblK2nIGzHJsS0+8WNqm3rPD9LGBN\nYipcM43B+xYMHsg/V6q3dITyRr9mZb/eDVzS4j0hzpiNdcB/PvHzzwV+VyjfmKEJ3HzgyPz+\nBOAy4BoiIfkpMY3tcmKaHUx8XMvtdiJektRTTJAkqZ5WjrB99fw60tmTRr2lLbY3Bv1rlsr7\nW9RvVV5+v1uAA4ep9/YI7bRyEnAYkUxcVNq2kqEr/b1Y+P564pqno4jFFY4APp11jiGmuk10\nXJe0aGei4iVJPccESZLUTGPgP2PYWiPX2yC/Lh53jwa3swmxIEKVdiAWq3iMSJTKFhGLJAxn\nMXBOPtYiFmE4D7iYmMbW6bhOZLwkqSe9Y+QqkqQaeolIFHZh6P2BDiCmku2T9R7NeuWzGQB/\nQAzM76+oXy8TS3JvS9wbqOwAYLMxtLsmcdZoDWLK3CvDVx9iSvZneqHsLWIlvPOIexPtTOfj\nOlHxkqSeZYIkSWrl28SAv7j09zRiZbnDGLg+5tvE/ZO+WHr9XGJQfgnVTuH6FpGQfJmBa5Mg\nlq6+HPjmGNr8F+IeQv9A3FR3tPYGHsrXF00B3p/fP5NfOx3XiYiXJPU0l/mWpN7VapnvbZvU\nfRm4t/B8LeLalX5iJbUriWtwVhL392lYk7gHUH/W/wZxPc7KfN3MQt1W+wNeYgAAAcRJREFU\n79+X5XuXyo/P8k8VylZn4B4+9xOJxLXEdT2PEQsSjMa22dcVRNJxcZNHOy7JPj1ErFz33wzc\ngPacQr1OxhWqj5ck9aI+Mi/yDJIk9bb7iJXXGhf7P5jP32xS91biJqQNbxFLUh+f7awG/BD4\nAPD1Qr23iaWk5xLLRm9DXENzEjEV7IVC3Vbv/1iWl6e2PZPlzxfKlgEHA5/M/m5GTEn7K2A3\nBq88166biSRkFnFD1vKjHUcCf0LcC2kaMV3vKuKGr6cW6nUyrjAx8ZKknuYZJEmSJEl11odn\nkCRJkiRpMBMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIk\nSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckE\nSZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIk\nSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUpha+3ws4vVsdkSRJkqQu2avxzRSgv4sd\nkSRJkqRVhlPsJEmSJCn9P2/jCFJXJO51AAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title “'income' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebhkZ10n8G8nne4shiyELBIQArQMQYiyJAQGGIwQRAFlF1BAGDA6RAED\nOiIdloGAoAjIpoCCCKhkwACRSJCIoMOwCARDIIQ1IYSE7J2l0z1/vL87fbr6LlV1b91zu+rz\neZ7z3Lpnq1/VOVX3fO95z3vWJdkeAAAAskffBQAAAKwV6zuP/zXJJ/sqBAAAoCf3S3LfuV+2\n17C5r2oAAAB6tDmVizSxAwAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgA\nAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIA\nAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCTYvfxUkgfW\ncJvO+Ecn2V7D9RN43lckubHzHNuT/NgEngdGsdDnYTkemR37+NYVWudaMunvipV+zj7qBWac\ngAS7lxcn+XgNj1yl53xckucn2aszbvsqPTcspo/PA9PhfmnBet+e6wDWoPV9FwCM5OoFHp+V\n5Kfr8bYVfs6HdB5/McmD6rlvXOHngVEt9HlgYZP8rpiESdR7lyT/Uo//S5LzVmi9wJQQkGD3\nstAB4ZVJvjCh5zyy8/ifk1w2oeeBUQlIo5vkd8UkTKLeJ6zw+oApIyDB7uWazuOrOo9vleTo\nerwtyTmdaT+eZFM9vjztLFDSmpbcKcmGJF9Jcu3Ac22qZW/ZGXd4WrOUpP0H9uaBZfZPclSS\n/ZL8KMnXMrnrOPZKcsckByfZkuT87Pz+LOSwJLdNa2L8jSSXTmiZW6eFy5uSXJB2oLeYDWnb\n48C09+672Xkbr9Qyw7p9kp+ox1cl+dzA9EOS3LUeb0/yiRWucZj3b6HPw7AOqtrm9p8bRlx+\nlP19oc/hIbWOHyT55sAyG2uZvZN8KYtfgzPs52ES3xXjGma9i9XbNcx+9lNp32eP74y7d9r3\n2neTfH2e9Y77nXZg1XN9LXN92ja6b2ee7nfofO/9nknuXjUMfr6G3d6T3u9gas1d/Li55zqA\npf1Bdnxmj+uMX+xC5qd1pn26xp2SdsA5N35LkhcNLPem7Nwpw+DQ7aTh2CQfTTuY7c5zTZK/\nTAsXK+WgJG9MO/jpPtfWJO9NcsQCy/1i2kH+4Ov4dJL/uoLLPDHJfw7Mf1OS07MjcHTdJslf\np22D7jLbkvxjdgTS5S4zqpd21vtv80xfqjODcWsc5f1b6POwlP3T9svu/npZkv+R5OFLvK5k\nvP198HO4R5I/HVjHp7Jj/31Mkks6065M8ivzrHfUz8MkviuW0n3OuTN9w653qU4aRtnPzhiY\npzv8ycB6x/1OOyDJOweWuzzJyWmBqbuujZ3lfj07v/cHp4WZwf1w1O09qf0OptHm7Nj3BSTY\njTw2ySdrOKozfrGDiMd3pp2b5DnZ9eBgbjips9wb0v7obutM31bjtqb9RzVpfzwHDyIGh0uz\n42zDcuybHQcNc/VcNlDj+dm1h73FXvPcAfijV2CZlw3Mc1F2Pgj8btqZkTmH1jzdZW4Y+P3m\ntKC2nGXGsZyANG6No75/C30eFrMuyT8NPE93+JtFXlcy/v4++Dk8dYFlP5p2VmPrPNO2Dqx3\nnM/DJL4rltJ9zkuWWO9vLrLsYL2j7mcfyK7v69z32as76x13G69L6zBkoWX+dOD3ru57/+Uk\nrx2oMRlve09iv4NptTmdz+fcg8391QMs02IHEd1pP0r7D+6fJPm5JC/IzgcUF8yz7u7B5B8N\nTPvJer656R+scQckOTHtgLb7x3m5PWee3FnfNWkXWCfJHdL+Szs37bc7yxyTnf/ovyatecmt\nk7yjM/7KtP/OjrvMf+2MvynJQ2v8HrX83LT3dWr7w874M9Ka+iTJPtn5IPJry1xmHMsJSOPU\nOM77N45Hdda1PcmfpW3bg7JrQBt8XcvZ3wc/h5en7aePzK4Hveemfe4ekfaZGzzInjPO52GS\n3xUL6a73yiXW+41Flh2sd5z97PDs/H7eeWCdy9nGjxlY99vTvjNuVa93sX1rMEReleQ/arm3\n1TzL3d4rtd/BtNocAQmmyrAHPduTvHVg+uB/FA8ZmL5YQHpLZ9p3snOTkaT9R7K77p8f4TXN\n5xeSPK+GwQut39l5nr/tjH97Z/yXBpbZK60N/tz0/76MZd7XGffueZa5ODsO/g+t8X/ZWeb3\n53m9T0vyy2nNx/ZYxjLjWE5AGqfGcd6/cfx953m+ll3fo/+ThV/Xcvb3wc/hizvTfmZg2iVp\nB/lzzulM+1Rn/Difh0l+VyxkOetdrN5x9rOlAtJytvH7O+O/mV2v8/6PzvTFAtL2tN779hqY\nZ7nbe6X2O5hWm1P7vE4aYPYM/ifwI2n/iZ1zSJIfDrmuB3cen55dL3L/P2n/cZ3rCe9BST48\n5Lrnc0YNe6a1579fdhyEdP+wH9h5/LOdx4PPfVPVNnfwNHfQMs4y9+/Mc0Paf5u7Lko7OFuf\n5Pgk/zs7/xf+D9Muuv5Y2sHIhdnxn+OucZZZbePUOM77N457dh6fmV27jn5vknstsOxK7u/v\n7Dz+XNoZgbmmUX+fdk3NnE9kxzVvB3fGj/N5GMVKfldMYr2T+CwsZxvfozPfh7JrCHp3krsN\nWcf/Svuu6VqJ7b0S+x1MPQEJZsv2JF8dGPf9gd+H/V7YMztfqLxQk65vZMfBxHI7a9gr7T88\nv5EdTdvms65+7pmduyn/9jzzDt7PaZxl1qf1dDfnKTUs5I71881JnlHPtzHJU2tI2kHYGWlN\nwLpnscZZZrWNWuO47984Du88/tY80+fb3snK7u/b0w7gu36YHQeqg+vuhoXu53PUz8MoVvK7\nYlLrXenPwnK3cXffGty+C41byOfnGbfc7b1S+x1MPTs8zJYbs+vB/bjdcG/Mzn+IF7pxbPe/\noIPNVUb1prRmM0n7Y39m2gHt1rT/pt59YP69B2oc5rWOs8yGgd/PT2sStpC5e0ldktZk5+Vp\nTWH268xzZJJnpR0A/lbaax93mUlY7KB71BrHff9GtS47N1uab59dqEvjldzfb8yu+1W3y/wt\ni0zrGvXzMIqV/K6Y1HpX+rOwnG08zL513RA1zK3/innGL3d7r9R+B1NPQALGdV0N+9bvC12P\ncKvO42HuH7SQI7Ljv8NJ8vwkr+r8/sbseoBwbdpBwdwB+DDNRMZZ5rqBZd6W5LQhlktaEHhK\nkmemHewdl+Q+aU199kv7r/br0i4Wv2gZy4xqe+fxvvNMP2yecV2j1jju+zeK7WlNivav3+f7\nL/zh84xLVn9/X8o4n4dptJKfheVs4+1p3x1zZ2NG2bcGDTb7TGxvWFXL7VEKmG2f6Tw+fp7p\nB2VHT0tJa78/rqOz8393PzQw/ZgFlvti5/E95pn+x2kdUfxTdnS4MM4y3WY8R++yxOL2TLvW\n4V/SDnp+Oe1GrXPNYdanHfwtd5lRdP+b3L3mas4w6x6lxuW8f6Po3gz0Z+aZfv95xs1Zzf19\nKeN+HqbRcj4Lg2dCl7ONu/vWfN8bD1ighmHY3rCKBCRgOf6q8/jE7Hpw+dLsaHZyTZK/W8Zz\nDTZZ6d4P5+ez841CD+g87vbo9IvZ+eDm6LT7ufxsDd9exjLv78zz6Ox8ncwhSb6Xdu3Cp7Lj\nmokz0g7ifpDklgOv79LsfG3GljGXGVe3u+WD0nqtm3OnLHzzyHFrHPX9G9fZnccPzc73d9mU\nXe9t1bWa+/tSxv08TItx97PBJmZ3GPh9Odt4cN/66c7vd87i+9ZSZn17w6qb68Jxc891AOMb\ntuve+a6vODI7d/U6eEPAxbr5Xp+du4K9Pu0A41VpXUN31/us0V/WTvZPa8Iyt76vpl1b8Jq0\ng59u9803pd1f5d5pTV6+3pl2edqF22/JzjchPavzXOMsc2BaWJqb9sMkr0+7PuLCzvj3dJZ5\nV2f8hWnv2/PSeuQ6uzPtouzopWqcZcZxcFpzo7n1XZd2Ufxr6rV1n2uwSdA4NY7z/o3jjmkH\nm3Pr+1Fa86Q/S9vO31jkdS1nf1/qc9jd3waX/a3OtLmzFON+Hib5XbGQ5ax3sWXH/SxcMzDt\nDbVcsrxtvCk771tXpd0y4C/Srin6ZmfaYt18z/ceTWJ7J6PvdzDNNmfHPi8gwRToKyAl7cD2\njIF1dIfr0v7QroTujRK7w0fTDoA+MzB+cy13h7S70y9U44eS3GLgucZZ5i7Z+YBjcDg9Ox+o\n7Z+d39/5hm9l566px1lmXM9MCwmD6/9EWpOe7rjuNa3j1jjq+7ec13XzPOv/YtpNMrvjBu9F\nM+7+PokD1XE+D9MUkMbdz143z3xndKYv5zvtWZl/3/pykid1fh81ICUrv70TAQm6Nqf2eZ00\nwHS4NO2gNdm1KcZi05LWdv8Tnd+vHZj+H9lx8HtBdnVF2g0M75d2cLkp7Y/1ZUn+PcnfpPU2\ntRJemx0HGrdOa1rzobSbjN6c5FFpN4y8Q1rzmo906r572rUJP5d2QHZzjT89O7/+LGOZr6Qd\n5D827f4oP552MPXNtKY4gzdbvLrWfWL9PCrtoO+GtAO7c+q5rl/mMuN6c5Jz0y6Cv23aNj0r\n7T/3+2Xn92Bjdhz0jVvjqO/fcl7X55P8epLbpZ1F+kTajUcPGXhdG7Jzr2Xj7u9LfQ7/Pa1r\n6mTXzgS+11n2e53x43we9l6kjuV+VyxkOetdbNlx97PfSTvgf2DafntxzTdnOd9pb0q7v9DT\n0q6DuqLqeEeSEwZec9dS71Gy8ts7GW+/g5nQ/U8DAAAr79lxRgbWss1xBgnoyf4Zr5eyizP/\njT1ZmPcaVs8D0679uU3aNXx3TzvLk7Qzkd1uuv95NQsDRiMgAavtNkn+YIzlPpDkrStcy7Tz\nXsPqOT+tWd7cDWs/ndbBw/a0XiDnuuK+PsmrV706YCSa2AEALN9D065pW6iDh8vSuuUG1p7N\n0cQOAGBFfSStQ5fHpt2b6MfTekK8OO2M0nvSuv8G1jABCQBg5Vybdv+jt/ddCDCePfouAAAA\nYK0QkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAA\nAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAA\nQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAA\nUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKOv7LgAAmLgjkhzddxE9OzfJxX0XAax9AhIA\nTL+XrF+//tf32WefvuvoxZYtW7J169a/SPL0vmsB1j4BCQCm354nnHBCTjnllL7r6MUrX/nK\nnHnmmXv2XQewe3ANEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAWd93AQCw\nCtYlObDvInq0oe8CAHYXAhIAs+DVSX6n7yIAWPsEJABmwUH3uc998mu/9mt919GLF77whX2X\nALDbEJAAmAkHHHBANm3a1HcZvdiwQQs7gGHNWkC6RZI7Jzk0yd5JtiS5OMl5Sa7rsS4AAGAN\nmJWA9LAkpyS5b5I955l+U5KzkrwsyadWsS4AAGANmYWA9IIkL09yQ5KPJTk3yaX1+8Ykhyc5\nJslDkpyY5BlJ3tZLpQAAQK+mPSDdPslLk5yd5AlJfrDEvO9L8oYkH0lregcAAMyQab9R7IPT\nmtQ9NYuHoyS5MMmT065NeuiE6wIAANagaQ9IB6ddX/TtIef/apJtSQ6bWEUAAMCaNe0B6eIk\neyU5esj5fybtPbloYhUBAABr1rQHpI+kdeX9riR3WWLeY5O8O8nVST404boAAIA1aNo7abgk\nyUlJ/jyt97rzsqMXuxvTerE7LMndkhyV1rPdryT5YR/FAgAA/Zr2gJQk70jyxSTPTevK+1Hz\nzPP9tBD1qiTnr1plAADAmjILASlJPpfkifX4sCSHpvVWd31aOLp0hZ/vFkmen/lvSjufjUk2\npd3QFgAA6MmsBKSuS2qYc3iS49I6dPjWCj3HxrT7Kg37/t4yyYOSbEhr+gcAAPRgFgLSfkle\nkuQX0s4YnZ7kZTXtHWk3kJ3zifp9uTeJvTTtWqZhHZ8WkAAAgB7NQkB6e5LHJNmadk+kP0xy\nZFrTuscnOSvJd9N6uXtAWoA6rpdKAQCAXk17N99HJ3l0kj9KO5O0X1onDU9M8rQkT03y4Hp8\nXFpHDsemndEBAABmzLQHpHsluTbJ76dd27M9yfvTmtJtT/KXA/P/Sdp9k+65ijUCAABrxLQ3\nsTssrUOGmwbGfyetY4RB29KuH9p/wnUBAABr0LSfQbooyRFpXXp3/Zckt8uu3XDvU/NfPvHK\nAACANWfaA9Kn0rrcfl2SW6Xdn+h305reXZnkDzrz7pnktCR7JfnX1S0TAABYC6a9id0FSd6S\n5DeSPL0z/rVJvprkz9K64/5WkjsnuU2SDyX54uqWCQAArAXTHpCS5NlJvpHkEUluSOvG+41p\n1xsdnOT5STaldeLwriQn9VMmAADQt1kISFvTuvn+o3mmvSzJy5McmuSKtBvJAgAAM2oWAtJS\ntqXdNBYAAJhx095JAwAAwNAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAA\nioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACA\nIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACg\nCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACK\ngAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAi\nIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAI\nSAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgC\nEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqA\nBAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIg\nAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoKzv\nuwAAAJigfZIc0XcRPbs4yZa+i9hdCEgAAEyzVyf5jb6L6Nkbk5zUdxG7CwEJAIBpts+DHvSg\nnHzyyX3X0YvXvva1Ofvss/fpu47diYAEAMBU27BhQ/bff/++y+jFhg0b+i5htzNrAekWSe6c\n5NAke6e1xbw4yXlJruuxLgAAYA2YlYD0sCSnJLlvkj3nmX5TkrOSvCzJp1axLgAAYA2ZhYD0\ngiQvT3JDko8lOTfJpfX7xiSHJzkmyUOSnJjkGUne1kulAABAr6Y9IN0+yUuTnJ3kCUl+sMS8\n70vyhiQfSWt6BwAAzJBpv1Hsg9Oa1D01i4ejJLkwyZPTrk166ITrAgAA1qBpD0gHp11f9O0h\n5/9qkm1JDptYRQAAwJo17QHp4iR7JTl6yPl/Ju09uWhiFQEAAGvWtAekj6R15f2uJHdZYt5j\nk7w7ydVJPjThugAAgDVo2jtpuCTJSUn+PK33uvOyoxe7G9N6sTssyd2SHJXWs92vJPlhH8UC\nAAD9mvaAlCTvSPLFJM9N68r7UfPM8/20EPWqJOevWmUAAMCaMgsBKUk+l+SJ9fiwJIem9VZ3\nfVo4unSFn++QJH+SZMOQ89+yfq5b4ToAAIARzEpA6rqkhqSFpTsmuU2S/0y7Xmkl3JTk8rQm\nfMOYC1LbV+j5AQCAMcxCQNo7ye8n+WSSj9a42yZ5a9p9kubcUONOyfKD0pVJnj3C/McnecQy\nnxMAAFimWQhIpyc5McnvpgWkfZKcneQOaU3vPpsWou6f5LeS3DrJL/dSKQAA0KtpD0j3SwtH\npyV5dY17fFo4+r0kr+jMuyGtQ4cnJLlXks+sWpUAAMCaMO33QbpH2nU9L8mO63vultaN92kD\n896Y1tNd0pq8AQAAM2baA9JeSbalhZ85W9J6rpuvQ4RLktyc1uQOAACYMdMekD6fZM8kv9oZ\n9/G0JnYHzzP/I2r+8yZfGgAAsNZMe0D6eJJPJXljkhendcBwVpK/TfLuJD9R890qye8k+ask\nFyQ5c9UrBQAAejftnTRsSzsr9J4kL6zhe2lN7O6e5Jtpze/m7kN0YZKHp3X5DQAAzJhpD0hJ\n65DhhCQ/m+QxaT3U3S7tWqMbavqXkvxD2hmk63upEgAA6N0sBKQ5H6sBAABgXtN+DRIAAMDQ\nBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAU\nAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABF\nQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEAR\nkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQB\nCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVA\nAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQ\nAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUEYJ\nSL+a5E1DrO/bSR42dkUAAAA9GSUgHZXkuCXm2TfJoUl+cuyKAAAAerJ+iHn+rX4emeSgzu+D\n1iW5fZKNSS5ffmkAAACra5iA9OEk90pypyT7JDlmkXmvSvLOJO9efmkAAACra5iA9OL6uTnJ\nI7N4QAIAANhtDROQ5rwlyfsmVQgAAEDfRglIF9VweJK7Jdk/7bqj+XylBgAAgN3GKAEpSV6Z\n5LlZuve7U9Oa5AEAAOw2RglI907yu0m+lOQfklyWZNsC8y7U0x0AAMCaNWpA+k5aj3Y3TKYc\nAACA/oxyo9i9k5wb4QgAAJhSowSkzya5cxbumAEAAGC3NkpA+ue0kPSqJBsnUg0AAECPRrkG\n6f5Jvpnk6UmelOQLSX64wLzvrwEAAGC3MUpA+m9pXXwnyQFJHrLIvF+PgAQAAOxmRglIr0vy\n9iQ3DzHvVeOVAwAA0J9RAtJlNQAAAEylUQLSbWtYyp5JvpvkgrEqAgAA6MkoAelpSV405Lyn\nJtk8cjUAAAA9GiUgnZPkZQtMu1WSeye5fZKXJvnYMusCAABYdaMEpLNrWMzJSR6V5I/HrggA\nAKAno9wodhivTTub9HMrvF4AAICJW+mAlCTfSnK3CawXAABgolY6IB2Y5KeTXLnC6wUAAJi4\nUa5BOrGG+axLcnCSE5LcMsknl1kXAADAqhslIB2X1gnDYq5K8jtJzh27IgAAgJ6MEpDekuSM\nBaZtT3JNkm8kuWm5RQEAAPRhlIB0UQ0AAABTaZSANOfwJE9KuzHsoTXu4iT/muRdSa5YmdIA\nAABW16gB6WFJ/ibJ/vNMe3ySP0jyiCT/vsy6AAAAVt0o3XwfkHaG6Nokv5Xkp5IcVsPdkzw3\nyZ5J/i7J3itbJgAAwOSNcgbpIWn3Obpnks8OTPtBki8mOSfJZ5I8OMkHV6JAAACA1TJKQDoq\n7VqjwXDU9X+TfDvJnbP2AtJ+SR6Y5Oi0a6f2TrIl7TXNhbsb+yoOAADo3ygB6eYk+w4x3x5J\nto1XzkRsSPKyJL+ZZJ9F5rsiySuSvDKt23IAAGDGjBKQzk27DumXk7x/gXkekuTIrK0bxb4n\nyS8l+Vza9VHnJrk0yQ1JNqb1yndMWicTr0hy+yTP6qVSAACgV6MEpLOSXJDWUcNbkpyddl+k\ndUl+PMkJSZ6e5Pwk/7SyZY7t2LRw9Jokz8vCZ4ZOT/KStNf1zCSvT/Ll1SgQAABYO0YJSDcl\neXiS/53k5BoG/WeSR9a8a8F90kLRqVm62dzWJM9P8tS0a5UEJAAAmDGj3gfpK2mdHPx8kuOT\nHJEWPC5O8i9J/jEtaKwVG9OunbpmyPl/lHb91H4TqwgAAFizRglI69LC0E1JPlDDnA1pwWgt\ndc6QJF9Le40nJvnwEPP/UlonE+dNsigAAGBtGvZGsfdOu7/RrRaY/ttJPpHkDitR1Ao6M8l3\n066bOintprbzuU1a87q3p11ndeaqVAcAAKwpwwSku6d1yHCPJPdbYJ4Dk9y35oFJW7IAAB30\nSURBVDt0ZUpbEdelXRN1XZI3JPl+kh+mXSv1H2lnin6Udu+mVyT5XpJfSOvhDgAAmDHDBKS/\nSLt/0OPTenubz+8neXLamZg3rExpK+azSTYl+e9p3ZNfmhbi7ph2RuyiJO9N8qQkd43mdQAA\nMLOWugbpp9LOHL0uLUQs5q+T/GySX00LSt9ZdnUr57okb61hNRyR1lxvzyHnP6B+rptMOQAA\nwDCWCkg/XT/fNeT63pbWTfbxWTpQrSW/l3aW6akrtL4r0+4bNWwnGD+R5F5ZuityAABggpY6\ngD+ifn5jyPVdUD9vO145vblD2tmylXJdklePMP/xSX5jBZ8fAAAYw1IBae6GrxuHXN/c/YOu\nG6+cFffsGpZyq7TX+PX6/U9rAAAAZshSnTRcWD+PG3J9D6yf3xqrmpV3UNrZoVun3Sx2oWHu\nHk5zv9/YR7EAAEC/ljqD9M9pXV4/P8kHs+OM0nwOSLuW58okH1uJ4lbA65LcLslTklye5DfT\nuvge9OdJjklyz9UqDAAAWHuWOoP0oyRvTutA4G+T3HKB+e6Y1inBUUlen2TLShW4TJendbxw\nQtp1UV9IsjnJhh5rAgAA1qhhell7QdqZlUekBY0z0oLGNUkOTnJskoekdWl9VloAWWs+ltYJ\nw+Yk/zPJY9Pui/TJHmsCWE2nJTml7yIAYK0bJiBtSfKgJC9OclKSx9XQdWmSP07yyiQ3r2SB\nK2hLWlPBv0m7H9I5aWfHXtBnUQCr5NB73vOeedzjBr++Z8Npp53WdwkA7CaGvU/P3HVIL05y\n3yR3Suux7tK0LsA/mbUbjAZ9Ia3TiZPTXs/Dkny/14oAVsEhhxySe9zjHn2X0YuNG4ftjBWA\nWTdsQJpzbZKP1rA7uznJa5K8P8mb0poIfrbXigAAgN6NGpCmzTeTnJjk/mndfAMAADNs1gPS\nnHP6LgAAAOjfUt18AwAAzAwBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACA\nIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACg\nCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACK\ngAQAAFAEJAAAgCIgAQAAlPV9FwCwSp6Z5Bl9F9Gj2/VdAADsDgQkYFYct2nTpns84AEP6LuO\nXrz3ve/tuwQA2C0ISMDMOOqoo/KEJzyh7zJ68eEPf7jvEgBgt+AaJAAAgCIgAQAAFAEJAACg\nCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACK\ngAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAi\nIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAI\nSAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgC\nEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqA\nBAAAUAQkAACAIiABAAAUAQkAAKAISAAAAGV93wWsov2SPDDJ0UkOTbJ3ki1JLk7yxSTnJLmx\nr+IAAID+zUJA2pDkZUl+M8k+i8x3RZJXJHllku2rUBcAALDGzEJAek+SX0ryuSR/l+TcJJcm\nuSHJxiSHJzkmyePTAtLtkzyrl0oBAIBeTXtAOjYtHL0myfOy8Jmh05O8JMlbkjwzyeuTfHk1\nCgQAANaOae+k4T5poejULN1sbmuS59fjB06wJgAAYI2a9oC0McnNSa4Zcv4fJdmW1qEDAAAw\nY6Y9IH0trRnhiUPO/0tp78l5E6sIAABYs6Y9IJ2Z5LtJ3pXkpCSHLTDfbdKa1709yQW1HAAA\nMGOmvZOG65I8MskHkryhhsvSerG7Ma0J3mFJDqz5z0/yiLQe7gAAgBkz7QEpST6bZFOSJ6Y1\ntbtLdtwo9vokFyX5xyT/kOR9SW7qp0wAAKBvsxCQknYm6a01rIbbpIWujUPOv3f9XDeZcgAA\ngGHMSkBKklsm+bEk30nrqW4+eyZ5cpIv1DCuS5KcluED0h2SnJKluyIHAAAmaBYC0p2SvCPJ\n8fX7RWn3RXrLPPPuldZRw6lZXkC6MclfjjD/8WkBCQAA6NG092K3Lu26ouOTfDnJB9PO0rw5\nrbmdJm0AAMD/N+1nkP5bkmOSvDKtG++knSX6oyTPTnJtkt/upzQAAGCtmfaAdOf6+YrOuJuS\nnJzkiiR/mHYz2Tescl0AAMAaNO0Bae+0JnXXzTPtRWnXJ702bg4LAFNr27ZtSbJ/kqN6LqVP\n3027RhpYwrQHpK+nXWf0c0nOmGf609J6kPvbJD+f5DOrVxoAsBrOO++8JHlUDbPq9Un+R99F\nwO5g2gPSWUm+l9aL3fPSgtC1nenXJ3lY2tmjs5K8ZJXrAwAm7Oabb87973//PPOZz+y7lF68\n+c1vzjnnnPNjfdcBu4tpD0hbkjwlyd+ndd/91SSfHpjnh0kelNbb3UtXszgAYHXsu+++OeKI\nI/ouoxf77rtv3yXAbmXaA1KS/FNaT3ZPTPLNBea5KslD024S+6uLzAcAAEyxWQhISXJhlj47\ntD3JX9UAAADMoGm/USwAAMDQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAA\nAMqs3CgWSB6W5OF9F9Gj4/suAABY+wQkmB2PPvLII59yzDHH9F1HLz7+8Y/3XQIAsBsQkGCG\n3PWud81znvOcvsvoxec///m+SwAAdgOuQQIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAA\nAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAA\nQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAA\nUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAA\nFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAA\nRUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABA\nEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgrO+7AFhFd01yfN9F9GhT3wUAAKx1AhKz5Dm3\nuMUtnnr44Yf3XUcvLrzwwr5LAABY8wQkZsm6448/PqecckrfdfTiyU9+ct8lAACsea5BAgAA\nKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAA\nioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACA\nIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACg\nrO+7AFbV45I8ve8ienSXvgsAAGBtE5Bmy4lHHXXUCccee2zfdfTijDPO6LsEAADWuFkMSOuS\n7Jdk7yRbklzbbzmra9OmTXnGM57Rdxm9OOecc/ouAQCANW5WrkE6PMmpST6T5JokVye5tB5f\nleSTSX43yS36KhAAAOjfLJxBenCSv0uyf9rZoq+mhaMbkmxMC0/3SnLfJM9N8otpQQoAAJgx\n0x6QDkzyniRXJHlSkg8n2TrPfHsneUyS1yQ5PclPZsaa3gEAANPfxO5hSQ5K8tgkH8z84ShJ\nrk/yziS/kuTWSR66KtUBAABryrok2+vxqUk291fKRPxe2uvaMOT8eya5Mcn/TPKKZTzv7ZP8\ne4Y/Q7c+rQnghiQ3LeN5l/Ln69ev//V99tlngk+xdl177bXZY4894vV7/bPI6/f6vf7Zfv3b\ntm27Icl1fdfSk33Xr1+/cVa3/5YtW7J169a/yGzf6mUYm5O8KJn+JnZXJdkryaFJfjDE/Eek\nnVW7apnP+620s1bDvr/r0mqcZDhKkhdu3br1PVdfffWEn2bNOnjbtm25+uqrL++7kJ54/V6/\n1+/1e/2z6eD6ObOvf+vWrbO8/ZPk3L4L2N1sr2Fzz3VMwl3SXttfZ+mzSPsl+UCSbUk2Tbgu\nAABg7dicykXTfgbpK0n+LMlJSR6Q5B/SEvSlaU3pNiY5LMndkjw8ySFJXp7k/D6KBQAA+jfN\nZ5CS1nzt2Um+kx2vdb7h/CS/1lONAABAfzZnRs4gJe2F/mmS1yW5a1qzu0PTuva+Psn3k3wp\nyXl9FQgAAKwNsxCQ5mxPC0Jf6rsQAABgbZr2+yABAAAMTUACAAAoAhIAAEARkAAAAIqABAAA\nUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAA\nFAEJAACgrO+7AFbVp5Mc13cRAACsqn9Lcp++i9hdCEiz5RtJLk1yat+F0IsX1U/bfzbZ/rPN\n9p9ttv9se1GSq/suYnciIM2WG5NcluSzfRdCLy6rn7b/bLL9Z5vtP9ts/9l22dKz0OUaJAAA\ngCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAICyvu8CWFU39l0A\nvbL9Z5vtP9ts/9lm+882238M22vY3HMdTN5BNTCbbP/ZZvvPNtt/ttn+s832H87mVC5yBmm2\n/KjvAuiV7T/bbP/ZZvvPNtt/ttn+I3INEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAA\noAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKCs77sAerEuya1r\nuDjJ95Lc3GtFrLbDkvxEkh8k+U5s/1mzZ5Ljk1yX5LM918Lk7ZvkJ9O2+9eSXNlvOfTgdjV8\n6f+1d/dBktTlAce/B3dwcMjxJgcIKC+akwqIEFCLq8tFgxiCqGAMSiVXIS8mMRHLpPRMpXRj\nglGTaCJYEcIFjOiZxEqQFzkDCR5vYuCU4AsCwl0IRzTCeXKAcC+7+eN5pqa3b2a3e3a3Z3fm\n+6mamp3u33Q//TbbT/fv92vgib5GoqbtCRyT7w/j8V/ZWL5G+hyHmvEW4h/kWOG1CfiNfgal\nxiwjToiL2/8HwNv7GZQadRRwG7Ht7+5zLJpZuwEfAp6mfbxvAy4DFvYxLjVnHvD7wE+I7X9W\nf8NRgxYCH6W97VuvLxLJsnY1Qns9mSANkfOIbf0g8OvACiIx2pDDV/YtMjXhROJE6XHg3cCr\ngQtob/8L+heaGrISeBL4BrAdE6RBdxFxbF8DvA74OWB1Dvt0H+NSMw4F1hLH+j2YIA2bz9I+\n/s8mfgMupX0euEf/Qpu1RjBBGkrfBJ4jqtYVvYzYB9Y1HpGa9HliO68oDT8hh3+16YDUqAOJ\n7fwJoqrFs5ggDbKDiG18F7u2N74aGAWOazooNepi4gLYK4FVmCANk6XE9r6ZuItY9C857oym\ng5oDRsi8yE4ahst7gHOJKnVF9xJXmBY3HpGadB3wPuArpeH3AluBw5oOSI3aRlxFfCdxoUSD\n7UwiEb6cSIaKLiNOms5pOig1ai1Rc+DOfgeixu0kzvn+mLwbUnBbvvs/fwJ20jBcbugyfDmw\ngLjSqMF1VZfhBwL7AP/ZYCxq3lbg2n4HocacmO+dOuG4u1RGg+n6fgegvnkQ+Isu415UKKMu\nTJCG1zLgAOBkogHnvcD7+xqR+uXDxNXki/sdiKRpc3i+P9Zh3A+BHcARzYUjaRZYCvwa8HXg\n9j7HMquZIA2v62hXqVsD/CHR5beGy3uJjjo+RfRsI2kw7J3vz3YYN5bDFzUXjqQ+O5L4P78D\nOJ9dq96pwARpsCxh144W1hMHQtn5wP7EszEuAL4NvJWos6y5qc72nw9cQnTvfSnwjpkNTQ2o\ns/01+Hbke7f/8/OJdmmSBt8pRG92uwGvAb7b33BmPxOkwTIKfL80bHOXssW6yZcQXYB+hqhy\n0emKo2a/qtt/f+ALRG92q4CPzGxYakid41+Dr/Uw0P2JB0IX7U08I8X9Qxp85wFXAA8RvRhu\n7Gs0c4jdfA+P/YiuXzv5DLEfnNRcOOqDxcRdhaeBN/Y5FvWX3XwPtvcQv+lndxh3Uo6z3eHw\nsJvv4fSrxMWztcDz+hzLXDCC3XwPnUOIq4XderFaku9WuRhc84ntvxT4BeJZKJIG0035fmaH\nca/P9y83FIuk5p0J/D3R7ugsoidT1eAdpOGxjtjWFzL+wWFvI64wbGTXBwpqcLyP2P4r+x2I\nZgXvIA2+O4hnXq0oDDsReBK4H6vZDxPvIA2XxUTV2m8De/U5lrlkhMyL5tHuxeJPMEkadEcS\n3ToeTjwsdiPwAqJP/CeJqhjlRt4aHFuIH82vTVDmTdib4aD6FcZ3xnEq8AzwrcKwNwOPNhmU\nZtRLgFuAg4mqtduJ7b6VaKj99f6FpgasIx4WDPFQ0COIxHhLDluL532D6l3Ax4nf801dylwP\n/GljEc0NI8AHwKtHw+YR4MXEHYRXEMnRPcBqogFft4NIg+GeCmXs9nNw7WR8Byy3dCjj9h8s\nDwA/Dfwu0YvVPODPgb+l8/ORNFieo31MP5yvou3NhqMGbWHyC95u/0lYxU6SJEnSMBvBThok\nSZIkaTwTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmS\nkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmS\nJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJ\nBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmS\nJEnJBEmSJEmSkgmSJFWzHDi58PnzwBhwSI/T+0R+fwz41NRC0wAo71+SpD5q/YMe6XMckjSb\nPQXcUfh8NrAKWNTDtA4lfnfvB14JvHDK0WmuK+9fkqRmjZB50fw+ByJJc8VTwNbC52vy1Ysj\n8/1LwJ1TCUoDo7x/SZL6xARJkqopn8AeBxxMXPXflp+fD6zL8Ufl+P8Gvl/43gnAqfn3EmAF\n8BjwQGl+L87p/Rj4LrBzGpZhAXG36qCM6X8mmO48YCmwL7AB+L8plgM4mqiSONkyHUgkkbsR\n6+/xKZar4vic3m3AjsLwecDPAj8C/msK859s2asmSK8A9uoybiuwvsI0WqrGX2cbT7bfFo+T\nfYnjYQOwqVSu6r4iSTPCKnaSNLl7gCsLn8ttkD6dn48GbgW2EyfaY8DVwD5Zbi3t391ObZDO\nAh4ujd8MXDjF+C8EflCa7kaiqmDZmTmuWPZaompgL+VWAN8plXsCeGep3AuB64HRQrnRHPb8\nHsrVcV1OZ7/S8Pk5/KYe57+Caste3r+6+R677j+t190Vvl83/qrbuOp+2zpuXkYknWPAmwvj\nV1BtfUnSdBuh/btjgiRJFRwNHFb4XE6QVufn9cBKYCGwB/BXOfwDWW4R8Loc9nHihLx1R+A0\nIqm6HzgDOJw4Ybwry/9Wj7Gfk9//CnE35CXEie8DRCK3tFD21Bz2IHAu0XHAH2Rc62l37lO1\n3MuB54iT99OBI4BXATdkTG8vzPtm4FngNzOmpcDvAc8AN/ZQro46CVLV+ddZ9vL+1c2RwLGl\n12dzehdV+H6d+Ktu4zr7betCwk3Eecdy2sdQnfUlSdNtBBMkSZqScoJ0eX7+aKnc/jn8PwrD\nluWwD5fK/lsOP77DNJ4iqiL14rXAh4iT6aJfzvmtKgxr3Vk4qlT2kzl8ec1y1wJPE9UJi/YC\nHiWqdrVsJ5K4srcQJ+a71yxXR50Eqer86yx7r15DrO+vUb3afNX4q27jOvtt6zhZ3WH+Tawv\nSepmBBMkSZqSbgnSig5ln2J8+5VOCdIC4qp+uS1SS+sq+lR6vFsMnAK8Gvh5otrSGPCxHD8f\n+AnwzQ7fXUD7jkHVcguy3PeA8zq8vprzb3VasYFYV2dMshxVy9VRJ0GqMv+6y96LA4m2O08C\nx9T4XpX462zjOvtt6zj5xQ7TnOn1JUkTGcFe7CRpRjzWYdgOJr+rcSiwJ9GOo5PW1fMjqH8l\n/QCindM5Gcc24i5C6yS39X4YUTXw0Q7T2F74u2q5Q7PcMcCaCeI7BHiEqIr1BaKd1ibg34kT\n7GuI6l8tVcvNlCrzr7vsvVhNbIuVwEOF4UtodxbSsh44v0b8dbZxL/ttebpNrC9JqsQHxUrS\n9Brt8XsL8n1bl/Gtk9I9e5j2lcAvEW2eDslp7EPcSeoUww4mVrfcrUQ1qW6vu7LcjURbnHcB\n9xFVvtYQve29vjDdquVmSpX51132un4HeEPO9x9K40aJXgqLr809xl91G9fdb5/uMp2ZWl+S\nVItV7CSpvm5V7MrtfAC2AN8qfO5Uxa7VVun2LvNrNcQ/sWac+xEnzOUuqiF6HhsD/roUw2QP\nLK1abr8s16361WQWEnc9NhPdPS+eYrmJdKti11qGm3b5xsTzn+qyT+SlxJ2eDfS2rGWd4q+7\nL1Tdb7sdJzO5viSpihEyL/IOkiTNDj8iTnhPoPNdolOIth731ZzuYuI5Np2qQJ3bIYaNGUP5\nWTunE9Wyltcot4VoU3Is8XycstOBF+Tf87LMosL4Z4kT7IuJZ+YcX6NcXc/l+6LS8JeWPled\nf51lr2NP4m7PHkRS8+Oa368af519YTr225laX5JUmwmSJM0eVxBV31aVhq8kThrX0D6Rr2pT\nfuflxEl1y1tzGMRdgGIMi2h3Sw6wN/BnRJWuh2uWu5w4Kb+I8e2wXkW0ebksPy8j7h58sBT/\nPOCk/Pt/a5Sr68FCXC27A39E9mhUM06ovux1fIR4htAHmfzuTid14q+zL0zHfjsT60uSemIV\nO0mqb7qr2EFcgb85x90KXEq0FxklehM7qMdYW89iujeneRvRYP5FRLWqZ4C/y+kvzHmP5Tyv\nI9qwjBLPymmpWm4B7Z7M7iNOpr9MtG3ZyPje19bQrmb1T8A/034w6t/0UK6O44g7HU8Q2+X9\nwJ3AXwKPM76b9qrzr7PsVRxLrN+dGcNVHV5VVI2/6jaus99OdJxM9/qSpDpGyLxod9qJ0To6\nPxdBkrSr44i78J8juif+KeIOzT8CW0tllxF3KL6Ynxfn928hehdr2Umc5D4EHEw8cHMzcAnw\nDqI7517cSNxJWkz0aHc78ZDQx4ik6SDin8K1RPfPVxEJ1L5E9ao7iBPiqwvT3FGx3ChxQv4d\n4i7DYUS1rCuA32b83Z5/Bb5BrMcDiPV7N/BuIoGrW66OHxLVxvYmHpy6L9G5xceAnyGqkd1Q\nc/51lr2KA4i7R48Az8sYy68rK0ynavxVt3Gd/Xai42S615ck1bGCwqM6vIMkSZIkaZiNYCcN\nkiRJkjSeD4qVpLllCeM7EpjMXUT1umHiOpIk9cwESZLmlpOJtjJVvY1oiD9MXEeSpJ6ZIEnS\n3PIl/O2ejOtIktQz2yBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJ\nSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJ\nkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQl\nEyRJkiRJSiZIkiRJkpTmF/4+DXhvvwKRJEmSpD45rfXHPGCsj4FIkiRJ0qxhFTtJkiRJSv8P\nAmC25R1aqSkAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'info_access_use' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebRsZ13n/3fmQEiA0CTMEiYxSEAhgOAAKINMyqSAgD9pHBZNtyiD888w\n/XAElaZbhqZREGRSAUEaJKgQRGgQiYnMswQEQhgCme/vj/2cdesezr33zHVunddrrb2qTu1n\nV32r9q5796f2s599WLUnAAAAOnzeBQAAAOwUR87cP6t6+7wKAQAAmJPvre609MeeMZ0xr2oA\nAADm6IxGLtLFDgAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGA4ct4FABt2enXcuP+x6lNz\nrGU9Nrv+Q/3zWK/tft+3ra4y7n+8+uQWv952W/T3N4/vyUZec7d+r4E52TOmM+ZcB7B/x1d3\nHtP3LZv3r+39Hv/ytla1OTa7/kP981iv7X7f75t5vV/fhtfbnwN9NzZip7y/rTKP78lGXnO3\nfq+B7XNG498ZR5Dg0HCj6q3j/vnVNeZYC+wkvhus1/Wqm1T/UZ0751qAHURAgkPD1/ZzH3Y7\n3431eWB1pXH/s/MsZJW2ot5nVQ+qXl49ZJOeE1gAAhIcGuwEwsp8N9bng/MuYI02u96rVPfe\n5OcEFoSABIeGr8/c/+oGnueU6uTq0urTTV1LVuPI6mbV1aoLqg9Vlx1kmWtWN6yOqj7XdGL1\nvB1d3XHm7w81/Rp9xzGv6r3t/Yyv39QN5z+qj67yNVbzGd94PHejzfLn/v72jjL6ueoDy+bf\nrrryuP/u6sJV1lZ1TNO6PH7U9pGDtD9stL9604nxa/n1fnbZT1f/Ph6/aXXdcX+l97+WWjf6\n3djI+1uylu/VStvaEdW3N73fD7fve6q6TnWDpm3hEwepZbXfuwMNerCZ34fVWM3zrnaQhms1\nfVaHNW1v51WXz8w/vrpNdaf2HpE6qekctqq3t/K/bev5t3M92/9Kn/21m7oCfqpvHSxktet7\nq7c7WDgGaYBDw6VN39U3Lnv8YCcvH1v9v007fnuWTf9a/eQBXvMa1f9o+s90drkLqt9u7076\nrPtW/7zCa31iP6+1nYM0/MnMvPdVJ4zHPzXz+D2aAsxZy+p/b/Ud+3nNtX7G/3lm/l8um3ej\nZcu/c9n8o6uLxrxL2rvTeLDP8Trj/X9j2fN/pvrp/byvezeN4Dbb/i1NO7TvnXlspUEM7tu0\nzmeX/bumHa4/m3nsGZtQ6/6+Gwezkfe33u/V8m3t9Kad06XHvlb919H2hOo1y577TU0/VCy3\nmd+7jX4f9mf2NR+/xuc92Pb9U01HmZa//89VT2vv9+S2K7SZnWY/243827ne7f/T7fvZ/1xT\nYFu+Ha51fW/VdgeL5Iz2bvMCEhwi3tj06+bTlj1+oB2Hq1T/1Lf+J7p8+uMVXu+k9v0PdKXp\nH5t2IpY8ctn8C5t+lZx97GfXUP967O/5fnXm8U+19xfcmo7QLM17dPvupCzf+VgeCtfzGc+G\noH9vXz+zbLlLm371XnL7mXlnreJ9V33beJ2l+Rc1/RJ9xcxjZyxb5q7tDR7Lp3M78Chvd2vv\nTt3y6d+qN8/8/ZubUOv+vhsHspH3t5Hv1ey29pjqSyssd0XTEY7X7ud5X77sOTf7e7eR78OB\nLH/NtTzvger99b7187tk2WPvaDoSfpumbfOKZe0vG9NVx3NuZB1vZPuf/ez/W/XNmb+XtsP1\nrO+t2O5g0ZzR3u19v//hAIeGA+04/O+ZeV+rHt706+BNqv/evv/5/fiyZV89M+/TTf9xHt/0\n6+MXZ+Y9ZbQ/qqnbydLjz2vaITms+oOZx7/Yvt17tyMgPbC9O0QXVN95gGU+3dT17qHV/au3\nte/n9Ihly673M/7kzOPXmXn85eOxD83Mv9fM/J+fefypB3nfS/52Zt7ftDdwndreX8cvq245\ns8zZM8uc19Tt75im7n0fWfa+lgeI2Vq+2LTNHNc0DPfyneLly66n1vXYyPvbyPdq9rP596aj\nCvdq+h7NLnd2Uzh8XNP2O/tjxWVNXatqa753G/k+HMjy936g533kAZadrffYpoCwp6kr3X1m\n3ufNq/fPLPfwmeX+eObxP1+h1s1ax2vd/meX/XBTQHpp9Yfjc9qM9b0Z2x0sojMSkGBh7G/H\n4frt+yvmY1ZY9g0z89818/gp7fsL64OWLTe7k750zsaJ1RNmpm+baX/j9v1P+BarqH+9lj/f\nbdq7A3VxdZeDLHNJ0/tfckLTDtLS/P8+M28jn/Fsd78fHY8d1t6dn99u75GU351Z7mUzy82+\nl/19jqe272d/s2X1PXZm3h+Nx265bJnlO8H3WjZ/difvtGXzHr1s2QccYNn11LoeG3l/G1nn\nte96+lp7j1jUt/5y/4sz8+66bN7dx+Nb8b1b7/fhYDbyvPur95SZx7/Svke0q27d1OXsbu37\nQ8SBAtJG1vFGtv/l73P5d7w2Z31vxnYHi+iMxrZukAZYXD/YdBLukpV+JX119cPj/m2adlK+\n2vSf8mHj8T1NOwOznl09d9lj51e/N+5fo6kb2Q3H81xlWdvt6st+3ab//Je66/xse6+Zsz+v\nazovZclXm7qy3WP8/Z9m5m3kM35re38lv131V007V0u/0L6j6WTu+7fvTtIdxu1FTV0cD+b7\nZ+5f2rRebjTz2FErtL3tsudYvv7f2LQzetW+1W2W/f2aZX+/tmkH7fi+1XpqXY+NvL+NrPPl\nXjteZ8nfN51bsuQlM/f/oem7uPS9PHHcbvX3bi3fh3k873lN56pduelzflfTjwhnNQ1g8r4x\nrcVG1vFGtv/l/qFv/fdqM9b3Zmx3sNAEJFhcszuW549pudkRjw5vGknq3Kb/cJd8qWkHZNYV\nTTvoy53e1M3jjivMm3XYQeZvlv+y7LVusIpllo8YV9OJ3ktm/93cyGc8u+Nz+rj9wXF7RVOX\noxs2BaTvatrZObq96+YfW3kdLHe9mftHNXVb25+bjNtrzzx2YdM2MOuKpqNbKwWI5ct+Ydn8\ny5oGW1jpRPz11LoeG3l/G1nnyy0fse2LM/e/1r4jpV3WtFO7tNM7ux1u5fduLd+HeTzvRdXT\nx1TT0cGl7peXNP3Q8OfVi5qOIK/GRtbxRrb/5f55P49vdH1v1nYHC8uGDotrtqvJJftpc+my\nv48Zt1eaeexgw3kvuXnTTv/SaFGfrs5sOnn46PY/UtpWOqyp/qV/6365enH7/nK93ErX0tnf\nZ7CRz/iTo45Tmo5oHNbegPQvTTtlSyHq8KYjJrM7PAc7Erbk6Jn7l3Tgo057xmstX2Yl+wtn\nq1l2eeDe37KrqfWKA7TZn428v42s8+WWfw6XH2De8vlLtvp7t5bvw7ye9/9r+j79cvueX3h0\n0/Ddd27qJnfXvjUMr2Qj63gj2/9yKw0lvhnrezO2O1hoAhIsrtlfBa/eyjuTy0+4Xfq188sz\nj12tacd8z0Fe73Ht/U/7M01HPZZ2Rk5uPgHp3KYTqP+waefoSk3nrtz3QAutwUY+45p2dE5p\n+oy/vekk7pqGmq7phOkvNnU3ukv77rSfucoaZ9flFe293suBzHYHO76pu9HynaRr7WfZ2R3f\ntS67nlrXYyPvb6PrfLPtxO/dPPzZmG5QfW/TUZa7tfc8nNOaBjVZ6Xyi5Tayjjey/S+3Uvi3\nvmEbHH7wJsAhavbE4WP61r7xNY1Mt+S8pv9wazqCseTY9j3Zt6b/lP92TG9qCh6zv9z+Y/v+\nUnvrVVe9uV7cdHLy49q7k3Kf6n6b9Pwb+Yxr36NAj2jveQlL4WdP0/kBVd/TdK5STV13lp/8\nvz9nz9w/tn27D+3P7AVZj2zauZx1k/btSnSgZW+1wrLXaWXrqXU9NvL+NrrON9tO/N7Ny+FN\nQ/i/tPqFps/mCTPz99clbXlXtI2s441s/6thfcM2EJBgcb2tfbuSPbV9Tzy+afuOsPSimftn\ntu9/vE9a9tyPb+oO9oNNJyd/s327k8xeY+jo6jeWLb/SuR1b6ezq+TN//2H7diNcr418xrVv\nQHrUuL10PO/yNqe1d3CBt/etXXz258ymoc2X/Mqy+U+pPt80HPLSiFpvW/b8y9f/r7b/8xuW\nL/sry9oeaNn11LoeG31/G1nnm20nf++2w8Oq/9t0VPDJK8yfDd3fnLk/253vxsuW2cg63sj2\nvxq7fX3DttDFDhbX5U3dSV7f9GPIPZpO+n1T00hED2rvEYsPVb81s+w3m3ZA/+f4+xFNQ9++\np2kUtaVfTy+rfmncP6u9o63dsWmkuw83XT/kO5oujni3Mf9J4/lWusjiVvmN6iFN3dlu2LSj\nsnyHYq028hnXNBDAh5t2uJa63byr6XyCJUsB6UrtDXWrPf+opnMKnlr9/vj70U1HZs5qGkb7\nx5p22K7eNLpVTV3dXlL91Pj7IU2/ev9TU9el72ka3n3pl/DZH9vOb/oF/yfH3w+q3jmW/e6m\no2DntfIRmvXUuh4beX8bXeebbad/77bae5qOnBxR/VrTe35f04AMN2i6ztKS2dHoPjlz/zbV\nXzcdBfq9pqNA613HG9n+V2O3r2/YNktj258x5zqA9TnYdYQe1PSr/J79TO9o39HDZv1a06+h\nKy13fvteH+nE9r2o4NJ0YVOXtnuvMG819a/VgZ7vcTPzLmoKJqup4QUz81+1wvyNfMbPXdb2\nKSu0+dyyNqev0OZA7+Gw6hlNO/cr1feV9g6vvOTq7Xsx1aXp8urn2veCrk9ftuyJB1j2sU1d\ng/Z3HZj11LoeG3l/tf51fqD19PCZeZ/rW81eoHnpoqdb8b3b6PdhfzbyvAda9oFNP+rsb11c\n0XRdpdmge/32Xh9tdpodAn6963gj2//BPqOtWN/r2e5gEZ3R2NYdQYJD37vbe1Lxp1aY/6qm\nnb2HNh35OakpHHys6fovbzrAcz+96VfXhzb9SnvCeK13NF1rZLYb3vlNO+6PafoFvuqcpiu9\nLw2J++im/8SPavrldzX1r9WBnu85TaPBLV3L48erp62ihg+291ygc1aYv5HP+C+bBmhY8tcr\ntHlB04nnNXWxee8KbQ70HvY0dfX501HjLZuuG/PZpvXw4va9LkpNR1lu1xQWfqBpnX1kPMd7\nmt7j0v8hn1227Plj2Z9tGmjhqKahhf+0qTvUf55pu3zo5fXUuh4beX+1/nV+oPX0+fZuZysN\nLX1We7tNfX6m3WZ/7zb6fdifjTzvgZZ9ddNRmh9rOj/y5KYw9OWmoPLqvnWY9U83rf+fb7rY\n6tdGm4/PtFnvOt7I9n+wz2gr1vd6tjtYeEu/Cpwx5zoAWHyH5Rdpdi/bP+xcZ+QIErCDfUfr\nO8H43blmx07w3KYjP9dvGnp5tkvPg6prjPtLF8SFRWL7h0OcgATsRD/R+oas/fGmvvjM1zfa\n2/3nSU3nabyvaYjjn5pp9+L2PVkeFoHtHxaALnYAbKZjm86t2t/J7Xuqv2g6twgWje0fDk1n\npIsdAFvkour+TRfJ/PGmYdWv2TR8+Qeq1zSdVA+LyPYPhzgBCYCt8i9jgt3I9g+HqMMP3gQA\nAGB3EJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAACGI+ddwDY7obp5\ndVJ1bPXN6rzqA9U35lgXAACwA+yWgHTv6knVnaojVph/afXm6unVO7axLgAAYAfZDQHpl6tn\nVBdXb6nOqb4w/j6mulZ16+oe1T2rn65eOJdKAQCAudszpjPmXMdWOKW6rCkYnbSKtu9u6nZ3\n7S2uCwAA2DnOaOSiRR+k4e5NXep+qvqPg7T9ePWIpnOTfniL6wIAAHagRQ9IJzadX/SpVbb/\nYHVFdfKWVQQAAOxYix6QzquOqm6xyvbf3fSZfHbLKgIAAHasRQ9If9N0TtFLqlMP0vb21Uur\nr1Wv3+K6AACAHWjRR7H7fPWY6gVNo9d9oL2j2F3SNIrdydVp1Y2aRrZ7WPXFeRQLAADM3yKP\nYrfku6s/awo+e1aYzqueX91sXgUCAABzc0YjGyz6EaQl761+Ytw/uWnI72Ori6rPNR1R2kxX\nq55aHb3K9kc3HcH6gU2uAwAAWINFD0hXq65afbppdLqaut19fotf94jxuseusv01qu9vCkqX\nbFVRAADAwS1yF7szmt7bP1a3nG8pB3THpjpXe8QJAADYPGe0Sy4Uu+Skpm52z2w6sgMAAPAt\ndktAuk1TOPqv1Ueqx1VXmmtFAADAjrNbAtJF1S9Vt6r+uXpW9e9Noem21WHzKw0AANgpdktA\nWnJudffqrtW/VL9Qvbv6bPW66rerJ1Wnz6tAAABgfhZ9FLv9eeuYblk9svqR6j5jqnpyU3AC\nAAB2kd0akJacXT1xTNduCkzXH4/DTndE0/DwR8y7kG1wSfW2ptFlAAC2zG4PSLPOGxMcKr63\nOvP444+fdx1bas+ePX3961+v+o7qA3MuBwBYcIsekC6rLs6vziymIw8//PBe85rXzLuOLfWV\nr3yl+9///rX4/14BADvAog/S8LTq2KaQBAAAcECLHpAAAABWTUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA4ch5F8C2\nekD1kHkXsU3eWT1z3kUAAHBoEZB2l/te73rXe/Ctb33redexpT72sY917rnn3iQBCQCANRKQ\ndpnv/M7v7Bd/8RfnXcaWetWrXtW555477zIAADgEOQcJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAIYj510AwIFcfvnl\nS3efX319jqVshyuqJ1Rnz7sQANitBCRgR7vwwgurute97nWHq171qnOuZmu95jWv6Rvf+MZp\nCUgAMDcCEnBIeOADH9gpp5wy7zK21Jvf/Oa+8Y1vzLsMANjVnIMEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAADDkfMuYJudUN28Oqk6tvpm\ndV71geobc6wLAADYAXZLQLp39aTqTtURK8y/tHpz9fTqHdtYFwAAsIPshoD0y9Uzqourt1Tn\nVF8Yfx9TXau6dXWP6p7VT1cvnEulAADAXC16QDqlelp1ZvXQ6j8O0vYV1XOqv2nqegcAAOwi\niz5Iw92butT9VAcOR1Ufrx7RdG7SD29xXQAAwA606AHpxKbziz61yvYfrK6oTt6yigAAgB1r\n0QPSedVR1S1W2f67mz6Tz25ZRQAAwI616AHpb5qG8n5JdepB2t6+emn1ter1W1wXAACwAy36\nIA2frx5TvaBp9LoPtHcUu0uaRrE7uTqtulHTyHYPq744j2IBAID5WvSAVPWi6v3V45uG8n7g\nCm0+1xSifrf60LZVBgAA7Ci7ISBVvbf6iXH/5OqkptHqLmoKR1/Y5Nc7rnpCdaVVtr/uJr8+\nAACwDrslIM36/JhqCks3qa5f/VvT+Uqb4fimc5qOWmX7q47bwzbp9QEAgHXYDQHp2OpXq7dX\nbxqP3aB6ftN1kpZcPB57UhsPSp+r7rWG9neszqr2bPB1AQCADdgNAekvq3tWT2wKSFeqzqxu\n3NT17j1NIer7q8c2dXd7wFwqBQAA5mrRA9L3NoWj365+fzz2kKZw9CvVb820PbppQIeHVqdX\n7962KgEAgB1h0a+DdJumbmtPbW/3tdOahvH+7WVtL2ka6a6mLm8AAMAus+gB6ajqiqbws+Sb\nTecIrXS+z+ery5u63AEAALvMogekf66OqB4589hbm7rYnbhC+x8Z7T+w9aUBAAA7zaIHpLdW\n76j+Z/WUpgEY3ly9snpp9W2j3TWrX6j+tPpo9cZtrxQAAJi7RR+k4Yqmo0J/Xv3GmP69qYvd\nrapPNHW/O3q0/3h1v6YhvwEAgF1m0QNSTQMy/FD1g9WDm0aou2HTuUYXj/lnV69rOoJ00Vyq\nBAAA5m43BKQlbxkTAADAihb9HCQAAIBVE5AAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAAhiPnXQAA+ziu\nuvq8i9hie6oL5l0EAKxEQALYIS644IKq545p0T2p+t15FwEAywlIADvEFVdc0aMe9ahud7vb\nzbuULfXsZz+7c8455xrzrgMAViIgAewg1772tbvZzW427zK21HHHHTfvEgBgvwzSAAAAMAhI\nAAAAg4AEAAAw7MZzkA5rGkb32Oqb1YXzLQcAANgpdssRpGtVT67eXX29+lr1hXH/q9XbqydW\nJ8yrQAAAYP52wxGku1evqo5vOlr0waZwdHF1TFN4Or26U/X46r5NQQoAANhlFj0gXa3686Yr\ntj+8ekN12Qrtjq0eXD2z+svq29P1DgAAdp1F72J37+rq1Y9Vr23lcFR1UfXi6mHVdasf3pbq\nAACAHWXRA9INqkurd66y/ZnVFdVNtqwiAABgx1r0gPTV6qjqpFW2v3bTZ/LVLasIAADYsRY9\nIL113D6rOvogbY+rnlPtqf52K4sCAAB2pkUfpOHc6n9Uj6l+oHpddU7TKHaXNI1id3J1WnW/\n6j9Vz6g+NI9iAQCA+Vr0gFT12KahvZ9Y/dwB2n24ekL1J9tRFAAAsPPshoC0p/qj6tnVd1an\nNp2TdGzT6HWfq86uPrCJr3lM9ROt/vO98Sa+NgAAsE67ISAt2dMUhM5e9vjhTSPXbaZrVj9b\nHbHK9lfZ5NcHAADWYdED0g3GdFZTQFpyVPVL1aOqG1YXV//UdP7R/9mE1/1Mdfs1tL/jqBEA\nAJijRR/F7lHV25q6vM16ZfXUpvD0keorTYM4/E316O0sEAAA2DkWPSCt5B7VjzQFpxtUN6uu\nVd2h+mT1B9WJc6sOAACYm90YkO7e1N3uYdVnZx7/p+pnmq6HdPc51AUAAMzZbgxIJ1SfbjpP\naLm3NYWnG25nQQAAwM6wGwPSJ6qr7WfeMdVh1de2rRoAAGDH2I0B6ZXVlau7rjDvp8btZl4T\nCQAAOEQs+jDfS77WNFLdBWO6qGlI76WhuA+vnlk9tvpg9dY51AgAAMzZogek91Yvb+pStzRd\nr+l9X3mm3RVNQ4J/trp/m3/hWAAA4BCw6AHptWNayfL3fv/q7U0XjQUAAHahRQ9IB3LZsr/f\nMpcqAACAHWM3DtIAAACwIgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYDhy3gXMwWHVcdWx1TerC+dbDgAAsFPsliNI16qeXL27+nr1teoL\n4/5Xq7dXT6xOmFeBAADA/O2GI0h3r15VHd90tOiDTeHo4uqYpvB0enWn6vHVfZuCFAAAsMss\nekC6WvXn1QXVw6s3VJet0O7Y6sHVM6u/rL49Xe8AAGDXWfQudveurl79WPXaVg5HVRdVL64e\nVl23+uFtqQ4AANhRFj0g3aC6tHrnKtufWV1R3WTLKgIAAHasRQ9IX62Oqk5aZftrN30mX92y\nigAAgB1r0QPSW8fts6qjD9L2uOo51Z7qb7eyKAAAYGda9EEazq3+R/WY6geq11XnNI1id0nT\nKHYnV6dV96v+U/WM6kPzKBYAAJivRQ9IVY9tGtr7idXPHaDdh6snVH+yHUUBAAA7z24ISHuq\nP6qeXX1ndWrTOUnHNo1e97nq7OoDm/iaRzSNoHfMKtt/+ya+9q538cUX1zTE+/UkoYAAACAA\nSURBVIPnXMpWu+W8CwAAWDS7ISAt2dMUhM5eYd4tqu+p/nGTXuv61XNbfUBaWg+HbdLr72of\n/OAHO/zww0857rjjXjHvWrbSJZdc0qWXXjrvMgAAFspuCkgH8gvVravbbtLzfaJpRLzVumN1\nVlOIY4P27NnTjW9845773OfOu5Qt9YpXvKLnPe958y4DAGChLHpAOm1MB3Pj6sTq4ePv948J\nAADYRRY9ID2g+s01tH/xuH1yAhIAAOw6ix6Q3l9d3NR17Y+rv99Pu/9SndI0il1t7oANAADA\nIWLRA9JfVLeqnlc9ruk6R79QfXFZu/tUV6/+alurAwAAdpTD513ANvhgdefqZ5qC0L9Vj5hn\nQQAAwM60GwJSTV3snt90DaS/r/60elNTtzoAAIBq9wSkJedVD6p+tCks/WtTlzvXHwIAAHZd\nQFrymqaA9KLq99PlDgAAaPcGpKqvNo1e973V26tz51sOAAAwb4s+it1qvKO667yLAAAA5m83\nH0ECAADYh4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwrCUgPbL641U8\n36eqe6+7IgAAgDlZS0C6UXWHg7S5cnVS9e3rrggAAGBOjlxFm3eO2+tVV5/5e7nDqlOqY6rz\nN14aAADA9lpNQHpDdXp10+pK1a0P0Par1Yurl268NAAAgO21moD0lHF7RvWjHTggAQAAHLJW\nE5CWPK96xVYVAgAAMG9rCUifHdO1qtOq45vOO1rJuWMCAAA4ZKwlIFX9TvX4Dj763ZObuuQB\nAAAcMtYSkG5XPbE6u3pd9aXqiv203d9IdwAAADvWWgPSp5tGtLt4a8oBAACYn7VcKPbY6pyE\nIwAAYEGtJSC9p7p5+x+YAQAA4JC2loD0d00h6XerY7akGgAAgDlayzlI3199onp09fDqfdUX\n99P2L8YEAABwyFhLQLpL0xDfVVet7nGAth9JQAIAAA4xawlIz67+d3X5Ktp+dX3lAAAAzM9a\nAtKXxgQAALCQ1hKQbjCmgzmi+kz10XVVBAAAMCdrCUiPqn5zlW2fXJ2x5moAAADmaC0B6R+q\np+9n3jWr21WnVE+r3rLBugAAALbdWgLSmWM6kJ+vHlg9a90VAQAAzMlaLhS7Gn/YdDTpbpv8\nvAAAAFtuswNS1Ser07bgeQEAALbUZgekq1XfVX1lk58XAABgy63lHKR7jmklh1UnVj9UXaN6\n+wbrAgAA2HZrCUh3aBqE4UC+Wv1Cdc66KwIAAJiTtQSk51V/vZ95e6qvVx+rLt1oUQAAAPOw\nloD02TEBAAAspLUEpCXXqh7edGHYk8Zj51VnVS+pLtic0gAAALbXWgPSvauXVcevMO8h1a9X\nP1L90wbrAgAA2HZrGeb7qk1HiC6sHlvdsjp5TLeqHl8dUb2qOnZzywQAANh6azmCdI+m6xzd\ntnrPsnn/Ub2/+ofq3dXdq9duRoEAAADbZS1HkG7UdK7R8nA06/9Wn6puvpGiAAAA5mEtAeny\n6sqrfM4r1lcOAADA/KwlIJ3TdB7SAw7Q5h7V9XKhWAAA4BC0lnOQ3lx9tGmghudVZzZdF+mw\n6jrVD1WPrj5U/e3mlgkAALD11hKQLq3uV/1V9fNjWu7fqh8dbQEAAA4pa70O0rnVLap7VXes\nrl3taRq84W3V/6ku28wCAQAAtstaAtJhTWHo0uo1Y1pydFMwMjgDAABwyFrtIA23a7q+0TX3\nM/9x1d9XN96MogAAAOZhNQHpVk0DMtym+t79tLladafR7qTNKQ0AAGB7rSYg/a/qStVDqr/c\nT5tfrR5RXb96zuaUBgAAsL0OFpBu2XTk6DnVyw/S9s+qF1X3bwpKAAAAh5SDBaTvGrcvWeXz\nvbA6ommEOwAAgEPKwQLStcftx1b5fB8dtzdYXzkAAADzc7CAtHTB12NW+XzHjdtvrK8cAACA\n+TnYdZA+Pm7vUL16Fc9353H7yfUWBMBi+8xnPlP1s9WD51zKdnhZ9evzLgKA1TtYQPq76uLq\nl6rXtveI0kquWv1K9ZXqLZtRHACL58ILL+z000+/2vd93/ddbd61bKW3v/3tvetd77rNvOsA\nYG0OFpC+XD23+m/VK6v/XH1phXY3qV5a3ah6evXNTawRgAVzk5vcpPvc5z7zLmNLnXfeeb3r\nXe+adxkArNHBAlLVL1e3rX6k+qHqr6v3VV+vTqxuX92jafS6N1dnbEWhAAAAW201Aemb1V2r\np1SPqX58TLO+UD2r+p3q8s0sEAAAYLusJiDV3vOQnlLdqbpp04h1X2gaAvztCUYAAMAhbrUB\nacmF1ZvGBAAAsFDWGpAOZXep7lXdojqpOrap++B51fubRulzNi0AAOxiuyEgfVvTCHynzzx2\nSVO3wWOaBqC4b/Vr1Rurh7fySH0AAMCCO3zeBWyxo6o3VLduGkTijk3XazqmOmHcntg0CMUL\nm0bje12L/7kAAAArWPQjSHevTq0eWb14P22+XL11TO+r/qi6c3XmNtQHAADsIIt+pOTUptH1\nXrbK9s+v9lTftWUVAQAAO9aiB6TLm97jUatsf1R1WFNIAgAAdplFD0jvaQo8j1ll+yeMW6PZ\nAQDALrTo5yC9rTqr+r3q9tWrq3OaLnB7SdMgDSdXp1UPq+7ZdI2ns+ZRLAAAMF+LHpCuqO5X\nvaB68JgO1PZF1WPTxQ4AAHalRQ9IVedXD6hu2nSE6NT2Xij2oupz1dnV66tPb9JrHlZ9T3Xl\nVba/xSa9LgAAsAG7ISAt+fCYtsMp1d+3uz5fAAA45C36IA1Lrlbdp/rhcX/JydXvV3/T1L3u\nhzbp9T7W3hHxVjPdaZNeFwAA2IDdcITjHtUrqhPG319qOi/p3KZR7q470/Ynq59vulgsAACw\nyyz6EaRjqv/VdL7R/6ye3BSQ/qT6L9Xx1UObusTdv/r36neqa86jWAAAYL4W/QjS3ZuOEP1E\n9dLx2B9UH226NtIZ1Z+Pxz9RXVr9dXW3mfYAAMAusehHkG48bv9q5rELqtdW16n+z7L2fzdu\nb7C1ZQEAADvRogekPTPTrM+M288te3zpiNqFW1kUAACwMy16F7sPNY0Sd+/qVTOPv77pXKTl\nQeie4/ZjW18aAACw0yx6QHpzU9h5YdNADP+9+mb1zjEtOaF6YPXMpoEa/nZ7ywQAAHaCRe9i\nd1n1/4zb36mO20+7+zWFqKOqn64u3o7iAACAnWXRjyBVva26afWA6vz9tDm3elr1kuqD21QX\nAACww+yGgFTT+UbPP8D8944JAADYxRa9ix0AAMCqCUgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwHDnvArbRXap7VbeoTqqOrb5Z\nnVe9v3pt9a65VQcAAMzdbghI31a9sjp95rFLqourY6rbVvetfq16Y/Xw6kvbXCMAALADLHoX\nu6OqN1S3rp5V3bG6alMwOmHcnljdtXphdY/qdS3+5wIAAKxg0Y8g3b06tXpk9eL9tPly9dYx\nva/6o+rO1ZnbUB8AALCDLPqRklOry6uXrbL986s91XdtWUUAAMCOtegB6fKm93jUKtsfVR3W\nFJIAAIBdZtED0nuaAs9jVtn+CePWaHYAALALLfo5SG+rzqp+r7p99erqnOoLTSPZHVOdXJ1W\nPay6Z/WmsQwAALDLLHpAuqK6X/WC6sFjOlDbF1WPTRc7AADYlRY9IFWdXz2gumnTEaJT23uh\n2Iuqz1VnV6+vPr2Jr3v9Vn/u03U28XUBAIB12g0BacmHx7Qdblx9ZB3LHbbZhQAAAKu3WwLS\nidVdqqtU/1R9YD/tjmoa6vuvxrReH62u23SUajW+u3pluvYBAMBc7YaAdJ+m6yBdZeaxl1U/\nW31tWdsjqp+sPtHGAlLVZ9fQ9lobfC0AAGATLHpAOq7piNBR1XOajuzcoXpodfPqrtUFc6sO\nAADYURY9IN2t6ejMw5qOGi15efWn1WtGm0u2vzQAAGCnWfQLxd6o6bye5d3l/qLpKNL3Vs/b\n7qIAAICdadED0sVNI8MdvcK811VPaDrn6Ne3sygAAGBnWvSA9K/j9tH7mf+spnOUnlo9cVsq\nAgAAdqxFPwfp76t3V79b3bLpSNFnlrX5uXH7O9UPbV9pAADATrPoR5CqHlT9S1NXupWG076i\n+pnqV5uulQQAAOxSuyEgfaq6TfV91YcO0O4Z1XdUv1H93daXBQAA7DSL3sVuyRXV21fR7qPV\n07a4FgAAYIfaDUeQAAAAVkVAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgOHIeRewje5S3au6RXVSdWz1zeq86v3Va6t3za06AABg\n7nZDQPq26pXV6TOPXVJdXB1T3ba6b/Vr1Rurh1df2uYaAQCAHWDRu9gdVb2hunX1rOqO1VWb\ngtEJ4/bE6q7VC6t7VK9r8T8XAABgBYt+BOnu1anVI6sX76fNl6u3jul91R9Vd67O3Ib6AACA\nHWTRj5ScWl1evWyV7Z9f7am+a8sqAgAAdqxFD0iXN73Ho1bZ/qjqsKaQBAAA7DKLHpDe0xR4\nHrPK9k8Yt0azAwCAXWjRz0F6W3VW9XvV7atXV+dUX2gaye6Y6uTqtOph1T2rN41lAACAXWbR\nA9IV1f2qF1QPHtOB2r6oemy62AEAwK606AGp6vzqAdVNm44QndreC8VeVH2uOrt6ffXpTXzd\n46qjV9n2+E18XQAAYJ12Q0Ba8uExbYcbVx9q7ed4HbYFtQAAAKu0mwLSahxV/e/qL8a0Xh9t\nujjtao8gndZ0oVpd+wAAYI4EpH0dUf1E9ZE2FpBq6ra3Wsds8LUAAIBNsOjDfAMAAKzaoh9B\nutmYVmu1F5QFAAAW0KIHpIdVvznvIgAAgEPDogekfxu3f1G9exXtj6yeunXlAAAAO9miB6SX\nVz9WnV49uvryQdofm4AEAAC71m4YpOFnmoLgC+ZdCAAAsLPthoD0peoh1XkdfMCGPdXF1WVb\nXRQAALDzLHoXuyX/MKaDubipmx0AALAL7YYjSAAAAKsiIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMR867AABYRBdccEHVzarfmnMp2+Gc6sXz\nLmKLHVM9sbrKvAvZBhdVz6y+Ou9CYB4EJADYAp/85Cc74YQTbnTTm970l+Zdy1Y6//zz+/jH\nP/7ZFj8g3aR66q1udauOPHKxd5/e+973tmfPnn+ozpx3LTAPi/0NB4A5uvnNb95v/dZiH0B6\ny1ve0tOf/vR5l7EdDuv/b+/Ow+So6zyOv8fcySTcYLgDSrhkWRUUWQT2iSKrggeCru6qqyyP\ngLrA4yNey7AoiO66CIo+LruIKIuuj7cucoq4KKcIyJkEOcTIocDkmGSSzP7x/dbTPZ2eSfdM\n99R05/16nnpqurqm+9tVlUl9+le/XwF9fX1sttlmZdfSVosWLWJoaKin7DqkstgHSZIkSZKS\nAUmSJEmSkgFJkiRJkpIBSZIkSZKSAUmSJEmSkqPYSZKkMRsaGgKYBryk5FLabfeyC5hgewDP\nlF1Emw0BdwNryi5Ek4sBSZIkjdn9998PsA1wa8mlqEXWr18PcGHZdUyQk9h0PqsaZECSJElj\ntm7dOrbccksuvvjisktpq5tuuomzzz677DImzFlnncV+++1Xdhltdcopp7B06dKZZdehyceA\nJEmSxqWnp4e5c+eWXUZbzZo1q+wSJtSsWbO6fp9OmTKl7BI0STlIgyRJkiQlA5IkSZIkJQOS\nJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQl\nA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmSJCUDkiRJkiQlA5IkSZIkJQOSJEmS\nJCUDkiRJkiQlA5IkSZIkJQOSJEmSJKWpZRcgSZIkTbTBwUGAPYBFJZcyEe4Enii7iE5hQJIk\nSdImZ9myZQAn5NTtLgKOL7uITmFAkiRJ0iZnaGiIE088kWOOOabsUtrqM5/5DFdccYXn/E2w\nD5IkSZIkpU0xTfYAc4CZwCpgRbnlSJIkSZosNpUWpOcDZwK3AMuBfuDJ/Pk54BfAh4B5ZRUo\nSZIkqXybQgvSq4FvA3OJ1qL7iXC0GphBhKcDgIOB04DXE0FKkiRJ0iam2wPS5sDlwDPAO4Cf\nAGvrrDcTeAvwOeC7wEK89E6SJEna5HT7JXavBbYAjgV+QP1wBDAAXAr8LbADcOSEVCdJkiRp\nUukBhvLnM4G+8kppi48Qn2t6g+tPAdYAHwM+PY73XQDcROMtdFOJSwCnA4PjeN+NuWjq1Knv\nmTVrVhvfonyrVq1i/fr1zJkzp+xS2mpwcJCBgQHmzp1bdilttX79elasWMHs2bOZMmVK2eW0\nVX9/PzNnzmTatGlll9JWy5cvZ9q0acyYMaPsUtpq5cqV9PT00O1/cwcGBli7di29vb1ll9JW\nxd/c3t5eenp6yi6nrfr7+zeZv7kzZsxg+vRGTxM706pVq1i7du1/Au8tu5ZJrg84A7r/Ervn\ngGnAtjR29+D5RKvac+N834eJVqtGt28PUWM7wxHAJ9auXXt5f39/m9+mdLOBLfv7+x8ru5A2\nex6woL+/f0nZhUyAF6xcuXIJlS90utUuAwMDfxgYGFhTdiFttt2aNWtWrVmzZrx/aye7ecCs\n/v7+P5ZdSJtNB+b39/c/XHYhbdYD7L58+fLFZRcyAXZfuXLlQ8D6sgtpsx1Xr179p9WrV68s\nu5AJ8NuyC+g0Qzn1lVxHO+xNfLZvsPFWpDnA94k/Bnu0uS5JkiRJk0cfmYu6vQXpHuBC4ETg\nUOCHRIJ+kriUbgawHbAfcBSwNXAO8EAZxUqSJEkqXze3IEE0iX8AeJTKZ603PQC8s6QaJUmS\nJJWnj02kBQnig54PXADsS1x2ty0xtPcAsAy4C7ivrAIlSZIkTQ6bQkAqDBFB6K6yC5EkSZI0\nOXX7fZAkSZIkqWEGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoG\nJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJSgYkSZIkSUoGJEmSJElKBiRJkiRJ\nSgYkSZIkSUpTyy5AaoMLgJPLLkKSJGmS+BVwUNlFdAoDkrrRI8D9wNvLLkQtsTlwNXAcsKTk\nWtQa5wMPEl9mqPO9BvggcGTZhahlbia+aLy57ELUEmcA/WUX0UkMSOpGa4GVwG1lF6KW2Drn\n9wB3l1mIWuZZYBn+G+0WC4FB3J/dZAh4APdpt3i67AI6jX2QJEmSJCkZkCRJkiQpGZAkSZIk\nKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKU0tuwCpDdbkpO4w\nSNzV3X3aPfw32l3cn93Hfdpd3JdjMJRTX8l1SK0yE9i+7CLUUruVXYBaalugt+wi1DJTgZ3L\nLkIttQDoKbsItcwWOWl0fWQusgVJ3WgAeLzsItRSS8suQC31RNkFqKXWAo+UXYRa6qGyC1BL\n/bnsAjqNfZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIk\nKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJClNLbsA\naQLsD2wO3ACsK7kWNW9XYD7wNPBAuaWoRXbN6S5iv6pzTQF2BrYBHgGWlVuOWmArYAHQD/wO\nWF1qNWqllwK9wC9xv27UUE59Jdchtdoc4CtUjvHecstRk/YHbqey/4aAxcDhZRalcekB3g+s\nIvbn68otR+P0HuBxhv8b/Q1wWIk1aexeDFzH8P25EvgsMLPEutQaLye+JB4Cdiy5lsmqj8qx\nb0BSVzqQaG14kvgGzIDUWeYT++7PwMnAwcDfA48S/2HvU15pGqP5wBXAIHAHBqROdzyxD+8C\n/g74a+CjwHJgANirvNI0Bi8gWoyeBT5C7M9jgOuJ/XxxeaWpBaYR/1aLc34DUn19GJDU5e4C\nrgG2J07KDEid5d+Iffb6muX75/JvTnhFGq8LgIeIbzFPx4DUyXqIlqOnicuxqn2A2LfnTHRR\nGpcLiP12TM3yWcS+Xg3MmOii1DKfIL6c+gkGpNH0kbnIQRrUrT4FvIr4w67O80bgD8CPapbf\nAdxCnFhPn+iiNC5XEAH3V2UXonGbDZxLhKHaPmS/yPn2E1qRxusS4O3AD2uWrwLuIf7ezpro\notQSC4GPAedhP96GGZDUrS4H1pddhMZkHtFBuOh/VOtW4gRtj4ksSuP2Y+LyHXW+FcDngW/U\neW7XnD84YdWoFW4FLmPDjvtbEV9sLAaemeiiNG49RF/sx4EzSq6loziKnaTJpmj6H6n1r1i+\nE3B3+8uR1KDZxEnYCuyz0sn2BXYAXkj0Ae0hBuRQ5zkeeCVwBNF/Vw0yIEmabGbnfGCE51fl\nfM4E1CKpMTOJFqUXEZdq/b7ccjQOnwSOzp9vJQbIubm8cjRG84lLYS8Friy5lo7jJXbqVD8F\n7quZppRakVplbc5H+gKnWL5mAmqRtHHbEsNDvw74B+C/yy1H43QOcBzwIeL/1RuJPizqLBcQ\n/5+eWnYhncgWJHWqp3BEnW5VdPreYoTnt8z5nyagFkmj24/o2D8P+BvgqnLLUQvclBPAvxMD\nrJxFtELcUlZRasrRwJuJIfifKrmWjmRAUqd6e9kFqG0eI/owLBzh+eL+KvdOTDmSRvAi4GdE\n5/2DiJZ8dabZwOZs2PdzHTHo0SLgEAxInWAq8EXiHpAA76h6bs+cv5G4z+BlOKBVXQYkSZPN\nEHAt8W30jkRgKswFDgNuY8PhhSVNnJ2I1qKngEOJYfnVuW4DdgO2Jm4YW227nHtZc2eYSQyy\nAdH/qJ7zc/5tRu7vu0mzD5KkyegLxLXvFxJ/7MnHnydC0udLqktSuAjYjLiZs+Go832LuNfR\nlxk+AM5+wClES9JPS6hLzVtO/D9Zb7ow11mYjw1HoxjKqa/kOqRW2Ye4GWUxPUMc4zdXLTuq\ntOrUqM8R++0JogP4Y/n4q8Sws+os11P59/cIsS/vq1rWV1platb+xP57luF/a6un75ZWncZi\nGtEiOERcevVL4C4iGK0HTiuvNLXQecQ+3nFjK26i+shc5CV26kZDDP9W5I4666yboFo0dqcS\nnYLfSgxXeh3wHTzx6lSrqdz4d2lO1QYnthyN0/Ubeb72hqOa3AaBVxMjER4J7EIMhHMlMXz7\n7eWVphZaTPzb9d9nA2xBkiRJkrQp6yNzkX2QJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZ\nkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIk\nKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJ\nkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkSZIkKRmQ\nJEmSJCkZkCRJkiQpGZAkSZIkKRmQJEmSJCkZkCRJkiQpGZAkqTmHAVvlz3sCQ8BFpVUz3Hjq\nmWyfpVHtqvvj+bqvafHr1tqZ4ceUJKlkBiRJas51wEvKLkJd41g8piRpUjEgSVLz+ssuQF1j\nec49piRpkphadgGS1IEaOZmdB+wBTAEeAp4YZd0tgBfm6y4B1oyw3tbATsSlX0uB5xqsd7xe\nBswCbgXWAwcSn+lhYDawFzAALAZWj/Aao22PXYAFwO0M/0ybAX8JPAXcXfN6+wNzgSdHqXsO\ncQne1DrvWa0nP8Nc4EHgT6O8Jvma84AHgGeAbYG9s8anmqyh0YC0XdY4kruApzfyGoVpxKV9\n2xCfdSmwdoR1Gz02N3a8z2b4cbNnvv8NNes1us8kqa2GcuoruQ5J6gRDzqA2kAAACXRJREFU\nwK75c73+L73AJcAglb+vQ8C1Vb9XmAN8jTg5LdZ7Anh3zXo7A1cT4aRYb32+z2ZV67WjD9I/\n5vKvEkFiQT4+GziJOHFelcueBt5Q8/uNbI9jclnt5z4+lz9Qp94/ADePUPdM4ItEWKt+z6vZ\ncB/sA9xbtc4gcB7wCTbsg/SimnVX5Xrvy8evHUMNb2D4MTWSd9S8Tu30uo38fuEkYFnN7z7O\nhtu+0WOz0eO92E9nAf+RP1eH3mb2mSS1Qx+Vvz0GJElqwr5UWt/rnZz/by77NPGN+kLgQ8SJ\n5mKiJabw/Vz3X4GDgEXAL4nwUx007iS+uX8/cUL/F8C5+btfr1qv1QHpSOLE98dUPnPRgvVb\n4BoiMEG0oPyRCEy9Va/RyPbYAlgHXFxT02XAI/n786uW75XLPjlC3d/Kuj+e6+4OnEC0Ti0m\nWjMgWlIezPc+Ldc7mOgTtIThAWk60aKxDjg933cRcA9wS826zdTQy/BjaiS9wAtqpsOIkPZU\nzfYZyaFZ55XAK4DdgFfm46H87IVGj81Gj/ciWF8D/Bo4Cnh51es0ur0kqV36MCBJ0rjVnpy/\nIh9/u866n8rn3pWPD8jHtaHg+cTJ5VX5uBf4GHBinde8F1hJpT9pKwPS/kTYuZHhJ6c75nrL\niUukqp2Xz70yHzezPW4mQkm1x4EziBPn46qWFy02h9Sp+yVUTuxrvZ/hLVWvzcdfrllvFpVW\nliL0HJWPv1Cz7gIivFav20wNY/U8IsgNAUc3+DvFyHyH1SzfnAibL8vHjR6bzezf4rhZR1xS\nWW0itpckbUwfmYscpEGSWmdRzr9T57kf5PzQnB+R8x/VrLeMuLzpVfl4OXGy+SWiL8gr830W\nASuIk/leWmvHrOtR4tKtlXXWuZUN+/88lvNiyOpmtsdVRIvG9vl4T6JV5GrgDiqhC+IEv59o\n0ah1ZM7XAm+tmabnc4fk/KCcX1nzGquAn9YsK8LDFTXLH8oax1rDWJ1ObIcvEa09jXg05ycR\nrXaFZ4jwdFM+bvTYbGb/Fm4n+iBVm4jtJUkNc5AGSWqdXXO+tM5zxUnhTjnfLeeP1Vm3dqCD\ntwCfo/ItfNHnZ2Y+38ovu+YRl9TtALyZkQcseLzOsqKj/5Sc75rzRrbHVcBHiSB0OXA4MfDD\nLcAvqJyUk+tcS/2BBYrt+uER6oZoCYH4jAC/r7POIzWPi+D2aO2KwG+onOQ3W8NYHACcSVze\nd1rNc2cRx0u1dxNh8jLgTUSfr6OJQHQV8F1ikIdCo8fmrjlvZP8W6r1mu7eXJDXFFiRJap1p\nOa830tdgzmfUrDvS6GGFA4jAMEiEhunEt/i9bNhy0QpvIS6BKgZiGOn/ifUNvFYz2+NGokWs\naCk4nDiBX0OMdLY3MYrfXsTJcm2rT+17HkG0rtWbjq5Zd5ANrat5XLRk1Fu3toWtmRqa1UsE\nnXXA24iwXO05oqWneiq2/2C+7+HEJYk7EEHrTuB7VPoLNXpsNrN/CytGeZ12bC9JapotSJLU\nOkVry1Z1ntsy5083sG61txEh5TTgZzXPbd1kfY14CHg1cDLwQaLD/bljfK1mtsca4OdE61AP\nlcvHIFqQeojwVLQk1F4CVyiG2d6aaIEaTTG09mZ1nqvdtsVw3HPrrFvbutFMDc36AjFAwweJ\nYFPrszmN5mdUjqWFVFqdTif6fDV6bDazf0fTzu0lSU2zBUmSWue2nB9Y57kDcv7rnN+e85fX\nWfcrVAYDKPqK1F7GtIC4R1CrXUuMGvZh4rKrs6jU3qxmtgfE5V77AH9FDADx81z+BDHU9yFE\nn5YlbDigQ+HWnB9Z57nnE/1mii8HH8z5vnXWPajmcbH9965Z3sPwy/+araEZxwHvBH4CnD+G\n359HhKtq9xNDiK+lMopdo8dms/t3JO3aXpI0Zo5iJ0ljUzuC2jziW/XHGT7sci/RT2UNMXwx\nRKvFn4mhsatH9Xozw0dWK+7Hc0LVOlsQl53dnc8VQ223epjvfYhLuB6kMhBE0Q/q62zon/K5\nY/JxM9sDIqgMEZd7rWH46HkXEf2RHgYuHKXuXmLwiAGGB7tpxGhrQ1RO6Ivhwu9leCvIsVTu\n61M7Mt3NxCWOhdOIy8aq122mhkbtQgymsIy4Me1YXEO01iyoWf7SrOlr+bjRY7OZ/TvacdOO\n7SVJzerDYb4ladzqhYqjiI7sTxMnnF8lTiDXE8NTV3sjcRK5nLifzI35evdTaTnanuhXshr4\nBnApcVL6z8Cpuf6NRMtCO24Ue3IuvyQfNxOQoLntATFgwjrg/2qWv4vKTUur+6PUq/sIol/Q\nADEAwdeB31G5UWm1r+TyPxKjwd1AhIjP5vLqVo3/yWVL87NcT4TH4p5U1fdBaqaGRlyav3tn\nvlbt9KYGXuNA4Fki9F5JHE9XEfvnCeJyu0IjxyY0vn9HO26g9dtLkprVR+aiKVSC0fVseH27\nJGlks4EXEyOE3ZjL7iduetlDjPLVS1wq9j42HDb5Pir3kNmG+Bb9v4D3Uukf05+vN53oVL8C\n+BciENxJ9ImZQ3xjv7hOPeP5LBAtJvOJloA7iZaFA4kBFG6oeY0dge2IUfCKUcya2R7k53ke\n8E2ixajwTNb3O+AcKqOp1at7CXGCvZoImLPztU6lEvQKRa0zc/oN8B5iu+9EXM5WjFz3PSJI\n9OZr3gAcT1zqeDhx36CHxlBDI4oWrFVEy03tdC8xHPpofk8M8PBc/s6WRDD8GjHSXfXIhI0c\nm9D4/p3ByMcNtH57SVKzDqPqPnG2IEmS1JhpdZZdQvw/urDOc5KkztCHN4qVJKlh84j+P7cx\nvG/UnsQIcEuIgSQkSR3OUWEkqTsdyvC+IqPpJzrwa2TPEYNDnEkEoRuIywEPz+dPIDv2SpI6\nmwFJkrrTucToZI24j/pDXWu4fyGC0bHAzkQguoDoD7a4xLokSS1kQJKk7lTvHjYav+tykiR1\nKfsgSZIkSVIyIEmSJElSMiBJkiRJUjIgSZIkSVIyIEmSJElSMiBJkiRJUjIgSZIkSVIyIEmS\nJElSMiBJkiRJUjIgSZIkSVIyIEmSJElSMiBJkiRJUjIgSZIkSVIyIEmSJElSMiBJkiRJUjIg\nSZIkSVIyIEmSJElSMiBJkiRJUjIgSZIkSVIyIEmSJElSMiBJkiRJUjIgSZIkSVIyIEmSJElS\nmlr188HAh8sqRJIkSZJKcnDxQw8wVGIhkiRJkjRpeImdJEmSJKX/ByqS8vuEUq2QAAAAAElF\nTkSuQmCC",
"text/plain": [
"Plot with title “'local_knowledge' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZxld13n/1eTzkYSlghJAAETEBkYI7IIAiOISEAEBXFh0wczODKMjvhj\nGUX9GRQGx3UWmZ+DyKAggqLIoiIIbsHRQZABQYgGkCgJBFnS2TpL9++P861H3y6qu6u6q+re\nvvV8Ph7nUbfu+d57Pnfrvu863/M5u6r9AQAA0M3mXQAAAMCi2D1z+Z3VRfMqBAAAYE4eXD1o\n5Zf9Y7lwXtUAAADM0YWNXGSKHQAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMCwe94FAHBc\nuG91+rj80eof5ljLVrhfddq4/JHq4wu+zXnUC7Bj7B/LhXOuA2DFGdVDx/Kv5lrJ8Wernrv3\nduD/ix/ZxPtdFH/Tgcf3g8fBNudRL8Ayu7Dx76o9SMAiOq/6o3H5M9UXrVr/xdVdq09VH9zG\nuo4HR3ru4FB8rgAyxQ5YTHsOcXnFz1dPqF5bfce2VHT8ONJzx9q+pTp1XP7EPAtZp62o1+cK\nIAEJWEyH+5J/evXobazleCMgHZ0Pz7uADdrsen2uAAYBCVhEV81cvnL8PKO6T/WgDvzl/Kym\nY22qLqpuXHU/J1d3G7f9VPX3h9jeA6uTxuX3zGzzjk3Tjj5VXbLG7XZVD5n5/X1N09pmHa65\nwVrbvV3TNKeP94WNENbzeNZ67jZi19jGrUcNR7N34tzq7OqG6tKmWg9lrefghOrLmh7v33Xw\nY6q6fXWn6vLqY0eo5bbVl1QnjvEfOcS4wzU9ONr3x9Faz/2ut0nDOU3P1a7qn6rLqptm1h/N\n56o29hqvmH1vXTrqqfrS6g7j8qUd/Jg3+hlZ7+u91e874DinSQOwiG5o+rfpLeP3+3bg36u1\nllvN3Pb21a9U16wa84/Vd6+xrY/PjLmgukv1zlW3fU/1L1bdbveqMY9c474P19zg0lXbfUbT\nl9HVYzf6eFY/d+v16KYQN7uNtzd9YX/PYR5H1SnV/9sUqFa/Nn9Tfdchtrn6ub9f05fTlev2\nVN83xt6iesOq+35rB7/2Kx5T/fUatXzsELUcrunB0b4/jmR2m8/e4P0eqUnD05r2Mq1+/JdX\nL+xAuNrI5+poX+OaXo+PrbrNHzcFjl+bue7Fq2633s/IRl/vrXrfAcevCzvwGReQgIX0lqa/\nXr9w/H6fpi9G+zrw79a+cd2N1S3HuDs3/WV6Zcx1TX9lnr3dhau29aGZdU/v4C9lq79s3Xzm\ndscakGa3+x+qa9cYezSPZ/Vztx4P60CwWr188AiP4/TqLw9x29nlF9fY7uxz8Mzqn9e43b6m\nPRxvPMT9vnbVfX7nqvVXN+0NmL3ue1bd5nCB42jfH0eyepsbud/D1fsjfeHzd/2q6/686f27\n3s/VsbzGX9+BULN6+dvqbTO//9iq267nM3I0r/dWvO+A49uFCUjAceoXO/Dv1mvWWP+HM+t/\nv2kKUdU9OvCX7xurL5+5zeyXzUuri6snVo+r/qyDvxQ9deZ2xxqQZrf7d01f/l5d/dex7aN9\nPEfj/TPbuaz6mqapRl/VNJVv9nGufhz/a2bdnuopTX91v2v1C6tu++2rbjv7HPxT016Fb6h+\nfNXt3t8UDp/V1KBg9q/9NzZNrappatWnZta9tOl12lX9l5nrP93B08wPFziO9v1xJKsf++Hu\n9zsPc9vZek9pCgj7m6bSfePM47x70zTQlds9ZeZ2R/pcbdZr/OmmPTanNbWhXx0KN/oZ2YzX\nezPed8Dx78IEJOA4dbgvcvfo4C83d1u1/ntn1v23metnvyxd33R8xYpbNH0hXFn/CzPrNjMg\n7a++dpMez0Z9+artrP6S/w2r1s8+jjt28N6BZ65x/783s/7/rFo3+xzs6cAei/rCv9z/PzPr\nHrZq3SPG9WdWz5lZ7jxzm7usus09D1HH4QLSRt4fR3Is93uoes+duf7zTYFp1r2appx9fdPU\nzRWH+1wdy2t8fgc/509fdbvHr1q/0c/IZrzem/G+A45/FzY+25o0AMvka2Yu39B0TqDzZq47\n8RBjZ72p6TicFVc2HRdywfj9NsdY46H8aQfOX7RiMx7Petx31e+/t+r3tzR92b5lX+jrmg5u\nX7HW3offqh41Lt+n6cv/Wg0k3ji2s+JPmo4tWfGqmct/2vQf2a7x+5nj52eqnxmXv6jp+fqS\nMe70DnY0x5Bs1ftjs+73sqZj1W7e9Dz/n+rXx329qymwv3eDtR3La3yfVePesOr3NzYFlDM6\nsrU+I5vxem/G+w5YIgISsEy+eObyiU1T0g7lroe4/kNrXHf5zOWt+nfzr9e4bjMez3rcbuby\n1U3HY8za1zQNaa2ANBvYPtMXdvGrgzuJ3azpca11ItLVHds+PXN5Twd3Srux6Uvtypfe2dfl\nfk3Tqx64xjZm7TrC+rVs1ftjs+73uupFY6lp7+DK9Mvrm449ek31imrvOu/zWF7j1e+tK1bd\n7samZiPraXCx1mekjv313qz3HbAkfLCBZXLSzOXrq/99mLH7m77I7Vt1/VrnDlqrzfF6rfdL\n+Fptkjfj8azH6u2s5bpDXD87hetQt71h1e8nH2LcNat+v+kw61avX3H3pr0MK13aLq3e0XTQ\n/kmt3fVvIzb7/bEV9/ufmhp5/GD1L2euP6mpffdDm6bJPawvDMNrOZbXeD3vrbVe27Ws9RnZ\njNd7M953wBIRkIBl8tmZy/s6cC6XrbJ/1e9rdTA7e533tVaw2a7HMzvd7Yym6VSrvwSec4jb\nzv61/datHdJWH8i+ei/CZnpWB74s/2P1lR0IAWd37AHpePFrY7lT9eCmvSxf34HjcM6vfqK1\njyda7Vhe49ngt9H31mprfUa83sCmu9m8CwA4Bqv3zrx/5vIpHTw1aCvc1MF/Ob/TqvV3bjrp\n5tHarscze8LZ3U1fnmfdtYOnSs2aPSD/5L7wmJOaWiWvuKzpi+xWmd1j8r87eA/JvbZwu4vo\nZk3n+3l19QNNz81zZtYfakra6s/VsbzGq99bX7Hqdnft4GYRG+X1BjadgAQcb2anHd1l1bp3\nVJ+b+f2HVq3/8eqTTa2O1zrZ6dGYPfbiqR3cOOHHOrrjXFZs1+P5sw4Oes9btf75Hfpx/FkH\nNxf4iQ4+oP9LO7hz2SuOrsR1m53GdYeZyydVP7pq7FrHVB3vnlT9VdNewRessX42dF87c/lw\nn6tjeY1Xv7d+qIPfS4d7b63HTn+9gS1gih1wvPmHmcv3qd7c9Nfqn2n6a/VPVD871j+9aa/L\nO5taZH9b05exWzd1rtoMv1P9x3H53mNbf9jUGe7+1XvG9bXxP0pd0/Y8ns82dep62vj9O5r+\nqv+XTVOzvrrpnEsrf+mffRw3NU3T+t1x/QVNB9O/tanD1xM60KHs4uonj6HO9XhnB1pBP7D6\n703nrnlKUyOAtzVNNaspCN6xtU9uerx6d9OekxOqH256zO9tashwp6bzLK2Y7UZ3pM/V0b7G\nn2nag/Vd4/cnVH/R9N66d9N5ti7r0Hsoj2Snv97AFnEeJOB4cscOnAhzdllpVb2renHTF/fV\nY1bODXPBwXd52HPgVL1sZv3rVq27ZVO3rtXbua7pxJKvnrnuhRvc7tE+nqNx6w4+WezKclP1\njA4+Ye2L1rj9E5r2dq1V4/6m7mlfvMbtDvccPGVm3eV9oU/PrF856emZHXwyz5Xl6uqx1aPX\nWHekOo7l/XE4x3K/h7vttzTtHTrUa7Gv6bxKs0H3SJ+rOvrX+MwO/d763qapces5D9Jaz9FW\nvN5H874Djn8X5jxIwHHq0qa/On9/0zE+e5oCysoUoP1N03h+temv5V/e1DzhE01/XX9lB5/z\npKbzw6wciP7xNbb54aZzo1R9YNW6zzftKXpG08Hwu8f4l4267tSBPS+XbXC7R/t4jsZnm57X\nZ1QPaZoq+Pdju+9uOpZq5f+MT6xx+9c1hagnNh2PclZTSPxI03mV3nqI7R7uOfhkB573tVpL\nv7MD06Y+OTPufk17PL56XPeB6qUdmA759KYvzyeOx3akOo7l/XE4x3K/h7vtbzXtpfm2pqYF\nZzeFoc82BZXf6gvbrB/pc1VH/xp/Ztz39zQ1GjmxqbX2rzZNB/w3M2NXtx4/0nO0Fa/30bzv\ngCVjDxIAMA+7skcGWAwXNv4t0qQBANhK/7Np+t2lfeExaE+ovmhc3tfU1AFgrkyxAwC20jUd\nmP72vKbjlN7b1OL7aTPjXtnBzSIA5sYUOwBgq5xSvb5DN3fYX/12a59oGWC7XJgmDQDANriu\nelzTSWK/vfqS6rbVVdWHqjc0NZUAWAgCEgCwHf7vWAAWmiYNAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAw7J53AcDCu3n1wHkXscCuqP7vvIsAADaHgAQcyRNvdrObvey0\n006bdx0L58Ybb+zaa6/9fHWredcCAGwOAQk4kt13uMMd+pVf+ZV517Fw/uIv/qLnP//5/h0F\ngCXiGCQAAIBBQAIAABgEJAAAgEFAAgAAGHbawcW3qO5enVWdUl1bXVZ9qLpmjnUBAAALYKcE\npEdXz6seVJ2wxvobqrdVL6r+fBvrAgAAFshOCEg/WL242lu9vfpA04kd91YnV+dU96ouqB5Z\nfXf18rlUCgAAzNWyB6RzqxdW76ieWH3qCGN/o3pJ9ftNU+8AAIAdZNmbNDyiaUrd0zp8OKr6\naPXUpmOTHrXFdQEAAAto2QPSmU3HF318neM/XO2rzt6yigAAgIW17AHpsurE6p7rHH/vpufk\nE1tWEQAAsLCWPSD9flMr71dV9zjC2PtXr672VL+7xXUBAAALaNmbNHyyemb1sqbudR/qQBe7\n65u62J1dnV+d19TZ7knVp+dRLAAAMF/LHpCqXlG9r3p2Uyvvb1ljzOVNIeqnq4u3rTIAAGCh\n7ISAVPWe6snj8tnVWU3d6q5rCkdXzKkuAABggeyUgLTiFtWdOxCQrm1q4nB1dc0c6wIAABbA\nTglIj66eVz2o6bxIq91Qva16UfXn21gXAACwQHZCQPrB6sVNDRje3oEmDXubmjScU92r6fik\nR1bfXb18LpUCAABztewB6dzqhdU7qidWnzrC2N+oXtLUHvyyLa8OAABYKMsekB7RNKXuaR0+\nHFV9tHpq9bfVozq2vUi7mqbznbKB8adUbzqGbQIAAMdo2QPSmU3HF318neM/XO1r6nR3LM5t\n2mt14gZvd1JTvQAAwBzcbN4FbLHLmkLKPdc5/t5Nz8knjnG7H2kKO7vWuTxo3G7XMW4XAAA4\nBssekH6/qZX3q6p7HGHs/atXV3uq393iugAAgAW07FPsPlk9s3pZU/e6D3Wgi931TV3szq7O\nr85r6mz3pOrT8ygWAACYr2UPSFWvqN5XPbuplfe3rDHm8qYQ9dPVxdtWGQAAsFB2QkCqek/1\n5HH57Oqspq5x1zWFoyvmVBcAALBAdkpAmvXJsaxlV3WX6jNjAQAAdpBlb9KwUSdXf1f9h3kX\nAgAAbD8BCQAAYBCQAAAAhmU/BunfjmW9nKgVAAB2sGUPSGdX92k659H+OdcCAAAsuGWfYvfL\nTd3ofrmprfeRllvNp0wAAGARLHtA+kT1PdW/qx4351oAAIAFt+wBqep11a807UW645xrAQAA\nFtiyH4O04ulN0+euOsK4G6ofqi7a8ooAAICFs1MC0o3Vp9cx7qbqJ7e4FgAAYEHthCl2AAAA\n6yIgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMCwe94F\nwAK59bwLWFA3n3cBAADbRUCCybOrn5l3EQAAzJeABJNb3f3ud+9Zz3rWvOtYOC9/+cu77LLL\n5l0GAMC2EJBgOO2007rb3e427zIWzhlnnCEgAQA7hiYNAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw7J53AdvotOqh1T2rs6pTqmury6r3\nVX9aXT+v4gAAgPnbCQHppOpF1b+vTj3MuM9VP1n9VLV/G+oCAAAWzE4ISK+pHle9p3pd9YHq\nimpvdXJ1TnWv6juaAtK51TPmUikAADBXyx6Q7t8Ujn6uek6H3jP0+uonqpdW31P9QvU321Eg\nAACwOJa9ScNXN4WiF3TkaXM3Vv9xXH7oFtYEAAAsqGUPSCdXN1VXrXP8Z6t9TQ0dAACAHWbZ\nA9LfNU0jfOQ6xz+u6Tn50JZVBAAALKxlD0hvqf6xelX1zOrsQ4y7Y9P0uv9VXTJuBwAA7DDL\n3qThmuqbqzdULxnLPzd1sbu+aQre2dWtxviLq29q6nAHAADsMMsekKreXd2tenLTVLt7dOBE\nsddVn6j+oHpT9RvVDfMpEwAAmLedEJBq2pP0S2PZDudVH2zaQ7URu7agFgAAYJ12SkCqun3T\nHqPPzFx3StOUunOry5r2In3mC2+6YR+tHlGdtM7x96z+S0duRQ4AAGyhnRCQ7la9pvrK8fuf\nVk9qCiMXNYWjFZ+tHjuuPxb7x3bW65pj3B4AALAJdkJA+vXqK5oCy7XVA5sC00eqW1Q/3NTp\n7h5Nne5+oyk0adQAAAA7zLIHpIdU966eUP3WuO5LqveN67+mqYnDirdWb6++vnrztlUJAAAs\nhGU/D9K/qD7dgXBU9bGmrnWf6OBwVPWO6nPV3bejOAAAYLEse0A6o9qzxvVXV1cd4jbXtP7m\nCgAAwBJZ9oD0seqO1e1mrtvddBzS3TpwgtgVdxhj/2k7igMAABbLsgekP2zaW/TGpuOQHtM0\n3e421V9Xv9rU/rvqS6tfq/aN2wEAADvMsjdp+Gz1vOoXq98c1+2v/nX18aamDP9UXd+BaXX/\nKXuQAABgR1r2gFT10qa9RY9tat39hur9Y93XVc+t7lp9smmP0i/PoUYAAGAB7ISAVPWusaz2\nJ2MBAABY+mOQAAAA1k1AAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYds+7gG12i+ru1VnVKdW11WXVh6pr5lgXAACwAHZKQHp09bzqQdUJa6y/oXpb9aLq\nz7exLgAAYIHshID0g9WLq73V26sPVFeM30+uzqnuVV1QPbL67urlc6kUAACYq2UPSOdWL6ze\nUT2x+tQRxv5G9ZLq95um3gEAADvIsjdpeETTlLqndfhwVPXR6qlNxyY9aovrAgAAFtCyB6Qz\nm44v+vg6x3+42ledvWUVAQAAC2vZA9Jl1YnVPdc5/t5Nz8kntqwiAABgYS17QPr9plber6ru\ncYSx969eXe2pfneL6wIAABbQsjdp+GT1zOplTd3rPtSBLnbXN3WxO7s6vzqvqbPdk6pPz6NY\nAABgvpY9IFW9onpf9eymVt7fssaYy5tC1E9XF29bZQAAwELZCQGp6j3Vk8fls6uzmrrVXdcU\njq7Y5O2d3XQupZPWOf6W4+euTa4DAADYgJ0SkGZ9ciw1BZm7Vnes/rbpeKXNcHX1V01T+Nbj\nDtX9qv2btH0AAOAo7ISAdEr1/Oqi6q3jujtVv9R0nqQVe8d1z+vYg9JV1Y9tYPwDq6cc4zYB\nAIBjtBMC0uurR1bPbQpIp1bvqO7SNPXu3U0h6muq723am/P4uVQKAADM1bIHpAc3haP/XP3s\nuO47msLRD1U/OTP2pKaGDk9smu72rm2rEgAAWAjLfh6k+zQd1/MTHTi+5/ymNt7/edXY65s6\n3dU05Q0AANhhlj0gnVjtawo/K65t6ly3VkOET1Y3NU25AwAAdphlD0h/XZ1QfefMdX/UNMXu\nzDXGf9MY/6GtLw0AAFg0yx6Q/qj68+r/q368qQHD26rfrF5d3XmMu231A9WvVpdUb9n2SgEA\ngLlb9iYN+5r2Cr2m+tGx/FPTFLuvqD7WNP1u5YSuH60e29TyGwAA2GGWPSDV1JDh4dXXVd/a\n1KHuS5qONdo71r+/elPTHqTr5lIlAAAwdzshIK14+1gAAADWtOzHIAEAAKybgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAADDRgLSd1a/uI77+3j16KOuCAAAYE42EpDOqx5whDE3\nr86qvuyoKwIAAJiT3esY8xfj5xdXt575fbVd1bnVydVnjr00AACA7bWegPR71f2qL61Ore51\nmLFXVq+sXn3spQEAAGyv9QSkHx8/L6y+ucMHJAAAgOPWegLSipdWv7FVhQAAAMzbRgLSJ8Zy\nTnV+dUbTcUdr+eBYAAAAjhsbCUhVP1U9uyN3v3tB05Q8AACA48ZGAtJXVc+t3l+9qfrnat8h\nxh6q0x0AAMDC2mhAurSpo93erSkHAABgfjZyothTqg8kHAEAAEtqIwHp3dXdO3RjBgAAgOPa\nRgLSHzeFpJ+uTt6SagAAAOZoI8cgfU31serp1VOq91afPsTY3x4LAADAcWMjAelrm1p8V92y\nuuAwY/8+AQkAADjObCQg/ffqf1U3rWPslUdXDgAAwPxsJCD981gAAACW0kYC0p3GciQnVP9Y\nXXJUFQEAAMzJRgLSv65+bJ1jX1BduOFqAAAA5mgjAelPqxcdYt1tq6+qzq1eWL39GOsCAADY\ndhsJSO8Yy+F8f/Ut1c8fdUUAAABzspETxa7Hf23am/T1m3y/AAAAW26zA1LVP1Tnb8H9AgAA\nbKnNDki3qr6y+vwm3y8AAMCW28gxSI8cy1p2VWdWD6++qLroGOsCAADYdhsJSA9oasJwOFdW\nP1B94KgrAgAAmJONBKSXVm8+xLr91VXVR6objrUoAACAedhIQPrEWAAAAJbSRgLSinOqpzSd\nGPascd1l1TurV1Wf25zSAAAAttdGA9Kjq1+vzlhj3XdUP1J9U/WXx1gXAADAtttIm+9bNu0h\nurr63urLq7PH8hXVs6sTqtdVp2xumQAAAFtvI3uQLmg6z9F9q3evWvep6n3Vn1bvqh5RvXEz\nCgQAANguG9mDdF7TsUarw9Gsv6o+Xt39WIoCAACYh40EpJuqm6/zPvcdXTkAAADzs5GA9IGm\n45Aef5gxF1RfnBPFAgAAx6GNHIP0tuqSpkYNL63e0XRepF3V7auHV0+vLq7+cHPLBAAA2Hob\nCUg3VI+tfqf6/rGs9rfVN4+xAAAAx5WNngfpg9U9q2+oHljdrtrf1Lzhz6o/qG7czAIBAAC2\ny0YC0q6mMHRD9YaxrDipKRhpzgAAABy31tuk4auazm9020Osf1b1J9VdNqMoAACAeVhPQPqK\npoYM96kefIgxt6oeNMadtTmlAQAAbK/1BKRfrk6tvqN6/SHGPL96anXH6iWbUxoAAMD2OlJA\n+vKmPUcvqV57hLG/Vr2ielxTUAIAADiuHCkgfeX4+ap13t/LqxOaOtwBAAAcV3TYmsgAABy6\nSURBVI4UkG43fn5knfd3yfh5p6MrBwAAYH6OFJBWTvh68jrv77Tx85qjKwcAAGB+jhSQPjp+\nPmCd9/fQ8fMfjqoaAACAOTpSQPrjam/1H6sTjzD2ltUPVZ+v3n7MlQEAAGyzIwWkz1b/s7pf\n9ZvVFx1i3F2rt1XnVb9QXbtZBQIAAGyX3esY84PVfatvqh5evbl6b3VVdWZ1/+qCpu51b6su\n3IpCAQAAttp6AtK11cOqH6+eWX37WGZdUf189VPVTZtZIAAAwHZZT0CqA8ch/Xj1oOpLmzrW\nXdHUAvyiBCMAAOA4t96AtOLq6q1jAQAAWCpHatIAAACwYwhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAADD7nkXMAe7qtOqU6prq6vnWw4AALAodsoepHOqF1Tvqq6q\n9lRXjMtXVhdVz61uMa8CAQCA+dsJe5AeUb2uOqNpb9GHm8LR3urkpvB0v+pB1bOrxzQFKQAA\nYIdZ9oB0q+o11eeqp1S/V924xrhTqm+tfq56ffVlmXoHAAA7zrJPsXt0devq26o3tnY4qrqu\nemX1pOoO1aO2pToAAGChLHtAulN1Q/UX6xz/jmpfddctqwgAAFhYyx6QrqxOrM5a5/jbNT0n\nV25ZRQAAwMJa9oD0R+Pnz1cnHWHsadVLqv3VH25lUQAAwGJa9iYNH6z+R/XM6iHVm6oPNHWx\nu76pi93Z1fnVY6vbVC+uLp5HsQAAwHwte0Cq+t6m1t7PrZ5xmHF/Vz2n+pXtKAoAAFg8OyEg\n7a/+W/Xfq39Z3aPpmKRTmrrXXV69v/rQJm7z1OrfNR3/tB533sRtAwAAR2knBKQV+5uC0PvX\nWHfP6qur/71J27p19fimELYep4+fuzZp+wAAwFHYSQHpcH6guld13026v09UD97A+AdW72wK\ncQAAwJwse0A6fyxHcpfqzOop4/f3jQUAANhBlj0gPb76sQ2Mf+X4+YIEJAAA2HGWPSC9r9rb\nNHXtF6s/OcS4f1+d29TFrja3YQMAAHCcWPaA9NvVV1QvrZ7VdJ6jH6g+vWrcNzY1Vvidba0O\nAABYKDebdwHb4MPVQ6t/2xSE/rZ66jwLAgAAFtNOCEg1TbH7paZzIP1J9avVW5um1QEAAFQ7\nJyCtuKx6QvXNTWHpb5qm3Dn/EAAAsOMC0oo3NAWkV1Q/myl3AABAOzcgVV3Z1L3uwdVF1Qfn\nWw4AADBvy97Fbj3+vHrYvIsAAADmbyfvQQIAADiIgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAMPueRfAtrpn9aB5F7Gg7j3vAgAAmD8BaWd59i1ucYunnXPO\nOfOuY+Fceuml8y4BAIAFICDtLLse+MAH9rznPW/edSyc7//+7593CQAALADHIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwLB73gUAHK8uv/zyqlOrS+ZcyqK6srp/df28CwGA9RKQAI7S5z//+U48\n8cSbfd/3fd95865l0VxxxRW98pWvrDotAQmA44iABHAMTjjhhL7xG79x3mUsnEsuuWQlIAHA\nccUxSAAAAIOABAAAMJhiBwDb73HVbeddxILaW722um7ehQA7k4AEANvrVtVv3/a2t233bv8N\nr3b55Ze3f//+y6s/mHctwM7kX2YA2F43q3rxi1/ceedpgLjaox71qPbu3XvCvOsAdi7HIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMu+ddAADAihtvvLHqRdUP\nzLmURbS/+pHq/8y7EFhmAhIAsDBuuummHvKQh9zr9re//bxLWThvfvOb27Nnz28lIMGWEpAA\ngIVywQUX9IAHPGDeZSyciy66qD179sy7DFh6jkECAAAYBCQAAIDBFDsAttJDqqvmXcSCOWPe\nBQBwaAISAJvu8ssvX7n4+nnWAQAbtZMC0tdW31DdszqrOqW6trqsel/1xnSFAdgUo1Vzb3jD\nGzrjDDtMZl122WU9+clPnncZABzCTghId65+s7rfzHXXV3urk6v7Vo+pfrh6S/WU6p+3uUYA\nAGABLHuThhOr36vuVf189cDqlk3B6Bbj55nVw6qXVxdUb2r5nxcAAGANy74H6RHVParvrF55\niDGfrf5oLO+t/lv10Ood21AfAACwQJZ9T8k9qpuqX1/n+F+q9ldfuWUVAQAAC2vZA9JNTY/x\nxHWOP7Ha1RSSAACAHWbZA9K7mwLPM9c5/jnjp252AACwAy37MUh/Vr2z+pnq/tVvVR+ormjq\nZHdydXZ1fvWk6pHVW8dtAACAHWbZA9K+6rHVy6pvHcvhxr6i+t5MsQMAgB1p2QNS1Weqx1df\n2rSH6B4dOFHsddXl1fur360u3cTtnt/6j336sk3cLgAAcJR2QkBa8Xdj2Q53qd5TnbBN2wMA\nADbBTglIZ1ZfW51e/WX1oUOMO7Gp1ffvjOVoXdKBE9Gux1dVbzmG7QEAAJtgJwSkb2w6D9Lp\nM9f9evU91Z5VY0+ovqv6WMcWkKquGct6rK4DAACYg2UPSKc17RE6sXpJ056dB1RPrO5ePaz6\n3NyqAwAAFsqyB6Svr85pauH96zPXv7b61eoNY8z1218aAACwaJb9RLHnNbXsXj1d7reb9iI9\nuHrpdhcFAAAspmUPSHurXdVJa6x7U/WcpmOOfmQ7iwIAABbTsgekvxk/n36I9T/fdIzST1TP\n3ZaKAACAhbXsxyD9SfWu6qerL2/aU/SPq8Y8Y/z8qerh21caAACwaJZ9D1LVE6r/2zSV7pw1\n1u+r/m31/KZzJQEAADvUTghIH6/uU/2r6uLDjHtx9S+qH63+eOvLAgAAFs2yT7Fbsa+6aB3j\nLqleuMW1AAAAC2on7EECAABYFwEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGDYPe8CAAA4smuuuabqcdW5cy5lEe2vfq36m3kXwvFPQAIA\nOA58/vOf7853vvMFt7nNbS6Ydy2L5uKLL27Pnj03JCCxCQQkAIDjxOMf//ge85jHzLuMhfOc\n5zyn97znPfMugyXhGCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAjmsf+9jHqn602m9Zc3nR\n0T63O9HueRcAAADH4oYbbujhD394F1xwwbxLWTivfe1r+6u/+qvbz7uO44mABADAce+cc87p\nPve5z7zLWDhvf/vb513CcccUOwAAgEFAAgAAGAQkAACAYSceg7SrOq06pbq2unq+5QAAAIti\np+xBOqd6QfWu6qpqT3XFuHxldVH13OoW8yoQAACYv52wB+kR1euqM5r2Fn24KRztrU5uCk/3\nqx5UPbt6TFOQAgAAdphlD0i3ql5Tfa56SvV71Y1rjDul+tbq56rXV1+WqXcAALDjLPsUu0dX\nt66+rXpja4ejquuqV1ZPqu5QPWpbqgMAABbKrmr/uPyC6sL5lbIlfqjpcZ20zvEnVNdXP1z9\n5DFs99zqL1v/HrrdTVMAT6puOIbtHsnLdu/e/W9OPfXULdzE8emaa65p165deW6+0LXXXtu+\nffs67bTT5l3Kwtm7d2833HBDp59++rxLWTg33HBD1113Xaeffnq7du2adzkLZd++fV199dXd\n/OY374QTTph3OQtnz549nXrqqe3eveyTXDZuz549nXzyyZ100nq/1uwcV111VSeeeGInn3zy\nvEtZONdee2033njjL1dPn3ctC+7C6sdq+afYXVmdWJ1VfWod42/XtFftymPc7j807bVa7/O7\nq6nGrQxHVT964403vmbPnj1bvJnj0hnVaXv27Ll83oUsoJOrs/bs2XPpvAtZQLurO+3Zs+cj\n8y5kAe2q7nLVVVf9/bwLWVB3veaaay7pwB8pOeC8a6+99h+qm+ZdyAK60969ez+5d+/evfMu\nZAGdc/311199/fXX+5Kztg/Mu4Djzf6xXDjnOrbCPZoe26915L1Ip1VvqPZVd9viugAAgMVx\nYSMXLfsepA9W/6N6ZvWQ6k1NCfqKpql0J1dnV+dXj61uU724ungexQIAAPO3zHuQaprm8R+q\nSzvwWNdaLq6+a041AgD8/+3df7CldV0H8DfLgsKuyw8FtonfVGBj1mSQgAg4JJIOpSBm+SMM\np4ypnHEctJy8ZlIz/oghE0dGJFSaCiHRfmhBaEwRwVIgKqH80J0NzRVdQJb9dfvj+zndc8+e\ne/feC3uee+59vWaeee55nu8593POnn3Oed/neT4P0J2JLJM9SEl7opcm+dMkz0k77O7gtNbe\nm5M8lOSuJF/tqkAAAGBxWA4BqWcyLQjd1XUhAADA4rTUr4MEAAAwZwISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAAZWXXBcAi8ZdJzuu6CACA3eCWJCd2XcS4EJCguT/JrUl+s+tCGCsvSPJH\nSU7puhDGypokNyZ5dZJ7O66F8fKpJJ9Mcm3XhTBW3pnkka6LGCcCEjRbk2xKcnvXhTBW1ibZ\nEe8b5ufAmn85yZ1dFsLY2ZzkG7HNYX42dl3AuHEOEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEBZ2XUBsEhsTbKl6yIYO1vifcP8bU0yGe8d5s82h4Xw\nnlmAyZomOq4DurQqySFdF8HYWZHkyK6LYCwd3XUBjKVDk+zddRGMnQNqYnYTqVxkDxI0j9UE\n87EjyQNdF8FYuq/rAhhL67sugLH0cNcFjBvnIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEAR\nkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAADKyq4LgEVo\nzyQnJflBkts7roXFa0WS45KsSfKNJBu6LYcxYhvDQuyX5Jgkjye5P8nmbsthTKxKe9/skfa+\n2dRtOeNjsqaJjuuAxeCoJDen/Z+4reNaWLxelRaIJvumG5Mc0WVRjAXbGObr8CTXZPr25okk\nH0iyb4d1sbgdnOSKJFsz9b7ZkeSv47NqJhOZeq0EJCivT/vLyh1pGxRfXhjmzCTbk3wpLSid\nnOTtaX/NvSfJ07srjUXONob5WpPkK0m2JXl/khcneXmSm9K+u13VWWUsZnsnuTPtPfKhJGcl\n+fkkH6ll9yTZq7PqFq+JCEgwzTPT/h9cmuRpaV92fXlhmNuTPJpk7cDyN6e9h9408ooYB7Yx\nLMRvZPh3tH2SrE8L2qtGXBOL3zlp75sPDll3Xa07faQVjYeJVC7SpAGaLUnOTvLbaYcuwDCH\nJ/npJJ9J8tDAuivS9iydM+qiGAu2MSzEV5P8XpLLB5Y/nmRd2rnkB4+6KBa9dUnOS/LeIet6\n5z3uN7pyxo8mDdA8kvalF2bzUzUfdmL9piT/3TcG+tnGsBA31TTMEUkeS/I/oyqGsXF/TYP2\nSNtztC3tUF9mICABzN2hNZ+pY92GJM9OO/zl8ZFUBCxHr0ny3CSXRDc7ZndokmOT/HCS1yY5\nNclbkjzYZVGLnYAEMHe9jlEzfSHphaJVEZCA3eNFaSfbr0s7/A5mc26SP6mfNyR5XZKruytn\nPAhILBeHJPnCwLLbk/xKB7UwvrbVfKZtZ2/5lhHUAiw/b0jy4bRw9NK0a2nBbD6Tdq2+tUle\nkuQTaR1YXxmfVTPSpIHlYkfaSfX903c7rYhxtLHmB8yw/sC0D5xHR1MOsEysSPK+JB9N8um0\n80g2znoPaL6e5Nq0dt9np3Vq6zWMYRbafMPOtOBlmBPStpcfGLJuRZKHk9w10ooYV7YxzMfl\nadue96SdaA+z2SvtnKM9h6w7Ju29dP1IKxoPE9HmG2De1qXteTxryLpTkuyf5HMjrQhY6i5O\nckGSt6adczTZbTmMgUvTrpN1xpB1h9Tc4XW7YA8S7Mxfd5nJxWnbzLf3LTswrWXqlrS/zsGu\n2MYwFyenHSL+sa4LYaycnvY5dVeSw/qWH5Tk5lr3hg7qWuwmMpWLBCRIa315S9+0I+08kv5l\nh854b5aTfTL1AXNv2jVKNqU1cLigu7JY5GxjWIi/SdvW3J3p75X+6aWdVcdi9gdp750n0o5+\nuDXtulmTST6V4YffLXcTqVykix002zO9dfMXh4xxWANJa999epLzk/xckmck+XiSKzL8ArKQ\n2MawMA9k5w6sg7aPoA7Gz++nBaHXJjk67fITVyf5bFqjD3bBHiQAAGA5m4gmDQAAANMJSAAA\nAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAA\nQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAA\nUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAA\nFAEJYOk6PMlpSZ7ZcR2jtByfMwBPIQEJYOk6L8k/J3le37JfTvKhbsoZiWHPGQDmbGXXBQCw\n2zxa80f6lr0sydEd1DIqw54zAMyZgASwdPWHhWek7VU5McnjaYehPZzkvwbusyrJcWmfD/cn\n+fbA+n2TnFDrHqzbz06yOcnXkjzRN7b3O9fXun5HJTkiyR1Jvj/kcY9LclCSf5lnfXMNSIdU\n3TO5K8nGXTxGz15ph/YdlOS7Se5Lsm2GsQck+dGq7+tJtswwbk2SH0uyZ+b277DQ1wuAISZr\nmui4DgCeWr+Ytn0/MsnPZGp735v+qW/s05P8WVrAGRxzZN+4o2r5xUkuTPui/3gt21i/s6f3\nOy8ZUtsf1roX1O3j6va7k1xeP39pAfX1P+fZvCY7vx7908t2cf+eC5M8NHDfDUnOHxi3KslV\nacGpN+7bQ8atTvLnSbYOPOaNA8/pqXq9AGgmMrWtFJAAlqjVSZ6TtvdgzyT7p+3p+Y/6eVXf\n2L9K+1L+jrQ9K8ck+fUkm9L2/uxb4w5L+8y4O8kNaYEpSX48ybfSAtPqWjafgNQLXjek7VU6\nO8nzF1Bf/3OezeokPzIwnZYW9r6T5Id2cf8kObVq/nySk9IOXXxh3Z5McnLf2E/Xsvel7cU7\nI8m/JdmR6aHy72vcH6ftQTo2yVvTgtXXkuxT456q1wuAZiICEsCytDnJLQPLnpepL++DfqvW\n9fZ0HFq3H007pKvfJbXuhXV7PgGp97jb0w69W2h9C7UirbnDZJJfmON93lHjTxtYvn/a8/vZ\nun18jfvYwLi1acHnH+v2STXumiG/6z217lfrdtevF8BSM5HKRc5BAuCsmm9L8ksD6/au+SmZ\n/gX/tiT/OzB2fc2fTIvtdWnn1DzZ+ubrbWlB57K0vT1z8c2aX5h2LtfDdft7aeGp58yaf3bg\n/g+l7cXrnbd1Rs2vHfK7rk/yu2l7ra7sW97V6wWwZAlIAPS62l00y5i1A7c3DBnTa0yw55Oo\nZf2QZQupbz6OT/KuJF9O8paBde9O8sqBZeenHR53dZJXJDk3ba/Tv6ftDbourclDT6/+Yc+t\nv6nFkTW/b8i4Xgg6bGB5F68XwJImIAGwV83PTPLFGcZsH7i9YzfV8tiQZQupb65WpwWd7Ule\nnXYOUr9NaXt6+vU6z21NC0anpV1/6SVpQetdaXuheo/Xq3+mznY9vXHDOtttrfnTBpaP+vUC\nWPIEJAC+U/NnpZ2jNAqrdz3k/+3O+j6Y1qDhd5LcOWT9e2uazU01Ja2pQm+v09uSvDOt9Xey\n60MPZxt3YM3n0nq8i39PgCVjRdcFANC522p+1pB1a9POjVnIH9R6h4+tGrJutmsQDdpd9b0q\nyeuT/F2SSxdw/zVp4arfPWktxLdlqovdupo/Pzv7SFpIS5Lba37CkHHH1/yOOdS1u14vgGVD\nFzuA5eN7aRco7bc6reHC5kx9EU/aoVrXpH1G9L6097qnfWLIY7+51p3b97jb0s7H2aNv3ImZ\nuh7QYBe7YY87n/rm6oi01+KhJAfP8749N6TtrTlqYHmve99VdXu/tAYO38r0jnPn1LgP1+01\naXuRNmR6m/HVaU0gtqS1605G/3oBLHUT0eYbYFnqtbK+Oe1aOT1nJvlB2pfq69K+eD+QqYuR\n9swnICUtJEwm+Ye0pgGXpTUceH+mtwSf7XHnU99cfbzue2c91uD0ijk8xglJvp92ntHnk3wy\nrUnDE2kXgT22b+zL0wLOo2nXOvrX+v33JDmgb9zZdf+Naa/dlWmBaUeSN/WNG/XrBbDUTUSb\nb4Bl6dfSPgQOSHJv3/LPpR329sYkP1nr/zbJX6SFqZ4nknwhyVeGPPb6Wtff/rvX8e3Umu5O\nO/TsuWnX6+k1GZjtcedT31w9WL8vaWFj0Jo5PMatSX4iyetq/qy0PVIXJbkircFDz3VV9xvT\nnsc30/bmXJbpjSGur8e6IO2Ct3ukBdkrk/xn37hRv14Ay4o9SAAAwHI2kcpFmjQAAAAUAQkA\nAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIA\nACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAA\nAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAGVl388nJ7moq0IAAAA6cnLvhz2STHZYCAAA\nwKLhEDsAAIDyf9xuwIBRYP9OAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title “'tenure' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZwtd10n/M8ld8nNniBZCIQkgCI7xgAGdDQCCckAImtYB0wenMhjUDCC\nilwQBMUZBwVHEJV9iIIIqDBEgrK5MIkZYmIIJJAEskIScnNz19x+/vh9++nqk15Or3W6+/1+\nverVp0/VqfPtqjqn61P1q1+tSzIWAAAAco++CwAAABgV6zuPv5Tki30VAgAA0JPHJ3nc+C9j\nNWzpqxoAAIAebUnlIk3sAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIA\nAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQlWn5+s4cf7\nLWNe/j3JWA2vHsH5MX9zXRcHZmm25Ys7dfzGIs53VPSxzS/kPX1GgZGzvu8CgEX3ufp5S5J7\n9lkIi+I+SR6Q5KYkl/Vcy3I6PrZl5metfmaARSIgweq1te8C5uEZSTbX4+v6LGSE/H6SZyY5\nL8lze65lOW2d5jEzW2mfoaWod61+ZoBFIiDB6rUSdyq/1ncBI+aAJKf3XURPBKT5WWmfocWu\ndy1/ZoBFIiDB6nX7DOOOTHJMknVJvpPk+iR3DTHP45IckWR3kmvTmrAMY32SH0xySJLbklyR\nZM8U052YZP96fFWSa6aZ372SHJtkQ5IbatrlcFKSjfX4okws4/umNeu5KcmVQ8xnU9ryOLBe\n842B8QcmOSHJ4zJxdP3wtOtxkra+jqrH107xnj+RiWtMb0hy+cD4RyfZrx5/Jcm2KWqcy7qe\narkcldbM6ZokV8/w2tRrT+r8fkWSWzu/z7QtT2dd2jI+tGqYz9mJhS6DfZL8UNr6/nqSOwZe\nc++0z+ENSb41Sy3DbvMzfYYWa/sd1jDzHfYzP9t31myfmS9m6u+c+Xyndbeta6ueJHlgkqPr\n8eDncq6fkWHX91Jvd7BmjV8cuaXnOoDFsTvtM/3pKca9JO2I7djAcEOSN2ZiR6Vr3yS/mbaD\nOfi6f0/y4hlquWeSP0r7p9193W1JficTO+njZrtg+ylJ/m2KOr41TR2LfQH4NZ35nZLk/km+\nNFDLRUl+eJrX3zvJe5PcOfCabyc5qzPdj+buf2N3eGXn8ccG3uP4gWn/eWD8xiQ7atyuTF7n\n813X12bycvn5tJ3RbkcIM62L93bGXZzkoHp+pm15Jqcn+eZA/Z9N22G/qPPcVJ00zHcZDG4b\nJ6btnI4/tzXJ/1vTHpTk4wPz/kzaAYRBi7nNL3T7nU73PV85x/nO9hkd9jtrts9Md9ku5Dvt\nKWnLvvuaf0gLHB/sPPfmgdcN8xkZn/9c1vdSbXewFm3JxGdDQIJV5tNpR0vfOPD8b2TyP8a9\naTvI3ee+nMlnlg9I8i+5+z/rweGPp6jj8Ez+Rz3V8E9pOyvjZtpZetHAa7elHRntPveygdcs\ndkC6vDO/MzN5p2dwZ2Yw/N0v7Ujz+DQ70o4a7+08t6WmPSFt56k7bm89tyfJozrPjx+9Hvf/\nDNSyO+3o+rjHdMZ9qfP8QtZ1d7n8YpLtnd9nC0i/1nn+mkwcgU+m35ZncnImgtXgcFlm7sVu\nsZbB2Um+N8Xr9qad4fjENPM9b2Cei73NL2T7ncnge85lvjPVO5fvrNk+MwfXPBeyjp+YiVAz\nOPxHkvM7v79u4LXDfEbms76XYruDtWpLJj4Xd/vHDKw++6b9sx1La5bynzMRhB6U5KuZ+C54\nQed1f955fmuNOyitWcjbM/mf7HMG3vOjnXHXpv2DPjDtKOd3O+Pe0HnNdDtLG9KavoyPe1fV\nvy7J/+g8/91MDnhL2W34tWlNwc5I8vQkX8jk5fHCgdf+fWfcpzIRWh6ciSPZe5I8rPOaP+68\n5sMD87u6M+7enefPq+eu6Iw/rTP+nM7zv9V5fiHrurtcvp628/ehJG+rZTM4zfi6eEYmdmhv\nS/LQLNwlnfe5Pq254aa0ZoXfGPg7BgPSYi2D76SdVTgtbfvuvu6StHD8irS/v3sQYU9a06pk\nabb5hWy/Mxn822ea74tmeG233vl+Z830mUkWbx1/N+27bP+0bugHQ+HgtjXbZ2Qx1vdibHew\nlm2JgARrynGZ+Kx/P5PP2iTJI9OabzwxEzvb983ko6VnTzHfv+uM/9eB9+seyX3mwOu6O+nd\na0Om21k6LMmrOsP9OuPun8k7Ag8ZYn7z1Z3frrS/c9xBaTtc4+Pf3hn34IEaf3Bgvi/vjPuD\nzvMz7ex1m6X9TD23LhM7Wb+TiTNWb+287n91XvdT9dxC1nUyebl05zvdNK9OO+I/vgO8c5rX\nzNXDBuoY3Mk/bWB8dyd2MZfB1kycsUjufuT+lzvjTh4Y96R6fim2+fluv7NZyHynq3c+31nJ\nzJ+Zhazjh2fyMj9z4HU/OzB+poA01WdkMdb3Ymx3sJZtSX0mdNIAa8P1ade97Je2w/KvaTvK\nX0q7SP/iGrp+Ou1i33FTHY39aJIn1+MTat63p/3zX1fPj6XtdHT9YZJ3zqH+W5L8Xj2+Z9p1\nNsfWexwwMO1ytaf/ZNp1LuNuT1uep9TvP9AZ9xOdx7vT6j++89yGaaadyecycTT+0Un+Om0n\nbvxI8JfTLhp/eibvjD22fu5Ia+KYLGxdD/p8Ju5fNJ2j03bexptbvWyI1wzjRwd+H9zuPp22\ns31w7m4xl8En6n3G/WPatSXjPtB5/Pm0z8j45+Ww+rnU2/xctt8+5juf76zZLGQdnzAw3ccH\nfv9EWkA5MLOb6jOyGOt7MbY7IHqxg7ViR5I31ZC0I+3jTbl2pe1MfzjJe9KO5ieTd+BvqWFQ\nt2ele6T1WHVZ2j/2cd9L29Hp2ls1zcWJaU1NTpplunWzjF8sgz3DJe3C8XHd79f7dB5vSGti\nN50HDPn+3R2sE+vnT9fPvWlNm45NC0iPStup2piJdfNPmVgHC1nXg/5tiNp/IZPX0zFDvGYY\nR3Ueb0vb9rr2pp1VmyogLeYyGOyx7budx1szuae0PWk7teM7vd3tZim3+blsv33Mdz7fWbNZ\nyDoe3LZuHnjdnrTOVobp4GK6z8hC1/dibXew5vlAwNrx22nXrbw6k6/12JjWFe5PpjU5OTlt\nx7LbpGXXNPPcPfD7pvq5ufPcVF3rztWD0gLBeI9V1ya5IO0C5o2Z3APccpnq3jzT/a0bO493\nZeLMzVTG0nbM9s7y/lenHak/Lu3MybpMBKT/m7bzNx6i7pF2Zqq7Y9UNWAtZ14OG7SZ5Tyb+\nB706yfsz+czDfAwu56lMF8wXcxkMHhC4a4Zxg+PHLfU2P5ftt6/5zvU7azYLWcfDbFtTrdup\nTPUZWYz1vRjbHRABCdaaD9ZwTJLHpx2xfGIm2rQ/PO3C/bMz+ejjoZl6p33wwt7xo6rde9gc\nkrZDPLaAul+RiR2Hb6edERnfIToi/QSkueguj72ZuDfLQn0uLSAdknbfkx+v5z9bPy9JW48/\nkNbMrhsOLug8Xsi6HjRbsEvaEfnnpF2gfnJaoP6DTG4ONB/d5m4HpjWnGtwJPHKa1y7mMlgM\nK32bXyxz+c6azULWcTf4zXXbGjTVZ8T6hhFyj9knAVaZe6R1p/yhJL+UdmT2VZ3x4807uhco\nb8rd2+AnrWe6cden/WNP2hmMcftm8kXFSfvn//c1fCaTzzhNpXv0+J8y+WjxI2d57Si4pPN4\n30xu6jOsqZrVdM8CvTAT1z+Mh5+xtOsQkuTH0q5VSloToe76Xci6no/3p11c/opM7GT+5yRP\nXcA8k8k33F2ftvPc9YBMbirVtdzLYDYrfZtfTMN+Zw0a/MwsZB0PbluPGHjdAzK5s4i5sr5h\nhAhIsDY8L8n/STvC/vopxnd34LfXzy9kcpOn38rkC5wfmMk9Ob2n8/iCTP4Hf+7A+70yrTnY\nT6ddBL09M+s2aeneJ2djktcOTDvV9SV9uyCtG+txrxkY/4YkN6Z1Xdzt/arbNOn+U8y3G5Be\nWj93p627wWkenolODL6YyU2JFrKuF+KSJH/S+f1tmT0sz+QLmfx3DW53v5bpr9/oaxlMZ6Vv\n8ws1n++sZObPzELW8eC29ZpM3pZm2raGsdbXN4wUTexgbbgw7SjkPkl+Pe1C4ovTLm4+Ju2e\nJePGe3a6K63Zyt+mHUw5Je3i4s+k9Xj0zEycsbgiyVs689ietqP/P+v3F6Z1sXthWi9q40dp\n9yT51SHq/1ImemI7Ka0XvK+n3cPkh9Nu0PjEGn9uvddUN3rsy51pO2P/rX4/M+0s0pfSuvx+\ndtrO1aFpPVGNu7rz+IQkf5N2RPv30o5ofydtOTwwE817/jXtuoVx4wFpcybCx2APWgtZ1wv1\n2iTPTWsmeGzajubgDuGwbk3rqesl9ftz047q/0ta06wfS+tWfvxIf/cgYZ/LYCorfZtfqPl8\nZyWzf2bmu45vSTuD9eL6/ZlJ/jlt2/qRtLOz12f6M5SzWevrG0bOeB/4W3quA1haz8jku7cP\nDnvT7lEyeGb5mWlnP6Z73ZczuZe2rl9PO+o61etuyd3vjzTTfZC+PsU8tqU1yzp9inEzzW++\nZpvfuzvjPzIwbl2SN6ftiE+1PL6fia6Qx903E/cK6g7d7qzfOTDuDbm7GwamOXGKaZL5r+th\nlvNM07yiM25HWuCbr0Mz+Wax48NdSX4+k2/Y+6YpXr8Uy+AFnXE35O66N04ev+npUmzzC9l+\nZ7KQ+c702vl8Zw3zmZnvOj4s029bL09rGjf+3Ez3QZpqGS3F+p7Pdgdr2ZbUZ8IZJFg7Ppp2\nxPPZadcAHZG2Y3Fr2j/9j2bqLos/krZTeUbamZ/D03Zir0q7z8xnZnjPN6Ud3T0j7WjwQWn/\nlL+cdk+TwZ6nvpKJC6mv6Tx/S9pO/dlpZwGS5NK0u82Pd8t7ZtqOxIa0o88zzW++Zpvf1zJx\nzc+lA+PG0prlvC9teTws7R4v11W978/ke5gkrSerR6fdWPd+aReKX5bJzYQ+ltZBw7i/maKu\nd6dd4J60pjwXTTFNMv91Pcxynmmad6T1sjd+L5bnJHnjNPOZza1py+znk/yntO3hG2nL/cK0\nv2n8f991U7x+KZbBjZnYLqbqWvpLmWg2dWNnusXe5hey/c5kIfOd6bXz+c4a5jMz33V8S837\nZWkdrWxI61r7fWnNAX+uM+1g1+OzLaOlWN/z2e6AMn70YEvPdQAArETr4owMrHRb4gwSsEb9\ncOZ3kfNX4r4hsJa9M+3M733Tuh7vNml7ZpJ71uPxGzUDK5SABKw1z8/8us19Ttr1AMDadGcm\nmr+dm3ad0sVpXXy/pDPd+zO5swhgBdLEDgBgZvumXfM3XecOY0n+Ku3aQmDl2RJN7AAAhrYj\nydPTbhL7nLRu6e+V1q3+5Uk+ntapBLDCCUgAAMP7vzUAq9Tg/U4AAADWLAEJAACgCEgAAABF\nQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEAR\nkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQB\nCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVA\nAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQ\nAAAAioAEAABQBCQAAICyvu8CAAA6HpHkXn0XMcK+nOTOvouA1UxAAgBGyT9u3rz54PXr7aIM\n2rZtW/bu3Xtmkj/tuxZYzXz7AACjZP1rX/vaPPaxj+27jpHz4he/ONdee619N1hirkECAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACK\ngAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAi\nIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUNb3XQDACnZsknck2dhzHaPq\ne0lekGRP34UAwLAEJID5e8j69etPe9azntV3HSPn1ltvzac//ekk+a9Jbu25HAAYmoAEsADr\n16/PWWed1XcZI+fKK68cD0gAsKK4BgkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQB\nCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVA\nAgAAKOv7LgCAVe3YJIf2XcQI2pnkO30XAcDdCUgALLqbbrop69aty9jY2EV91zKKatk8MMk3\n+q4FgMkEJAAW3a5duzI2NpZ3vvOdOeCAA/ouZ6TccccdednLXpYk+/VdCwB3JyABsGSOPPLI\nHHjggX2XMVK2bt3adwkAzEAnDQAAAEVAAgAAKAISAABAEZAAAACKThoAYBmNjY2NP3xpkut7\nLGVUbei7AGBtE5AAYBlt27YtSfLgBz/4nM2bN/dczei58MIL+y4BWOMEJADowS//8i/n+OOP\n77uMkXPyySf3XQKwxrkGCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiAB\nAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgA\nAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIA\nAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKCs77uAZXZQkgclOTzJvkm2J7k+yeVJ7uyx\nLgAAYASslYB0epJzkzwuyT5TjN+d5Pwkb0ry5WWsCwAAGCFrISC9Osmbk+xM8tkklya5uX7f\nlOTIJI9MckqSU5OcleTPeqkUAADo1WoPSMcleWOSC5KckeSmWab9iyTvSPKptKZ3AADAGrLa\nO2l4UlqTupdk5nCUJN9M8sK0a5OevMR1AQAAI2i1B6TD0q4vumbI6b+WZG+SI5asIgAAYGSt\n9oB0fZINSR4y5PQ/krZMrluyigAAgJG12gPSp9K68v5AkgfPMu1jknwoydYkf7vEdQEAACNo\ntXfScGOSs5O8O633ussz0YvdrrRe7I5I8vAkx6f1bPe8JN/to1gAAKBfqz0gJcl7knw1ySvT\nuvJ+xhTT3JAWot6a5IplqwwAABgpayEgJclFSZ5fj49Icnhab3U70sLRzYv8foemdS8+7PLd\nlOSBaTeyBQAAerJWAlLXjTUkLSw9IMl9k/xH2vVKfTgkyUlJNqY1/QMAAHqwFgLSvkl+LckX\nk3ymnjsmyZ+k3Sdp3M567twsPCjdmuQX5jD9SUmetsD3BAAAFmgtBKSPJTk1ya+kBaTNSS5I\ncv+0pncXpoWon0jy8iRHJ/nZXioFAAB6tdoD0uPTwtHvJPlv9dxz08LRa5K8pTPtxrQOHc5I\ncmKSryxblQAAwEhY7fdBOiHJWJLfqp9J69L7u2mhqWtXWk93SWvyBgAArDGrPSBtSLI3kzs+\n2J7Wc93YFNPfmOSutCZ3AADAGrPaA9K/JdknyYs6z30urYndYVNM/7Sa/vKlLw0AABg1qz0g\nfS7Jl5P8zyRvSOuA4fwkf5nkQ0nuV9PdK8kvJXlfkiuTfHrZKwUAAHq32jtp2Jt2VujDSV5b\nw3fSmtg9Ism30prfbazpv5nkqWldfgMAAGvMag9ISeuQ4QlJfjrJs9J6qDs27VqjnTX+kiSf\nTDuDtKOXKgEAgN6thYA07rM1AAAATGm1X4MEAAAwNAEJAACgCEgAAABFQAIAACgCEgAAQBGQ\nAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQk\nAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJ\nAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAA\nAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQA\nAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkA\nAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIA\nACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAA\nAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAA\ngCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAA\noAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAA\nKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAA\nioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAAZX3fBSyzg5I8KMnhSfZNsj3J9UkuT3Jnj3UB\nAAAjYK0EpNOTnJvkcUn2mWL87iTnJ3lTki8vY10AAMAIWQsB6dVJ3pxkZ5LPJrk0yc31+6Yk\nRyZ5ZJJTkpya5Kwkf9ZLpQAAQK9We0A6Lskbk1yQ5IwkN80y7V8keUeST6U1vQMAANaQuXTS\n8KIkfzzE/K5Ja9I2Cp6U1qTuJZk5HCXJN5O8MO3apCcvcV0AAMAImktAOj7JY2eZZr+0DhB+\naN4VLa7D0q4vumbI6b+WZG+SI5asIgAAYGQN08Tun+vnfZIc2vl90Lq0Zmqbktyy8NIWxfVJ\nNiR5SNq1R7P5kbTQeN1SFgUAAIymYQLS3yU5MckDk2xO69BgOrcneX+SDy28tEXxqbSuvD+Q\n5PlJLpth2sckeV+SrUn+dulLAwAARs0wAekN9XNLkp/JzAFp1NyY5Owk7047g3R5Jnqx25V2\ntuuIJA9Pa0K4M8nzkny3j2IBAIB+zaUXu3el9fK20rwnyVeTvDKtK+9nTDHNDWkh6q1Jrli2\nygAAgJEyl4B0XQ1Hpp1xOTDtuqOpXJaZm7Mtt4vSmtgl7YzR4Wm91e1IC0c3L/L7HZF2L6WN\nQ05/cP2cbnkCAADLYK73QfrdtDMxs/V+9/q0Jnmj6MYaun42yb2TvH2R3uOOJF9JC2HDODrt\nOq+xRXp/AABgHuYSkB6d5FeSXJLkk0m+l9Yl9lSm6+luVJ2Wdm3VYgWkbZlbQDwpyQsW6b0B\nAIB5mmtAujbtTMfOpSln0T21htk8Psk9065DSpJP1AAAAKwhcwlI+6b1ALdSwlHS7mv0c3OY\nfnzab0dAAgCANWe2a4m6LkzyoKysjgQ+keRraZ0x/H6So9Judjs4vD/JxZ3f39JHsQAAQL/m\nEpD+IS0kvTXt/kErwUVJHpFW88uTfD7Jo5LcNjDsSnJX5/cdfRQLAAD0ay5N7H4iybeSnJnW\nocDFmf6Gqn9VwyjYmeQ3k5yX5E+SXJDWBferktzaY10AAMCImUtA+qm0Lr6Tdt+eU2aY9hsZ\nnYA07tK0zhjOTvLbSU5Pck5acAIAAJhTQPrDJH+e1hRtNrfPr5wltzetK++/TvJHST6c5Hm9\nVgQAAIyMuQSk79WwGnw7rfvvZyX5gyRHpl1fBQAArGFzCUjH1DCbfdICyJXzqmh5/WWS85P8\nYpLv91wLAADQs7kEpJcmed2Q074+yZY5V9OP25K8oe8iAACA/s0lIH0+yZumGXevJI9OclyS\nNyb57ALrAgAAWHZzCUgX1DCTc5I8I+2mrAAAACvKXG4UO4y3pZ1NeuIizxcAAGDJLXZASpKr\nkzx8CeYLAACwpBY7IB2S5FHRIxwAALACzeUapFNrmMq6JIcleUKSeyb54gLrAgAAWHZzCUiP\nTeuEYSa3J/mlJJfOuyIAAICezCUgvSvJ30wzbizJHUmuSrJ7oUUBAAD0YS4B6boaAAAAVqW5\nBKRxRyZ5QdqNYQ+v565P8qUkH0hy2+KUBgAAsLzmGpBOT/K/khw4xbjnJvmNJE9L8i8LrAsA\nAGDZzaWb74PTzhBtS/LyJA9LckQNj0jyyiT7JPlIkn0Xt0wAAIClN5czSKek3efoR5NcODDu\npiRfTfL5JF9J8qQkn1iMAgEAAJbLXM4gHZ92rdFgOOr6P0muSfKghRQFAADQh7kEpLuS7Dfk\nPPfOrxwAAID+zCUgXZp2HdLPzjDNKUnuEzeKBQAAVqC5XIN0fpIr0zpqeFeSC9Lui7Quyb2T\nPCHJmUmuSPL3i1smAADA0ptLQNqd5KlJ/jrJOTUM+o8kP1PTAgAArChzvQ/SZUkekuS0JCcl\nOSrJWFrnDV9I8r+T7FnMAgEAAJbLXALSurQwtDvJx2sYtzEtGOmcAQAAWLGG7fzl0mYAAB1h\nSURBVKTh0Wn3N7rXNONfkeQfk9x/MYoCAADowzAB6RFpHTKckOTx00xzSJLH1XSHL05pAAAA\ny2uYgPSnSTYneW6Sj00zza8leWGS+yZ5x+KUBgAAsLxmC0gPSztz9I4k580y7QeTvCfJ09OC\nEgAAwIoyW0B6VP38wJDz+7Mk+6T1cAcAALCizBaQjqqfVw05vyvr5zHzKwcAAKA/swWk8Ru+\nbhpyfvvXzzvnVw4AAEB/ZgtI36yfjx1yfj9ZP6+eVzUAAAA9mi0g/UOSnUl+NcmGWaY9OMlr\nknw/yWcXXBkAAMAymy0g3ZrknUlOTPKXSe45zXQPSHJ+kuOTvD3J9sUqEAAAYLmsH2KaVyf5\n0SRPS/KEJH+T5OIkdyQ5LMljkpyS1nvd+Um2LEWhAAAAS22YgLQ9yclJ3pDk7CTPqaHr5iS/\nn+R3k9y1mAUCAAAsl2ECUjJxHdIbkjwuyQPTeqy7Oa0L8C9GMAIAAFa4YQPSuG1JPlMDAADA\nqjJbJw0AAABrhoAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqA\nBAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIg\nAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhI\nAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAIS\nAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAE\nAABQBCQAAIAiIAEAAJT1fRcAAMDsdu3alSQnJHlWz6WMqi8mub7vIlj5BCQAgBXglltuycEH\nH3zWfvvtd1bftYyaW265JTt37nx9ki1918LKJyABAKwAY2NjeelLX5qnPOUpfZcycl71qlfl\noosucukIi8KGBAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAA\nAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAA\nQBGQAAAAioAEAABQ1vddwDLaP8lPJnlIksOT7Jtke5Lrk3w1yeeT7OqrOAAAoH9rISBtTPKm\nJL+QZPMM092W5C1JfjfJ2DLUBQAAjJi1EJA+nOTpSS5K8pEklya5OcnOJJuSHJnkkUmemxaQ\njkvy871UCqPpPkme33cRI+pBfRcAACyu1R6QHpMWjv57kldl+jNDH0vyW0neleRlSd6e5N+X\no0BYAU7btGnTWx760If2XcfIue6663Lrrbf2XQYAsIhWe0D6sbRQ9PrM3mxuT5JfTfKStGuV\nBCRo1h1++OF561vf2ncdI+e9731vzjvvvL7LAAAW0WrvxW5TkruS3DHk9Lcm2ZvWoQMAALDG\nrPaA9PW0s2SnDjn909OWyeVLVhEAADCyVntA+nSSbyf5QJKzkxwxzXT3TWte9+dJrqzXAQAA\na8xqvwbpziQ/k+TjSd5Rw/fSerHbldYE74gkh9T0VyR5WloPdwAAwBqz2gNSklyY5AfTuik+\nNcmDM3Gj2B1Jrkvyv5N8MslfJNndT5kAAEDf1kJAStqZpD+pYTncN62Z3r5DTj8+3bqlKQcA\nABjGWglISXLPJAckuTatp7qp7JPkhUkurmG+bkzy1iQbh5z+/knOzexdkQMAAEtoLQSkByZ5\nT5KT6vfr0u6L9K4ppt2Q1lHD67OwgLSr3nNYJ6UFJAAAoEervRe7dWnXFZ2UduPXT6SdpXln\nWnM7TdoAAID/32o/g/RTSR6Z5HfTuvFO2lmi30vyi0m2JXlFP6UBAACjZrUHpAfVz7d0ntud\n5JwktyX5zbSbyb5jmesCAABG0GoPSPumNam7c4pxr0u7PultcXNYAAAgq/8apG+kXWf0xGnG\nvzTtPkl/meTHl6soAABgNK32gHR+ku+k9Sj3X5LsPzB+R5LTk3ytpn3lMtYGAACMmNUekLan\nBaPx7rsfPsU0301ycpJ/SPLG5SoMAAAYPav9GqQk+fu0nuyen+Rb00xze5Inp90k9kUzTAcA\nAKxiayEgJck3M/vZobEk76sBAABYg1Z7EzsAAIChCUgAAABFQAIAACgCEgAAQBGQAAAAioAE\nAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiAB\nAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgA\nAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIA\nAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAA\nAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAlPV9FwAj4vQkr+i7iBF1dN8FAAAs\nFwEJmsceffTRTzjttNP6rmPkfO5zn8vOnTv7LgMAYFkISFCOPPLInHHGGX2XMXKuuuqqXHHF\nFX2XAQCwLFyDBAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAACU9X0XAAAAC7Fn\nz54kOSrJCT2XMqq+luSOvotYKQQkAABWtKuvvjpJzqyBu/vjJP+17yJWCgEJAIAVbe/evXn2\ns5+d5z//+X2XMnLe9ra35YILLti37zpWEgEJAIAVb+PGjTnwwAP7LmPkbNy4se8SVhydNAAA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAA\nAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABlfd8FsKx+IMkj\n+y5iRB3XdwEAAPRPQFpbfjvJWX0XAQAAo0pAWls2nHrqqTn33HP7rmPknHPOOX2XAADACHAN\nEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoa/FGseuS7J9k3yTb\nk2zrtxwAAGBUrJUzSEcmeX2SryS5I8nWJDfX49uTfDHJryQ5qK8CAQCA/q2FM0hPSvKRJAem\nnS36Wlo42plkU1p4OjHJ45K8MslT0oIUAACwxqz2gHRIkg8nuS3JC5L8XZI9U0y3b5JnJfnv\nST6W5Iei6R0AAKw5q72J3elJDk3y7CSfyNThKEl2JHl/kuclOTrJk5elOgAAYKSsSzJWj1+f\nZEt/pSyJ16T9XRuHnH6fJLuS/HqStyzgfY9L8i8Z/gzd+rQmgBuT7F7A+87m3evXr/+5zZs3\nL+FbrEx33nln1q1bF8vm7rZv3569e/dm//3377uUkbNz587s3r07BxxwQN+ljJzdu3dnx44d\nOeCAA7Ju3bq+yxkpe/fuzbZt27Lffvtln3326buckbN169Zs3rw569ev9kYuc7d169Zs2rQp\nGzcOu1uzdtxxxx3ZsGFDNm3a1HcpI2f79u3Zs2fPnyY5s+9aRtyWJK9LVn8Tu9uTbEhyeJKb\nhpj+qLSzarcv8H2vTjtrNezyXZdW41KGoyR57Z49ez68devWJX6bFenAJPtv3br1hr4LGUGb\nkhy+devWa/suZAStT3LM1q1br+q7kBG0Lsn977jjjm/0XciIesCdd955ZSYOUjLh+O3bt1+d\n5K6+CxlBx+zcufPGnTt37uy7kBF05K5du7bt2rXLTs7ULu27gJVmrIYtPdexFB6c9rd9MLOf\nRdo/yceT7E3yg0tcFwAAMDq2pHLRaj+DdFmSP0pydpL/lOSTaQn65rSmdJuSHJHk4UmemuQH\nkrw5yRV9FAsAAPRvNZ9BSlozj19Mcm0m/taphiuSvLinGgEAgP5syRo5g5S0P/QPkvxhkoem\nNbs7PK1r7x1JbkhySZLL+yoQAAAYDWshII0bSwtCl/RdCAAAMJpW+32QAAAAhiYgAQAAFAEJ\nAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUNb3XQCMiPOSPLvvIgAAlsA/J/mxvotYKQQkaL6Z5F+TnN13\nIawoj0/y5iQ/3nchrCgHJbkgyRlJvt5zLawsH03ywSR/1XchrCivS7K17yJWEgEJmt1Jbk9y\nYd+FsKIcmWRvbDfMzWH187IkX+2zEFacHUmuie8c5uZ7fRew0rgGCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKCs77sAGBG7k+zquwhWnF2x3TB3u5OM\nxbbD3PnOYT5sM/MwVsOWnuuAPu2f5Ii+i2DFuUeSY/sughXp+L4LYEW6T5KNfRfBinNoDcxs\nSyoXOYMEzbYaYC72JvlW30WwIl3VdwGsSN/uuwBWpFv7LmClcQ0SAABAEZAAAACKgAQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQB\nCQAAoKzvuwAYQUckuV+Sm5Jcm+SufsthBXlkkkOSfCG2G6Z3bJKjknwvyRX9lsIK4zuGudqU\n5P7186ok3++3nJVjrIYtPdcBffv/2rv3YLuq+oDj35iAFG4SAZFXQCJVg3GUaoNWDASlgzgU\n34qPUXFUBtGZFkdDW9velmpB+9CW4lsB0UHqgFKxSniDQREQAxYoT18xYNCUBMiL3P7x++2e\nfffd59597j33nHuS72fmzL77dc7a66zsrN9Ze//2S4Gbaf2bGAEeBE7qZ6E0EHYDPker3Qz1\ntziaoQ4FbmH0OeYe4Kh+FkoDwXOMOrUL8HHgcUafc75F/EijsYZp1ZMBkkR0XB4F1gKnAi8D\n3gXcT/z7eFf/iqYZ7jBiFOA3wAPYeVG9fYk28jvg/cDhwNuJUerHgMX9K5pmOM8xmoyvEm3l\nEuB44BXAZ3PZ3cDO/SvajDWMAZI0ygXEv4NlleXPy+U39LpAGhi3AVcA+wHfxc6L6v0T0Tb+\npLL80Fz+9Z6XSIPCc4w6tYhoJ1cBsyrrLsp1x/S6UANgmIyLvAdJCt8GbgWurixfBawn/mOS\n6nwUuBDY1u+CaEZ7DfBr4lxTdivwI+A44hfdzT0ul2Y+zzHq1BPAh4GV5GhIyfXE+ch+zTgM\nkKRwfpvlexK/1N3Yw7JosFzQ7wJoxpsHLAQuZWxnBeAmYAnwLOD2HpZLg8FzjDp1N/CJNusO\nKm2jNkzzLY3vDGJ4+t/6XRBJA2tBTle3WV8sP6AHZZG041oEnEgki/l+n8syoxkgSe0tB94N\nfIbI+iJJk7FrTje2Wf94TnfrQVkk7ZgOJPoyW4G3Uj+areQldtpR7A1cU1l2M3GSqJoDnEWk\n9/4scMr0Fk0z3PeI52KVLcZnkKi5rTlt939usdz7jyRNhyVENrsnAS8H7uxvcWY+AyTtKLYB\nayrLfluz3e7AN4hsdqcBZ05vsTQA1hIP2JMm6+Gc7t5m/R45rTsnSdJUnAB8GbiXSAbzQF9L\nM0BM8y2F+cSo0qPAq/tcFg0mU/CqzixgA3Hdf51LiHazZ89KpEHlOUadeDvxA/F3gbl9Lssg\nGCbjIu9BksIc4D+JGxiPBb7Z3+JI2o6MAFcSz1VbUFk3lxixvpnWSJMkTdUrgS8R9x0dRzyy\nRA0ZIEnhQ8BS4H3AtX0ui6Ttz1nAbOBsYJdcNhv4FBEkfapP5ZK0/ZkPnAPcBbyF1n2Qash7\nkKSwPKcn56tO8aBHqbAY+GJpflFOr6T1UMePEZdQacd2GfAvwJ8BPwd+CjwT2B84l/bPYtOO\nzXOMJuNEYC9gE3BVm20uBU7vWYkGjAGSFG5tsI0pMVU1wujUzXXtyGx3KpxKBEonAPsSHZeL\ngIv7WSjNaJ5jNBnrGJu5t2pLLwoyyEzSIEmSJGlHNoxJGiRJkiRpNAMkSZIkSUoGSJIkSZKU\nDJAkSZIkKRkgSZIkSVIyQJIkSZKkZIAkSZIkSckASZIkSZKSAZIkSZIkJQMkSZIkSUoGSJIk\nSZKUDJAkSZIkKRkgSZIkSVIyQJIkSZKkZIAkSZIkSckASZIkSZKSAZIkSZIkJQMkSZIkSUoG\nSJIkSZKUDJAkSZIkKRkgSZIkSVIyQJIkSZKkZIAkSZIkSckASZIkSZKSAZIkSZIkJQMkSZIk\nSUoGSJIkSZKUDJAkSZIkKRkgSZIkSVIyQJIkSZKkZIAkSZIkSckASZIkSZKSAZIkdc8yYM9+\nFwJYBIwAn5nCvl/oaom2T03r6kBmTtuQJE3AAEmSuucq4IX9LgTwEPDnwMX9LkgXvQU4u9+F\nmKQ3MnPahiRpAnP6XQBJ2s6s73cBgN8CZ/S7EF12HPCMfhdikjbkdCa0DUnSBAyQJKm7qp3g\nnYhLrPYiApf7gK1t9p0HPAuYDdxPjAS1szvwzPy8e4HNpXW7AocBq4H/qez3VOAA4tKw+4BH\nxj2azhSfez/ws5w/BNgI3ANsarPfbsTlanMYe9xziZGXPwIeJy5V+x2wDlgI3FI5hvnAHwBr\ngdsrn3Novt91pWUT1Xn1mBYR3+V1jO9FwO8BN9E8QNqbqK92bgMenuA9Cp20u/HaUlm36mq8\n71uSZoSRfA33uRySNOhGgINK86cAa2idZ0eIoOXEyn5DwLnAlsq2V1beD6JzeR7R2S22e6jy\nnnX3IB0IXA5sK+23LT93fs2+k7kHaWHu+zHi2NcTQc0I0bF/dWX7XYB/JwKn8nFfTuu4/7Cy\nrlj/+vy7WpfvyeXVwBDg18CN+XfTOi/q43Tg8/n37ZV11bp6by4/B5iVx11tG3XeVnOs5ddx\nE+xfaNrumrQl6E5dQbPvW5L6ZZjWeckASZK65Lm0RuaPJM6tlwEvIS4POyLnR4DDS/v9Vy47\ng/iF/tnAh4iO6z3ESEThW7ntPxKjKkcDNxDBThGA1AVIq4iRgQ8Ai4HnA2fmdueXtptKgFSM\nTP0UuIIImACeAzxIBExDpe0vJDrdHyFGTg4GTiJGhO4hRiRmA08hRqF+lH/vRox6PAF8uVKG\nrwE/z3LsW1p+SC77+5xvWudF0HcF8GPgeODFua6uro7NY7qUVlsYYnTbaGcI+P3KaxkRZK6t\nHE87nbS7Jm0JulNX0Oz7lqR+GcYASZKm1UeIc+uyyvKnEJ30F+X8S3K7b9S8x0dz3TtzfknO\nV4OCfYjO6oqcrwZIQ8BfAu+r+Yw7gMdoJe2ZSoC0IPfdQFxaVfbJXHdEzr+QVue86gOMHR3a\nCPygst2NxCVhZauBvyE64m8qLT8533MpndV5cUxPAE+vbFutq0OJIHAl3ensP4lI7jACvKrh\nPk3bXdO21K266vT7lqReGybjIrPYSdL0+EVOTyFGOwrriE7sD3P+6JxeVPMel+T0yJwek9Nv\nV7ZbQ4yq/HGbsmwgOrOfJu41OSI/92jgUWIEYKjNvpNxE/CbyrJf5rRIdX1sTrcCJ1ReO+e6\npRN8zgpihGS/nF9EjLJcDtxKKxiDCBjWEyMkndR54Rbivpp2FhDfyy+IS+Eem6DsTZxGlPvT\nxGhPE03bXdO21K266sb3LUk9YZIGSZoeXwNeS9wr8yqiY7qCSL19W2m7g3J6X817FJ3MA3Ja\nZHH7Zc227RIgFN4A/DOtX/mLe4N2yfXd/MFsdc2yIkHA7JwWx7J8nPfZZ4LPWQH8BREIXQAc\nRetSvOsZHTAeQdwzs5XO6rxQV+eFecQldfsDryOSIkzVEuBvgf8GPlhZdzrxfZadSAR/Tdtd\n07Z0UE6nWlfd+L4lqSccQZKk6bGF6KAeRVyCtT/R4V0FfJPWfRs75bQuc9iWnD65sm27bGTt\nLCECiC1Znp2JUYIhYrSl27Y12KY4lmOIuqh7TXRZ2UpiBKwYeTiKCAg2E5nTnkNk7TuE6Hxf\nVvnsJnVeeHSccryBuKSsSFAx1f9bh4hA5wngzUQwW/YIMdJTfhXH0mm7m6gtdauuuvF9S1JP\nGCBJ0vS6mrj35xnEJWD/QXQET8v1xWjDnmP2hD1y+nCDbcfzZuJ8/8EsT7lT/NQO36tb1pY+\nf2Ob15b6Xf/fZuBaYnRoFnE52jW57vpctpTW/Tjfy2kndd7E/US2vX8FXkYkMJiKs4gEDR8m\nApuqTxDHVH7dXNnmaibf7sq6VVfd+L4lqScMkCRpeswjOrlldxGpnLfSyiZWdGwPq3mPJTn9\ncU5vyemLa7b9HNGxrlPci1K9TGoh8cygfrgpp8fWrNuHuPelyWXgK4isfC8lEkNcm8sfIlJ9\nLyXukbmXVkKHTuq8iSuJLGzLicvYTi+9T6feBLwD+A4RcHWqabtr2pa6VVfd+r4lqSfMYidJ\n3XcF8av5wsry4rk+5+X8POJX+tWMTuM8BPyEGCU5OJfNJx6S+iCjs4S9jtFZ66pZ7P4q508q\n7bM7cRna7bluYWXfqWSxO79m3Z/mutfn/BCRyGEjo4OJnYiMaSOM7pSvY2zGOoj02SPE5WOb\nGZ097gvE/Ug/A84uLe+kzsc7prq6WkxcEnc3nSe+eDpxnGuAp3W4b6Fpu2valrpVV51+35LU\na8OY5luSptVhwP8SneXLgK8Sox2biNGNZ5e2PT6XP0x0YM8hOqTbiPTUZa8hOqUbiOfTrCTO\n4XfRGimqBkj7EfetbMpyfIXo9P41cGpuu5IYuehVgARxP8pjRKf54tzvAVoPGy0r0l1fTzxP\np+xXxP06368sfyeth6BW729pWuedBkgA78/l59bsM56v5H6r8vOqr9c2eI9O2l2TtgTdqSvo\n7PuWpF4bJuOi2bQCo2uIa5YlSVP3K+JG+0eIX+H3IH6tP4/IOFbO9HYX0emfRWQNGyIuFTuZ\nsWmY76T1TJq9iF/lvwS8m0hjDTGK8gKiw3tDLr+QSM6wP3ET/d8RHftVwFwiacNPiEvFXpD7\nrezwmJ9MdNB/SIxOlS0A9iayvRXZz+4lOsmbiCBuV2LE51TGBhfX0brn5Q7isrbCXOKS8a/n\n/oV1eSwPAP/A6OxsTet8vGMq6rlaVzcSoy0HE/W7hmaKZwU9TrSZ6usOIn35eDppd03aEnSn\nrqCz71uSem0ZpWfIOYIkSZIkaUc2jA+KlSRJkqTRzBgjSWrnSEbfizKe9USCAEmSBpoBkiSp\nnTOJ7GdN3ElklJMkaaAZIEmS2ql7Ro4kSds170GSJEmSpGSAJEmSJEnJAEmSJEmSkgGSJEmS\nJCUDJEmSJElKBkiSJEmSlAyQJEmSJCkZIEmSJElSMkCSJEmSpGSAJEmSJEnJAEmSJEmSkgGS\nJEmSJCUDJEmSJElKBkiSJEmSlAyQJEmSJCkZIEmSJElSMkCSJEmSpGSAJEmSJEnJAEmSJEmS\nkgGSJEmSJCUDJEmSJElKBkiSJEmSlAyQJEmSJCnNKf19OLC8XwWRJEmSpD45vPhjFjDSx4JI\nkiRJ0ozhJXaSJEmSlP4PodU4I8Fmp5YAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'social_network' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde7wtd13f/1cgOUnEQBAkAeUmGBQEEUQgKCByU37cKipVkGJppehPbIFY\nlf4MIuqP9gciYAW1iKCkFMSAxYAYlUuRUpASoAkRGrkFBQIkhNxOcn5/zHf3rLOz77e1z97P\n5+Mxj732mlmzPjNr1qz1XvOd7xxTHQoAAIBuMO8CAAAAdotjZ26/q3rnvAoBAACYk++u7rfw\nz6ExnDmvagAAAObozEYu0sQOAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nJg8cw/csuv9D1aEx/NudLWlH7ZflXMp+XvZ52el1Pu/X+KSW38dsxgc6vFzP3sL57hbzeN02\n85zz3s6ALXLsvAuAXeIvx99LqpvNsxDYYd9Y3bH6x+ojc65lM3bzcnxT9jFszG7ermHPEpDg\nSJfNu4A5+cHqxHH7M/MshB33wupx1X+uHr9Dz7kd29tKyzHv7fuyZW6zsnm/buu109s1sE0E\nJDjSfv3ycsG8C2AuvrZ6xByed6u3t9WWY97bt4C0MfN+3dZrp7drYJsISHCkS9c43a2bmj78\nY/WxNT7m9tUp1TXVJ8djl3JM9YCZ/z/Y1Cxn1nc2fXhW/e/q75eZ16nVbcY8P11dXF27xHT3\nqm40bn+8+sTMuNOrA+P2+zu8jtazDo6pTqtu2rTsnx73f3P1DeP2J9cwn/U4djznydWXqo9W\nB9fx+PW+xl9f3a46rvps03pcylLr85ZNzWg+0fVfy7XOd9Zqy35Sdc/qfh3+xfsWTefIVL2z\n66+r48c8T2paJ3+3zHOvZflW2t5mrbb9rnU51vp8G9lm1vIe+8rM7bXuY2bNvn8+0caOTqx1\n/1NLv4Y3rO7UtB1c2JHLVHWrpvXw2eqiVWpZ6za93ful9VjLfHd6u15sPa/xgo3sm7drH7bd\n2x2sy8IJhWfOuQ6Yp2ua3gfnLLp/9qTbZ1R3qN41c9+hph35ty4z3xOq/6fpC82hRcOHqict\n8ZhjF0338CWmWe3k7Cc3/Zq5+Dk/W/1Khz/El1rOxScXf2Jm3MNa/zp4ZNMH1+z0f9X0ofaH\nM/f92jKPX6+bVb/V9OE6+5xfqv7f6msWTb/Z1/iR1d92/XV9UUu/vp/syPX51KYvO4tfy/XO\ndz3L/p1LzHd2OHlmnreqXll9ddE0n6r+xQaXb7WT2de6/a51OVZ7vvVuM+upccFy+5jVPKLp\nR5DZ5/iLpi/s75+5b6n9wEb2P3X99/y9mr6cLtx3WfV/j2lvXJ29aN5v7chtaMF6t+nt3C8t\nZzP7g53ermvjr3FtfN+8Xfuw7druYK3O7PD29H9unDm/emDuzmn6Ve5XFt2/+ANv9oNh8Q5/\n8Zeor63es8z0s8NvL3rcZgPSsxc9/rrq6kX3/beOPIK80gf7+TPjnrLOdfCQDn9wLh7+V/Xn\nM///0hLLuV636MgP1KWGdzd9qViwmdf4xxdNc3nTL5yz9/3kosfMrs+fqa6Y+X/htdzIfNez\n7Pdsel2umxl33bjvYHWTMc/bNv2ivDDNlU2/Ds8+7swNLN9K29t6tt+1LsdKz7eRbWYj77Hl\n9jEreVCHg9Xi4SOtvB/Y6P6njnwNn1Z9YYnHXdd0hOONy8z3Py+a50a26e3aL61kM/uDnd6u\nN/Mab2bfvF37sO3Y7mA9zuzwtrTshxxw5Afep5ua3PzT6rHVOzpyx/zjix77iplxl1VPaPrV\n647VSxY99kdmHreZgHRC0wfRoaYmG/9Xh7+kfUtTc72Fxz1hmeVc/ME+O+6Tq6yDJ67w2M83\n/Sp4o6aujhd/8diKbopfv6jW+zU1V3nYeP6Fcb+8TI3reY2Pa2rCsjDu5U3r+pjqNxYt93Jh\n9MKmLxd/VL1oPOdG57uRZf/tmfvPWmJ9vm1m/J+N+VXducO/WB+s7rqO5Vs8zez2ttHtd7Xl\nWGn7Xu9622iNG3HezLwuru7f1NTou5qaOK70/tno/qeu/574q+oHmtbB7OPOawrNP9vUQcFs\n0DzY1LSqtua9spX7pZVsZp+/09v1Vr3G6903b9c+bKu3O1ivMzu8Lf2fG2fOrx7YtWZ32Fc3\ntfFecOOmD6WF8S+ZGXfrjvx17mlLzPvNM+P/+8z9mwlIt5+5/8sd+at31d2bmjY8pKnp1FLL\nudIXkfWsg7stWo6nLJrvP1k0frMB6fYd+Yvr4xaNf/rMuNlzODa6fF9XPXNmuO3MuDt05LLd\nZZnnO1R976I6NzLfjS77Sl/A7rzouU5bNP6nZ8b95jqWb/E0s9vbRrffjQakjay3jda4Xnft\nyPW4+Ev+DywaP/v+2cz+p45cX5d1+IhFXf+X+38zM+5Bi8Y9dNy/Fe+VrdovrWYz893J7Xoz\nr/Fm983bsQ9bPN+t2O5gvc5sbEc6aYC1e1PTuQALLm1qm/6w8f/NZ8Z9X9PJpQuW+tL2+ur7\nx+17Nn34buQE7lkXN50r8jVjfv+9es2o871NweoDm5j/etbBPRc99uxF/7+x6UPwpLbG9zb9\nQlnTDu7Ni8a/uHrZKvNYz/JdUv2HcftmTde6ud2o4Ws70nLt4t/e4evjbGa+W7Hsi91/5vY1\no45vmrnvuGWmnbXU8q1ku7ffxTay3naqxu9c9P/i2s5p+rJ9k65vK/c/bxzPs+Cvm84tWfDq\nmdtvb1qPC+v068bfrXivrGQ979t5zHc7tpnNvMZbuW/eqn3YYlux3cGGCUiwducvcd9nZ27P\nvp9mv0he0vV7oasje/K5QVMPSZu9EOCV1fPGUNOv0AvNn65uauN+VvX71VUbmP961sEtZ25f\nXn1u0eMONp3ov96TqJdzu5nbX2j6QjLruqb1s5L1LF9NJxH/RlPvSys5Zpn7/3aZ+9c739vN\n3LfRZV/sG2duH9fUxG45d1zm/uWWbznbvf0udruZ22tdbztV4+L3zxeWqO3TLR2QtnL/s7jH\nts/P3L6sI3tKO9j0pXbhS+/s+2Wz75WVrPd9u9Pz3Y5tZjOv8Vbum7dqH7bYVm13sCE2Ili7\npa5fslwXwLNNKK5eZpprFv1//DpqWelLxK82nUj/b6tvm7n/QFM3sQ9sao7xoK7/pWs161kH\nB2ZuL7cOFn8h3YwTZ26vpzvvWetZvm9p+uV0oeepT1bnNp2IfKCle3hbbKlueDcy361Y9sUW\nv37vXmHaQ01fwK5bdP9auhlebDu338U2ut52osa1vH+WC71buf9Z/B69doVxi8cv2Ir3ykrW\n876d13y3epvZzGu8lfvmrdqHrfb8G9nuYMMEJNges7923bSlvzwuPpF04Ve8Q4vuX6oHplNW\nef4/HMNtqu9u+jXvIR1u73236rkt3W59q8x+uTipqTnI4g+xU7fw+b44c/vkphC5eF1upZ/t\n8BeAT1Xf0eEvNqe0ti8Bi7eJjc53O5Z9dp7XdfgaLOux1PKtxU5tv5tZb9td42xzt/W+fzaz\n/9kOW/Fe2Qu2cpvZzGu8lfvmrdqHwa5yg3kXAHvU7Amxx3f9Nt819Za14OKmD5KaPqhmf/m7\nzaLH3bapa+LV3KDpuhJ/VP3rpl8tnzkzfrWmD5s1eyHRY6tvXzT+jm3uJPbF/ufM7RM68uTf\nmj6k3zaGt3bk0YONmP0V+N0d+avv3Xd4vlux7IuPSp63aJ7f1M7a6Pa7niZam11v2/keW/z+\nudui8XfsyKZSszaz/9kO2/VeORpt1Xa9mdd4u/fNXm+OegISbI93dOTJvc/tyBNqv7kjew76\n/UWPn207/sSOPCH+l1r+S+CPVv+j6dfn5ywxfvZL7xXLzGOrvKMjg97Pd2Tdv9DGzjdYzrkd\n+UF8xqLxz2g6sfn7mk5W3uzyzzZN+YaZ2weqf7do2qXOE9nK+W502WebC91h0WPObbpQ6oKf\nXzT+l6t/aOqieCu6aK+Nb78rLcdKNrLeduo9tvj9s7i2ld4/m93/bLXteq8cLbZju97Ma7zd\n++b9/nqzB2hiB9vj2qZmEv+16YeIhzWdzPrWph52HtfhHoI+Wv36osf/SfVz4/Y9mno7eltT\nz1b3brqS+z3G+NkfOt7X9AvdDatfbDrJ9gNNJ/7epul6HguW6vVoK13S9Cvpk8b/j6v+punC\nhvdoupbLxS3/K/h6XdH0Rf0/jv+f2NQV7vuq+3T419SDHV63m/GuDndve3pTj2cXNl2L5Fub\nLrT4kDH+jFHLUhds3Kr5bmTZ/37m9j2rP236lfk/NP3K/Nzq/xvjn9J0FOldTV1+/3DTl6ib\nNvU4tRU2uv2uthzL2cg2s1PvsS829dT15PH/45t+1X9PU9Os+zZ1Pb7wS//sfmCz+5+ttl3v\nlaPFdm3XG32Nt3vfvN9fb/aIhX7jz5xzHbAbrXQdjqrfnRn/uiXGP67pV/hDywz/rSN7C1tw\nk6behhZPf2XThfH+aOa+X1n02B/syCubLx6ua7p+x+wXqrVeb2S96+DrOvJilwvDtU3X0Xn3\nzH1bdRTiF5t+HV1q2S/p+te62ejyfV1HXqBwYbi8elT1iCXGreX5NjrfjSz7rTt8AcvZYaGL\n6WOqX2t6vZaa55c73OXxgtWWb7VpNrL9rrYcq9W03vW2kRo34qYt//55akdeyPd5Szx+o/uf\nldbXE2bGfbbrm7247sJFT7fjvbLZffNyNjPfnd6ua+Ov8Wb2zdu1D9vq7Q7W68zGduQIEqzs\nvR0+GfYTS4y/oOn6DFUfXmL865q+xPzTpl+jb9EUcj7edF2Tty7zvF9uOlL01KaTeY8dz/W7\nTcHpNh3+5fjiRY99fdOvgT/cdA7FKU0ful9s+kB8fdfvznel5dzMOrik6dfIn2w6yf+4pu5b\n/6Cpyck/n5l2K7ptrumL4llN6/zuTU2jPt/0ReE1Xb+HqI0u3yVNv+Q/renX/IXxL+9wE8mn\nNH0hOK7pV+S1PN9G51vrX/ZPNr0+T286t+2ypm3jf4/xh5qa3/zBmOddmzoN+cx43ld15LVK\n1rJ8q02zke13teVYrab1rreN1LgRX2xarqdWD2h6vf+u6fV4X9P+ZOFz/DNLPH6j+5+V1tc/\ndPj9sFTX0u/qcLOpf5iZbqvfK5vdNy9nM/Pd6e26Nv4ab2bfvF37sK3e7mBTFhL3mXOuA9hf\njsmvfgC7jX0z+9WZOYIE7ICXNR11uHVT97azzSYe13SV9Zqal7xj3P7WNnbi7ntzLQyAtdjI\nvhn2DQEJ2E5f7XATizOa2sJ/oKkb2SfPTPeqDp+Q/GNtrCvYH2lq4w7Ayjayb4Z9RRM7YLuc\nUL2h5U8gPlT9cUtfDBeA7WHfDNd3ZprYATvgyuqxTRci/JHqdk1Xd/9KdX51dtOJywDsHPtm\nWIGABOyE/zkGAHYP+2ZYwmav0QAAALBnCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAADDsfMugB11y+ou8y7iKPfh6uJ5FwEAwPYQkPaX5x577LH//MQTT5x3HUelK664ooMHD/5e\n9ZR51wIAwPYQkPaXGz74wQ/ujDPOmHcdR6XnP//5nXPOOTecdx0AAGyf/RiQjqluVJ1QXVFd\nPt9yAACA3WK/dNJwavWc6r3VV6rLqs+N25dW76yeVd14XgUCAADztx+OID20el11UtPRogua\nwtFV1fFN4ele1f2qZ1SPbApSAADAPrPXA9LJ1VnVl6onVG+uDi4x3QnVD1UvqN5Q3SlN7wAA\nYN/Z603sHlHdtPrh6o0tHY6qrqxeVf1o9Q3V9+9IdQAAwK6y1wPSbaprqr9Z4/TnVtdVd9y2\nigAAgF1rrwekS6vjqluscfpbNq2TS7etIgAAYNfa6wHpL8ffF1YHVpn2RtVLq0PV27azKAAA\nYHfa6500fKT6repp1QOqN1UfburF7uqmXuxOqe5WPaq6efVr1UfnUSwAADBfez0gVf10U9fe\nz6qeusJ0F1bPrF65E0UBAAC7z34ISIeq36xeXH1bdeemc5JOaOq97rPVedX58yoQAADYHfZD\nQFpwqCkInTfvQgAAgN1pr3fSsOAhTUeQXtHUzO6EZaY7vrqo+tmdKQsAANhN9sMRpGdXz535\n/581nY/0mK5/NOmY6rbVyTtSGQAAsKvs9SNI39gUkD5e/VB1j6Ye7W5a/XV11/mVBgAA7DZ7\n/QjS9zQ1m3tC9e5x399WbxnDn1X3rj49l+oAAIBdZa8HpFs3dc7w3kX3f7x6RFNoOru6f/XV\nLXzeW1Wva/WL0y44rul6TLeqrtvCOgAAgHXY6wHp803nFd2y+uSicR+tHtd0JOk11Q9u4fNe\nUr226ejVWty2+ldNr8fVW1gHAACwDns9IL2n6QjSrzZ1znDtovF/2dSr3e9Wr6/+xRY975XV\nb6xj+tObAhIAADBHe72Thg9Xf9h0DtIF1V2WmOY/VU+qfiDXSAIAgH1trwekqp9ougbSKdUN\nl5nmVdWDqi/vVFEAAMDus9eb2FVdU/1M07WPVuoA4R3Vnav7VJ/agboAAIBdZj8EpAVXrWGa\ng9U7t7sQAABgd9oPTezW4/imo0f/Zt6FAAAAO09AOtIx1TdUN553IQAAwM4TkAAAAIa9fg7S\nQ8ewVsv1cgcAAOwDez0gnV49Y95FAAAAR4e9HpD+rHp29XvVK9Yw/YHqr7e1IgAAYNfa6wHp\nPdXzmq6B9OLqQ6tMf8K2VwQAAOxa+6GThudWH6zOqk6ccy0AAMAuttePINV08dfHVfepbl59\ncoVpr63eUv3dDtQFAADsMvshINV08dfXrWG6a6qHb3MtAADALrUfmtgBAACsiYAEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMBw77wJ20I2q\nB1Z3qW5RnVBdUV1cfbB6e3X1vIoDAADmbz8EpAPV86qfqk5cYbovVb9ePb86tAN1cZQ5ePBg\n1c2qe865lKPZhdWl8y4CAGA5+yEgnVU9tnp/9brqw9Xnqquq46tTq7tXj28KSLevnjqXStnV\nLrjggqpHjoGNeVneXwDALrbXA9K9m8LRC6pntvyRoTdUz61eXv1k9ZLqQztRIEeP6667rgc9\n6EE9/elPn3cpR6UXvehFnXvuucfPuw4AgJXs9YB036ZQ9JxWbzZ3sPq56slN5yoJSFzPgQMH\nOumkk+ZdxlHpwIED8y4BAGBVe70Xu+Ora6uvrHH6L1bXNXXoAAAA7DN7PSBd2HSU7OFrnP6x\nTevk/G2rCAAA2LX2ekA6p/pU9erqadUpy0x366bmda+oPjYeBwAA7DN7/Rykr1aPqc6uXjqG\nLzT1Ynd1UxO8U6qTx/QfrR7d1MMdAACwz+z1gFT1vuq06seamtrducMXir2y+kz1lupN1Wur\na+ZTJgAAMG/7ISDVdCTpd8YAAACwpP0SkGrqme6B1V06fATpiuri6oPV25ua3QEAAPvUfghI\nB6rnVT9VnbjCdF+qfr16fqtfMwkAANiD9kNAOqup++73V6+rPtzUScNVTZ00nFrdvXp8U0C6\nffXUuVQKAADM1V4PSPduCkcvqJ7Z8keG3lA9t3p59ZPVS6oP7USBAADA7rHXA9J9m0LRc1q9\n2dzBpmshPbnpXKXNBKQbVo9oOkK1FnfaxHMBAABbZK8HpOOra6uvrHH6L1bXNXXosBm3rl7W\n2gPSwutwzCafFwAA2IS9HpAubFrGh1dvXsP0j61uUJ2/yee9qLrlOqY/vXpXOocAAIC5usG8\nC9hm51Sfql5dPa06ZZnpbt3UvO4V1cfG4wAAgH1mrx9B+mr1mOrs6qVj+EJTL3ZXNzWBO6U6\neUz/0erRTT3cAQAA+8xeD0hV76tOq36sqandnTt8odgrq89Ub6neVL22umY+ZQIAAPO2HwJS\nTUeSfmcMAAAAS9rr5yCt1w2rp1T3mHchAADAzhOQjnRc01GmR827EAAAYOcJSAAAAMNePwfp\nwBjWaq0XdgUAAPagvR6QfqH6pXkXAQAAHB32ekD60vj7/qZrH63mBtVDtq8cAABgN9vrAek/\nVv+8urx6RHXtKtOfUF2x3UUBAAC7017vpOGqpgvEflf17DnXAgAA7HJ7PSBVfbB6ZvXY6rQ5\n1wIAAOxie72J3YKXjGE1V1X3rT61veUAAAC70X4JSGt1qPqbeRcBAADMx35oYgcAALAmAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADMfOu4AddKPqgdVdqltUJ1RXVBdXH6zeXl09r+IA\nAID52w8B6UD1vOqnqhNXmO5L1a9Xz68O7UBdAADALrMfAtJZ1WOr91evqz5cfa66qjq+OrW6\ne/X4poB0++qpc6kUAACYq70ekO7dFI5eUD2z5Y8MvaF6bvXy6ierl1Qf2okCAQCA3WOvd9Jw\n36ZQ9JxWbzZ3sPq5cfuB21gTAACwS+31gHR8dW31lTVO/8XquqYOHQAAgH1mrwekC5uaET58\njdM/tmmdnL9tFQEAALvWXg9I51Sfql5dPa06ZZnpbt3UvO4V1cfG4wAAgH1mr3fS8NXqMdXZ\n1UvH8IWmXuyubmqCd0p18pj+o9Wjm3q4AwAA9pm9HpCq3ledVv1YU1O7O3f4QrFXVp+p3lK9\nqXptdc18ygQAAOZtPwSkmo4k/c4YdsKtm0LX8Wuc/oTx95jtKQcAAFiL/RKQqm7VdMTokpn7\nTmhqUnf76uKmo0iXXP+h6/YP1fOrA2uc/g7VGa3eFTkAALCN9kNAOq06q/qO8f/bqx9tCiPv\nbApHC75YPWrcvxlXV7+/julPbwpIAADAHO2HgPSa6tubgtEVTWHkrOrj1Y2rX2zq6e7OTT3d\nvbYpNOmoAQAA9pm9HpAeUN2jelz1+nHf7aoPjvvv39SJw4K3Vn9RPaT60x2rEgAA2BX2+nWQ\nvrX6fIfDUdVFTR0ofKYjw1HVudWXqm/ZieIAAIDdZa8HpJOqy5a4//LqK8s85qutvXMFAABg\nD9nrAemipi63bzlz37FN5yGd1uELxC74hjHtp3eiOAAAYHfZ6wHpbU1Hi97YdB7SI5ua2928\n+tvqD5q6/6765uoPq+vG4wAAgH1mr3fS8MWm7rN/u/ov475D1U9Un2jqlOHTTd1yLzSr+9Uc\nQQIAgH1prwekqpc3HS16VFPX3WdX541x31c9q7pj08Vd/6D6vTnUCAAA7AL7ISBVvXcMi/31\nGAAAAPb8OUgAAABrJiABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAzrCUg/Xv32Gub3\nieoRG64IAABgTtYTkL6pus8q03xNdYvqThuuCAAAYE6OXcM0fzP+fmN105n/F8cD6VQAACAA\nSURBVDumun11fHXJ5ksDAADYWWsJSG+u7lV9c3VidfcVpr20elX1R5svDQAAYGetJSD98vh7\nZvWYVg5IAAAAR621BKQFL69eu12FAAAAzNt6AtJnxnBqdbfqpKbzjpbykTEAAAAcNdYTkKqe\nXz2j1Xu/e05TkzwAAICjxnoC0ndVz6rOq95UfaG6bplpl+vpDgAAYNdab0D6ZFOPdldtTzkA\nAADzs54LxZ5QfTjhCAAA2KPWE5DeV31Ly3fMAAAAcFRbT0D6q6aQ9O+r47elGgAAgDlazzlI\n968uqp5SPaH6QPX5Zab94zEAAAAcNdYTkL63qYvvqptUD1th2r9LQAIAAI4y6wlIL65eUV27\nhmkv3Vg5AAAA87OegPSFMQAAAOxJ6wlItxnDam5Yfar62IYqAgAAmJP1BKSfqH5pjdM+pzpz\n3dUAAADM0XoC0tur5y0z7uur76puX/1K9RebrAsAAGDHrScgnTuGlTy9+sHqhRuuCAAAYE7W\nc6HYtXhR09Gkh2zxfAEAALbdVgekqr+v7rYN8wUAANhWWx2QTq6+o/ryFs8XAABg263nHKSH\nj2Epx1RfVz24uln1zk3WtZ2OqW5UnVBdUV0+33IAAIDdYj0B6T5NnTCs5NLqX1cf3nBF2+PU\n6l9VP1DdufqamXGXVR+szq5e1rQMAADAPrSegPTy6k+XGXeo+kr18eqazRa1xR5ava46qelo\n0QXV56qrquObwtO9qvtVz6geWb13LpUCAABztZ6A9JkxHE1Ors6qvlQ9oXpzdXCJ6U6ofqh6\nQfWG6k5pegcAAPvOegLSglObwsZ3VbcY911cvat6dVMY2S0eUd20qWnd36ww3ZXVq6rPVm+t\nvr/pqBMAALCPrDcgPaJ6TVNztcUeXz27enT1nk3WtVVu09Tkb6VwNOvc6rrqjttWEQAAsGut\np5vvmzQdIbq8+unqrtUpY/j2pvN3bth05OWErS1zwy6tjuvwka7V3LJpneioAQAA9qH1HEF6\nWNM5Pd9ZvW/RuH9s6gnu7U0dHDy0euNWFLhJfzn+vrB6cnX1CtPeqHppU4cTb9vmugAAgF1o\nPQHpm5rONVocjmb9j+oT1be0OwLSR6rfqp5WPaB6U1MX5J9rCkvHNx0Bu1v1qOrm1a9VH51H\nsQAAwHytJyBd25HXD1rODZrO49ktfrqpa+9nVU9dYboLq2dWr9yJogAAgN1nPQHpw03nIf2T\n6o+XmeZh1Te2uy4Ue6j6zerF1bc1XSj2Fk3nSV3Z1HPdedX5W/icx1X/tLWfi3WHLXxuAABg\ng9YTkP68+lhTRw0vb+rx7TPVMdWtqgdXT2lqnrYbz+E51BSEztuB57pl9QtNQWktFoLUMdtT\nDgAAsBbrCUjXNJ2n8yfV08ew2P+qHjOm3U0e1HTe0UI4Oq6pOd2PN51bdVX1gepF1eu34PkW\nzsNaq9ObriN1aAueGwAA2KD1XgfpI9Vdmi68enrTkZJDTZ03vKN6S3VwKwvcAr9c/bumQHRe\n01GaP2lahmuqi5qO4Hx39T1j2l+ZR6EAAMB8rScgHdMUhq6pzh7DggNNwWg3dc5QdVr1i03B\n7axx3w+M4Y+rf1l9Ydz/rdUfVb/U1Izwop0sFAAAmL+1Xij2u5qub/T1y4z/2eqv232dDXxv\n0zL+RPXpcd/9my52+6QOh6Oamgc+qSk0PnQHawQAAHaJtQSkb2/qkOGeTc3QlnJydb8x3S22\nprQtcdOmI1ufmbnv2Orj1VeWmP68pu7Mb7b9pQEAALvNWgLS71UnVo+v3rDMNL9QPbG6dfXS\nrSltS3ysKRDdf+a+v23qinyp5oV3q27Y4aNNAADAPrJaQLpr05Gjl1b/eZVp/7D6/eqxTUFp\nN/ivTWHnj5p6sqt6XfXJps4bZrvVvkf1muqy6s07WCMAALBLrBaQvmP8ffUa5/efmo7AnL7h\nirbWV5subHug+oumazT9btP5VM9qOsL0lqYL276vumPT+Uqfn0exAADAfK3Wi90tx9+Pr3F+\nHxt/b7OxcrbFf2+6JtG/rn6o+rGZcbcfw6VNR49+tfrQThcIAADsDqsFpIULvh6/xvndaPz9\n6sbK2TaXNF3f6N9VJ1W3rb62qQOHz1d/n4u0AgDAvrdaQPrf4+99qtevYX4PHH//fqMF7YDL\ncpQIAABYwmrnIP1VdVX1c9Vxq0x7k+rnqy83ne8DAABwVFktIH2xell1r+q/tPz1ge5Y/Xn1\nTdVLqiu2qkAAAICdsloTu6p/W31n9ejqwdWfVh9outDq11X3rh7W1Hvdn1dnbkehAAAA220t\nAemKpmsI/XL1tOpHxjDrc9ULq+dX125lgQAAADtlLQGpDp+H9MvV/apvbuqx7nNNXYC/M8EI\nAAA4yq01IC24vHrrGAAAAPaU1TppAAAA2DcEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA4dh5F7CD\nblQ9sLpLdYvqhOqK6uLqg9Xbq6vnVRwAADB/+yEgHaieV/1UdeIK032p+vXq+dWhHagLAADY\nZfZDQDqremz1/up11Yerz1VXVcdXp1Z3rx7fFJBuXz11LpUCAABztdcD0r2bwtELqme2/JGh\nN1TPrV5e/WT1kupDO1EgAACwe+z1Thru2xSKntPqzeYOVj83bj9wG2sCAAB2qb0ekI6vrq2+\nssbpv1hd19ShAwAAsM/s9YB0YVMzwoevcfrHNq2T87etIgAAYNfa6wHpnOpT1aurp1WnLDPd\nrZua172i+th4HAAAsM/s9U4avlo9pjq7eukYvtDUi93VTU3wTqlOHtN/tHp0Uw93AADAPrPX\nA1LV+6rTqh9ramp35w5fKPbK6jPVW6o3Va+trplPmQAAwLzth4BU05Gk3xnDTrht9d9a+cK0\nsxZeh2O2pxwAAGAt9ktAWs3PNx1levIWze/T1U9Vx61x+js1XYdpta7IAQCAbSQgTe5Q3XUL\n53ew+pN1TH96U0ACAADmaK8HpJ8Zw2q+vqnDhr8b///mGAAAgH1krwekmzYdHbqyumCV6Y7r\n8AVlr97mugAAgF1orwekF1e3q/5ZdUnTeUH/a4npfre6e/WdO1UYAACw++z1C8Ve0tTxwoOr\n21QfqM6sDsyxJgAAYJfa6wFpwV80dcLwG9UvNgWl755rRQAAwK6zXwJS1RXVz1X3qi6v3l79\nx+om8ywKAADYPfZTQFrwgeo+1TOrJ1bnVXeba0UAAMCusB8DUtW11Quqb6s+0nRUCQAA2Of2\nei92q7moenh1/+q6+ZYCAADM234PSAvePu8CAACA+duvTewAAACuR0ACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGI6ddwEArMnPV8+adxFHuX9f/dq8iwBgdxOQAI4Op9397ne/6aMf/eh513FUOvvss/vA\nBz5w2rzrAGD3E5AAjhKnnnpqD3jAA+ZdxlHpPe95z7xLAOAo4RwkAACAwREkYEdcddVVVbeq\nHjznUo5Wt5p3AQCwHwhIwI648MILO/bYYx964oknPnTetRyNLr/88nmXAAD7goAE7IhDhw71\n4Ac/uDPOOGPepRyVnvjEJ867BADYF5yDBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAw7HzLmAOjqluVJ1QXVFdPt9yAACA3WK/HEE6tXpO9d7qK9Vl1efG\n7Uurd1bPqm48rwIBAID52w9HkB5ava46qelo0QVN4eiq6vim8HSv6n7VM6pHNgUpAABgn9nr\nAenk6qzqS9UTqjdXB5eY7oTqh6oXVG+o7pSmdwAAsO/s9SZ2j6huWv1w9caWDkdVV1avqn60\n+obq+3ekOgAAYFfZ60eQblNdU/3NGqc/t7quuuO2VQTAvBxo+tGMjflSdWjeRQBst70ekC6t\njqtuUf3jGqa/ZdNRtUu3sygAdtb5559fUyuBH51zKUezF1b/Zt5FAGy3vR6Q/nL8fWH15Orq\nFaa9UfXSpl/H3rbNdQGwg6655prue9/79qQnPWnepRyVXvnKV/bud7/b0TdgX9jrAekj1W9V\nT6seUL2p+nBTL3ZXN/Vid0p1t+pR1c2rX6s+Oo9iAdg+N7nJTTrttNPmXcZR6SY3ucm8SwDY\nMXs9IFX9dFPX3s+qnrrCdBdWz6xeuRNFAQAAu89+CEiHqt+sXlx9W3XnpnOSTmjqve6z1XnV\n+Vv4nMc3dSt+wzVOf4ctfG4A2FKXXXZZ1WnVv5xzKUezdzd93wB2uf0QkBYcatox7cTO6ebV\nv2jt6/drt7EWANiUiy66qBvf+Mann3rqqafPu5aj0Wc/+9kuvfTSV1Q/Me9agNXtl4D0kKZz\njL62ek/1+01HjxY7vqk53m+MYaM+Xd1nHdOfXr1rE88HANvq9NNP74wzzph3GUel5z//+Z1z\nzjnHzLsOYG32Q0B6dvXcmf//WdP5SI/p+keTjqluW528I5UBAAC7yg3mXcA2+8amgPTx6oeq\nezT1aHfT6q+ru86vNAAAYLfZ60eQvqfDHSa8e9z3t9VbxvBn1b2bmsQBAAD73F4/gnTrps4Z\n3rvo/o9Xj6hOrM6uvmaH6wIAAHahvR6QPt90XtEtlxj30epxTReJfU17/2gaAACwir0ekN7T\ndATpV1v6mkR/2XTx2EdWr69uvHOlAQAAu81eD0gfrv6w6RykC6q7LDHNf6qeVP1ALuAGAAD7\n2l4PSDVdlO3F1SktfRSp6lXVg6ov71RRAADA7rMfzru5pvqZpmsfXbfCdO+o7tx0gddP7UBd\nAADALrMfAtKCq9YwzcHqndtdCAAAsDvthyZ2AAAAayIgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAcOy8CwAA2MsO\nHjxYdbPqnnMu5Wh2YXXpvItgfxCQAAC20QUXXFD1yDGwMS+rnjrvItgfBCQAgG103XXX9aAH\nPainP/3p8y7lqPSiF72oc8899/h518H+ISABAGyzAwcOdNJJJ827jKPSgQMH5l0C+4xOGgAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJD4/9u782hJyvIA489l7swwEPYdEQQXkCguBJXgAcQFxS1H3OISTkxijBHx\nxGOCceHqiXuiBzAkGhA0AiaauICo0WBQVMwwSiQKA8ouEscBZRiY5XJv/njfPl1T031vdd/p\nrttdz++cOn27tn6r6uu+9VZ931eSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZ\nIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKk3UHIEmSJHUzPT0N\nsAdwZM2hjLKfAr+pO4hRYYIkSZKkRWv16tUAz89B/fkY8Lq6gxgVJkiSJElatGZmZjjhhBM4\n7bTT6g5lJJ155plcfvnly+uOY5SYIEmSJGlRW7ZsGTvttFPdYYykZcuW1R3CyLGTBkmSJElK\nTbyDNAHsCGwPPACsrzccSZIkSYtFU+4g7Qu8C1gJ3AesA9bk3/cCVwJvAXauK0BJkiRJ9WvC\nHaRnAZ8DdiLuFq0mkqONwHIieToKOAZ4M9FDyspaIpUkSZJUq3FPkHYFPgP8GngVcBkw3WG+\n7YGXAB8GPg8cilXvJEmSpMYZ9yp2zwV2A14KfInOyRHABuCfgVcADwGeM5ToJEmSJC0qE8Bs\n/v0uYKq+UAbircR2Ve3fcAmwCXgb8P4FfO7BwPepfodukqgCuAzYvIDPnc+5k5OTf7RixYoB\nfsT4Wr9+Pdtttx3uv/64/xbG/bcw7r+Fcf8tjPtvYdx/C/PAAw8wPT19HvDHdceyyE0BZ8D4\nV7G7F1gK7A38ssL8+xF31e5d4OfeSty1qrp/J4gYB5kcAbxjenr6M+vWrRvwx4yt3WdmZli3\nbt3ddQcyotx/C+P+Wxj338K4/xbG/bcw7r+F+3HdAYya2Rymao5jEA4ntu1C5r+LtCPwRWAG\neNSA45IkSZK0eEyRedG430H6CXAO8HrgOOASIoNeQ1SlWw7sAxwBvADYE3gfcEMdwUqSJEmq\n3zjfQYKovvZG4Hba29ppuAE4paYYJUmSJNVniobcQYLY0LOAs4HHENXu9ia69t4A3AVcC1xf\nV4CSJEmSFocmJEgts0QidG3dgUiSJElanMb9OUiSJEmSVJkJkiRJkiQlEyRJkiRJSiZIkiRJ\nkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZI\nkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJabLuADRU3wOeUncQkiRJGqqrgKPr\nDmJUmCA1y03AGuBddQeiRjojXy1/qoPlT3Wy/KlOZwDr6g5ilJggNcsmYC2wqu5A1Ehr89Xy\npzpY/lQny5/qtHb+WVRkGyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJ\nkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSpN1B6Ch2lR3AGo0y5/qZPlTnSx/qpPlrw+zOUzV\nHIcGb7ccpDpY/lQny5/qZPlTnSx/1UyReZF3kJrlnroDUKNZ/lQny5/qZPlTnSx/PbINkiRJ\nkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJ\nkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqQ0WXcAqs0S4HeB+4FV\nNcei8bcDcChR7m4EflNvOGqgh+VwLbC21kjUNMuBh+frTfj7p+HakSh/E8DNwL31hjM6ZnOY\nqjkODc/BwJXEcb+65lg03rYD3gusp/1bswn4OLB9jXGpOSaAU4EHiPL3vHrDUYNsD3yQdtlr\nDV8kknVpkPYGPgFspl32ZoDPAgfVGNdiNkV7X5kgNcwpxNWDHxJfGhMkDdJ7iN+XLwHPBp4G\nnJfjPlljXGqG/YCvEr9112CCpOG6kPbv3wuI38CP5bgbgWX1haYxtwz4EVHWzgGeA5xEXJyc\nBVYDS2uLbvGawgSpkfYgjvVZxK3+DZggaXD2JMrYSrZu7/gF4krW4cMOSo1yNlGl5CnA6Zgg\naXgOI8rbN4m7mEX/ntNOHHZQaoyTiTL20Q7TPp/TnjbUiEbDFJkX2UlDs2wirmK9EdhYcywa\nfycRifi5RDJU9HHipOFFww5KjfJV4PHAVXUHosZ5EPhL4O3k1eiCK/N1/6FGpCb5AfBS4EMd\nprXane8yvHBGj500NMs64JK6g1BjPD5fO3UCcnVpHmkQvlx3AGqsG+l8cgrt9kc3DicUNdDN\nOZRNEHeOpommFurCBEnSoByQr3d2mLaG+IF+6PDCkaTaHQb8IXGF/zs1x6JmOIDoRfYhwKuB\n44A3A7fWGdRiZ4IkaVB2yNcNHabN5vgdhxeOJNXqQKIHu2nglWxd9U4ahBcDH8m/7wT+ALio\nvnBGgwnSeNkHuKI0bhXxQywN23S+dvudmSTaxUnSuDuK6M1uO+DpwPX1hqMGuQS4DdiX6Enx\n08DLgJfg/+Cu7KRhvMwAd5WGu2uNSE3Wehjnbh2m7UA8I8TyKWncvRz4FvGb+GSiep00LD8j\nek48h+ioa4p2h13qwgRpvKwBji8Np9YWjZpudb4e2mHaYfl63ZBikaQ6tKozXQEcDdxSazRq\niqVEm6MlHaZdmK/HDi+c0WOCJGlQvpGvJ3WY9vx8/dqQYpGkYTsJ+ATR7uh5RE+y0jCcBdwB\nPKPDtH3y1ep18/BBsc3lg2I1aN8lnrl1fGHc44F7iTtMtoPUsPigWA3TLsAvgR8DK2qORc3z\nNOL37lq27C12L+I5XLPAa2qIa7Gbop0XmSA1yKuJBya2hhngvtK4A7ouLfXuUURbuBlgJZEw\nTQP3AE+sMS41wxW0f9tuI/7XXV8YN1VbZBp3byLK2+1s+T+2OLyjtujUBO8myuBGot3bfwPr\nc9y/0bn6XdNNkXmRV2+b5UG27HL5Wx3msdtRbUs3AI8BXk/04jQBvA/4Bzo/H0naljbS/k27\nKYeizcMNRw3ya7buVbbM8qdBeieRCL0aOIR4rMZFwKVEtU/NwztIkiRJkppsisyL7KRBkiRJ\nkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJ\nkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJ\nyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJ\nkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRk\ngiRJkiRJyQRJ0qg5Fjiy8P5cYBZ4RD3h9OQzRKz71h1IH0ZpP9dpWx/jQZeZ8vdJkhrPBEnS\nqLkMOLvuIPp0EfBWYF3dgTTYBPBV4EkDWn+/x7hbXIMuM6P8fZKkgTBBkjRq7mN0E4wvAe8H\n1tcdSIM9EjgR2H1A6+/3GHeLa9BlZpS/T5I0EJN1ByBJPep2QjebrwcR1ZFuA34xx3oeCewF\n/Aa4HniwNP2xwB7AlcB0YfwEcBxwD/A/pWX2AA4kLj7dCvyqNP1wYG/gu8CmfL8XcEVOPzin\n3wrc1SXuXYFDC3FD3HWYAa7uskwVE8BhwM7AzcAvu8zXy35emvPtSWzP7Wy9n4v7YGfgiPz8\nn/e4nirb8VjgRfn3EcAG4IfEviw6JLetW9mYK+byMW6Zq2zMFVe39VU9XvOVyaoJ0pOBFV2m\nrQNWVVhH1Zhaqm4jzP99rlLOYP5jL6khZnOYqjkOSariGuCCwvtW25gnAF+j/Zs2C3wB+K3S\n8s8DbirNdzdwWmm+S3ParqXxkzn+G4VxBwFfJpKU1jpnctxehfnK7Uk+me8PAb4NbCaSsW6x\nfyDnaX3GNcSJ4f8BK+nfScAtbLlPLgH2K8zT634+LeMqzncL8ILSfK198jgi6ZwFXtzHeqps\nx6WlabPAUwvLHw/8pDR9LfDGHmIuH+MqZWOuuDq1QapyvKqWyfL3qZufdoixNVRNzKvGBNW2\nEap/n+crZ8dT7dhLGl9TtL//JkiSRsohwP6F960T9+8BZxFXup9MnEzNAu8szHsMkYCsJqoz\nHUCcGK3MeV9bmLeXBOmbxFX/PyGueB8GvAG4H/h6Yb7yye55+X4VcAqwPbAM+Lscf0Zh2dfm\nuB9kzI8E/gb4MVH96ir68yQi6boROJlosP9mYj+tol0Vu5f9/KIc91/E3bZHESe8N+RnHVaY\nt5UkfoP4P3Qs7f3Ty3qqbMeOtP8Bnkwc2yW5/BOAjcTJ/jOBhwJHA1/J+f+0YszlY1ylbMwV\nV3l9VY9X1TJZ/j51cyDRQUdxuDBje0+F5XuJqeo29vJ9nuuY9XLsJY2vKUyQJI2J1on7BaXx\n++X4/yyM+48c99jSvLsRVY1uLozrJUHaTJzEl72UOLHrdrLbiv2DHeKZBS4vjPtBfk75Cnpr\nHf0mSK0r+geXxv99jj+29DkXlObrtJ+fBbyXrXu8e1nOe3phXGu953WIrZf1VN2O03PZZ5fm\nu4RINPcpjV8B3EFUBasSc/kYVy0b3eIqr6/qdlb93H49PT/v+1Svrl81pqrb2Mv3ea5j1sux\nlzS+pjBBkjQmWic+T+8wbT3tdkJLiavXN3RZT+tq8UH5vpcE6WbihOzEeWLtliAd32He+wqx\nLyfaQnSqyvQk+k+QJoEHgGs7TFvKlh35VN3PRbsARwEnAM8gqivNAh/ucYj28gAABnlJREFU\nsN7nzhHnfOvpZTs6JSJLc/mfAi/vMHwvlzmwQszlY1y1bFRJkHrZzqqf2489iLY79wIP72G5\nKjFV3cZev8/djlmvx17S+Joi8yI7aZA0Lm7vMG4z7avS+xGJxk1dlm9dJX4ovV8xfi3wOaKb\n5p8Td1O+QvRAdn+F5e/sMG6aduz7EieGnbaxU2JS1f5Etb47Okzb3GWZ+fYzRE9s/0hUkVtC\ndC6wmfbJbaceVDvFUHU9/WxH0X65/MOBi+eYr9UpxVwxly20bBT1sp3b8nPLzstYTgF+Vhi/\nD+0OR1pWAa/sIaaq29jv97m83n6PvaQxZjffksbFzDzTl+brpi7TWydfy/v47K8TbTneBFxH\nVBm6mEgmnl9h+fliX1aKsWgj/fe01don03POtaX5YoWohvcS4CPEieVyohOHE+ZYplM31lXX\n0892dFr+20S1qm5DuSOMKl1vL7RsdIqzynZuy88t+jPghbmuT5WmzRC9DBaHu3uMqeo29vt9\nLh+zfo+9pDFmgiSpKVonant0md56/szaedZT7q2tZS1wJtHIezfgVUQ3xZ8mqogtxH35ulOH\naXvRf3uS+fZJP3Ylehb7EfAWoge6lj0HtJ6FbkfrmO9LVNvqNswuYP3bomz0up3bukw+muhA\n5BYiUSpbQ1QXLQ6n9hhT1W3cVt/nQR97SSPIBElSU9xDtIE4gs53iY4iToSuy/cb83XH0nyP\nLr2fIHqUK863gejh62zimSvlRuS9uouognR4h2kLaWNyD3GyewRbP+PmmUR1qGPpzS7EPulU\n9enkAa1nodvxa6INyiOIY1n2TOAh80a8tW1dNqpu5yDK5HLibs8yospc+dlR86kaU9Vt7PX7\n3M2gjr2kEWaCJKlJzifuAJ1eGn8KcXJ0Me3E6MZ8Pbow3xLgr9nyavJTiYbi7y6tcwJ4Yv49\n1wNrq2j1aHcgUS2pZW9iW6pUe+vmfOKktdil+A5EF+IvpHsbj25+TuzDJ9CuGgjw+zkO4s7B\ntl5P1e3YkK/l5+6cSxyz97DlHbmjiTYyH68Qc1kvZaNbXGVVtnMQZfIDxDOE3k08tLZXvcRU\n9Vj28n2eyyCOvaQRZy92kkZZq3eqclfQEFeH/7fwfjnxLJZZos3Bx4h2ETNEr1nFqluHEyet\na4H3E8/5uQr4W+BXbNkF98W5zhuAfwU+S/vBmmcW5uvWi12V2I8ketvaTDRs/xRRpenUjLPf\nbr63J/bFLLEPLiXuWM0Qz6hp6SXW1nOcfkTs4yuJhvIPI6pG3Q/8E7G/51pvL+upuh3H5Txr\niO6dfy/HL6Xd89l1xMn314i2MLewZW9tc8VcPsZVy0a3uMrrq7qdVT+3ikfk+h/M9X66w1BF\n1ZiqbmMv3+e5jlkvx17S+Joi86IltBOjK+j8fAJJWswOJe4w/AuwrjTtqcSdoC/m+weJk7mf\nEXdfDiBOtD8K/DnRbXHLGqI6zw7EAy13JjoN+DDwO0T1nq/kvJ8Hfphx7E7cnb8a+AviBL7l\n8Jx2EZHs9BL7L4ir2UtpP+flncSJ5hnEidz5nXfRnKaJfXJrbuMK4g7BG4AvFObrJdavE3eA\ndiH2x3eIh4PeSSQ7exL/hC4humHutt5e1nNfxe24lUh6dyCqaX2T6NlshjiB/wlxV2L/nH4+\n8Dq2vOMy174oH+OqZaNbXOX1VT1eVT+3it2Ju0e3Ee3gdu4wXFBhPVVjqrqNvXyf5zpmvRx7\nSePreAqP3fAOkiSNhkmiKlDRwcRv+FxdFEuSpLlNkXmRbZAkaTS8nbiD8MrCuO2At+Xflw09\nIkmSxpAPipWk0XABUb3sk8BriGo/jwN+m6jqdxHxoM6juyzfyUqiCpskSUomSJI0Gu4gevt6\nDdEGai/gGqIDiYuJ9hhHEu2mqnoF0YZJkiQlEyRJGh1rgQ/NMf0y/F2XJGlBbIMkSZIkSckE\nSZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIk\nSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIk\nSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVKaLPx9DPBX\ndQUiSZIkSTU5pvXHBDBbYyCSJEmStGhYxU6SJEmS0v8DUwjdKHtJeL8AAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'housing_characteristics' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebxtd13f/9eVhIQhAULNwEwYhFAQBQRBBFGZIgIFldEWfzgU+KktigP+\nfg0KpVWqFqSKpYiAKAq1aBkKgmUUSkF+YDCADBJIgEAYEggZ7++P9T29++6ce89wzzl733Oe\nz8djPc4+e3332p9z1trDe63v+q591f4AAADomxZdAAAAwLI4Zub2O6q3L6oQAACABfmu6l4r\nv+wf01mLqgYAAGCBzmrkIl3sAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nYOPuO6Z7b+Ey/67aP6Zf3MLlbqVlqHEZathpe/FvPhqc0Pa8F7y/A+v7V7ZwuctiEdvzkTyn\n1x/sQccsugA4Cv31+HlhdcNFFgJsu5tUt64+X31o5v7T817A5hxqmwKWhIAEm3fRogvYYY+o\nrjVun7fIQvYY//fF+q3qkdUrqkfN3H/RIW5zeEfb9rwd9R5qmwKWhIAEm7fXvhR9eNEF7FH+\n74tz3erMQ8wTkDbnaNuet7rew21TwJIQkGDzvjr3+z2ra47bH6y+OG6fXp1cfbb65Aaf46ZN\n3TE+X31sbt71qzvP/P7eVv+idufRtuqC6uy5+adWN6v2VZ+pzq+uXGU5d6uuM25/vPrUIWo+\nprrteM4vVx+prjhE2xXfXN2iOrbp//TxNdpvh+Oa6j6h6f/9D4doN7ue39eB7eBw6+qU6vYz\nv/9Ndekqy/7W6gbj9hebtqPD/d9Xq+W0pu47n6r+cZXnuOWo5/Lq3FHvoWzmbz3cY69RfUvT\n//qj1cVzj7lR07a4ntfKdq6vE6q7VPfqwNGDk5vON6p6+1zt8+8F67Fv1H+DpnW1maMTR7ou\nt3J9rPc1vNHtuda3vW3Gepa73ve9td5H17NNrfY+uZF1vGJ22zp31FN1m+rG4/a5Hfw3b/S9\nZL3re7u3O9g2KycfnrXgOuBocXnTa+b1c/d/qgOvp8dW3139/cx9+5u+GN92lWXOngj81OpW\n1TvmHvu+Dv6Sfb3qazPzn7TKco9pOj9ipc3Pzsx7QtPe0f1z02erZ3bgS8FqNa52svINq//U\n9AE4u7wvV/++uvYqj3lI9ber1PDJ6p+v0n47Tpi+UfWH1dfnavh09eOrtJ9dzw9ofevqNnPz\nf3CV5R7TFIpW2vzyuP9wf/O5c7X8VNOXrPkT/I+v/t+mL+Hz/+u/a/X/9Wb/1kM99m5NX4ZW\n7ruo+r9H2xOrV88t9w0dCPazdmJ93bWr/59mp5W6DvVesJYzq0/MLfNNTV/Y3zdz32qDNGzV\nutyq9bGVr+Ej2d4OZzPvr+upt9b/Prrebao2v45rWh+fnHvM/2wKHH80c9+z5x633veSja7v\n7druYDuc1YFt7//cOGtx9cBR5fVNe/ueOXf/OR14Pf3HpiMEq30QntvV3/DnP4TPPcRjP9nB\nQeMPZ+a9eZVa7zcz//KmPZY1feDNLveq6rK5+97ZwUeZD/dF4eQO/tBbbfqbpg/+FT86N/9r\nTXsSZ+/7yTX+T0fq5k17V1eW+Y2mPaVXzdx31txjZtfzE1v/uvrfM/NeuEot3zsz/6pRWx3+\nb56t5aerS2Z+X/lSc93q3YeocXb6vVVq2uzfOv/YJ3Vw+Jv9O+9V/cUhlvuKuWXu1Pq6S9OX\nw9nlXjXuu6Jp50Qd+r3gcO7XgWA1P32ow49it1XrcqvWx1a/ho9kezuczb6/rlXvRt5H17tN\nHck6/v4OhJr56e+rN878/m/mHrue95LNrO/t2O5gu5zVge3ukB8qwMac3cFv+H/Z1I3gtOoZ\nHfyG/2tzj539EP5MU7e0R1cPr94299gfnXncvWfuv6Kp28Os356Z/9/Hfcd34MjTldUPdCAI\n3a76wMxjHneIGue/KLxqZt65TR92JzTtMfzCzLxfHe2PbeoqsnL/748a9s3V/IXWH9I2469m\nlve6UXPVGR3Ye3tFdcdD1HBuh19Xj5953FNn7v9cV7/MwvNn5r/lEM83/zfPzvto05ealzcF\n9IePNn8w0+aipnV6YlPXmd+Zq/dHDrP8jfyt84/9TNNe7Ac3bQOzj/tgU9D52aYT4meD9vw2\nvZPrq6YvoSvz/qSt8cGZZZ7fdKT5uOo7mroJztYzH5C2al1uxfrYjtfwkayrw9ns++vh6t3s\n++ha29RWreMvNL3/Xqfpc2I+FM5vW2u9l2zF+t6q9wHYLmd1YLv7PzfOWlw9sCvMfhB8pat3\nUXv9zPz5E39nH3tZU7/zFSc2fVCuzP+ducfO7qH7ibl5H5+Z90PjvlvO1Xn83GPu3NRV4vub\nujOtVuPsF4VbdvBe0UfOLe9nZuatnGdxUvVzM9PNZ9rfqoM/OO+wjho244y555nv+viUmXnP\nPUQNG1lXN276IrUy7ztn5u1r6iK2Mm+2q9h6v1Dur75nbv5NO3iP8mrdMF87M/9/HWb5G90u\nZx97UQf2kNfV9xT/65l595ubd/9x/06vr9r6gHTHub9h/kv+g+fmz36J3cp1uRXrYztew0ey\nrg5nq7bj+fe9zbyPHm6bOpJ1fKcO/p8/ce5x/2xu/uEC0mrvJVuxvrdiu4PtdFZjmzNIA2yP\n/9a0d3HWq5v26NV0Tsp1u/rJqTUdefrEzO9fbeovv/LYfzLX/oXVb4zbj2jas1fTl7GVLwJf\nbvowqmmv9debupKc2PQh+8fjOd7T1MXn/Yf74+Z8T9MX/JreWF47N/951Qvm7ruwes64fcOm\ngSxuMZZz3bm229X//Ltnbl8+ajh95r5jD9F21kbW1Wea9lbfZ/z+g03dDms6erBy8vSl1Z+t\nXf7VvLUD1+VZ8b1NJ0SvWO1L/quqB43bd2naJlYbdGCj2+Wsv2j6ErniLU3nMqx42czttzZt\nRyvb1Enj506vr+1w17nf518rr2/6P12vq9vKdbkV62O7X8Pbta62arlb/T5aR7aO7zLX7tVz\nv/9FU0A5obWt9l6yFet7K7Y72BECEmyP1Ub0+eTM7X1NXQZWC0jnrHLfZ2duz79u/7D6t01f\nEO/X9EFyYQcPBPCKDoya9o3qWWOqKUitdEm6rKnP/J9UL271kdbm3WLm9hebvjTMumo857y7\nNXXNuOcay9+3xvzNusnM7WObumwdyq0Pcf9G19UfdyAgPbT6pXH74TNtXtMUaDfqb1e5bzZA\nXDimebPb6jc1/V9Wu3jlRv/WWfMjhH1h5vZFHTwy1xVNX6JWvmStLHcR62urnTZz+2sdGOly\nxVVNQXq1gLSV63Ir1kdt72t4u9bVVi13q99H68jW8fy2dcHc465oOkq9ngEuVnsvqSNf31u1\n3cG2s8HB9lgt+Fw29/uxq7Sp1YfqPtww2Rc07Zl7RNNr+mHVi5q666x4ydxj/m3Tye2/WP3T\nmfuv2TTs7H2bunfcr6t/iZt3rZnbaw3nveJ2TXsoV7ohnts0yMTFo4bVRiPbatecuX1ZB47m\nrGZ/05eRq+bu3+i6emXTEbVjm76o3LrpvJPZgPTSwzz+cFYb/ne228/89rfi8rnfjztEu43+\nrbPmQ/OVh5k3P3/FItbXVpv/G1az2s6E2tp1uRXrY7tfw9u1rrZyuVv5PlpHto7Xs22ttm5X\ns9p7yVas763Y7mBHCEiwPU5e5b4bzv3+lVXabNYLmwJSTUcmXtnUbaumL+DvXOUxfzSmm1Xf\n1bR38Ps70H/8Tk2DSazWD37Wl2ZuX79p7+H+NR7zsx34oP109W0d+AJxSjsTkGbrvqoD1yPZ\nTl9sGklqJbw+uGnggZXzaS7s6t2u1ms+DNTBe2hv0OqhYf7k5/k9z8tiEetrq812dzuhqTvV\n/JfAUw/x2GVbl8vwGl4GW/U+Wke2jmeD30a3rXmrvZdY3+wp86MoAVvjO1e5b7aP+FeaRjLb\nKm/owAUMv7epj/rKDpD5o0ezvmk87uXVv2raC/pzM/PX6kpR9f/N3D6+g0/QremD9K/G9Iam\nI06ze1v/poP3rs5e/HY7fXDm9vEd3L1lO7185vYDOrgP/p916L2/mzF7EvdxXf08hZpGHFxx\nftOXn2W0qPW1Yiu6es5ezPaYpi/Ps27dwV2lZi3bulyG1/Cy2Oz76Pw2dSTreH7b+ta5x926\ngweL2Cjrmz1FQILtce+mvYkrTmm6oOCKN27x813V1K2upr18Tx+393f1LluPabomz1ebhh+f\nN/tF9JJ1PPebO/jD8mlz85/aFNq+t+mE4ks6OATceOb2Nav/Z+7xq52PsRXe3MHn+vzS3Pxf\nbQqxH2j1C3Zu1qs70J3kPh0ckDbbve5Q3tbBJ6T/WgefBH6bDh7t6sVb/PxbaRHra7br1a22\nYHlv6+AuUvOvlV/u0EFs2dblMryGF2mz76OH26aOZB3Pb1u/1MHb0uG2rfXY6+ubPUYXO9ge\nn2k6WvLHTX20H9nBXSN+axue80VNV1//pg6cLPzWDh4couq9TXv8rtEUpG7fNNrSpU3dRB49\n03Y9Qxtf0vSF9HfH749vGq72vdU9OrDH84rqF8btd3RgGNl7Np2X89Gma37cvilAfv+Y/7Sx\nvNUujHgkvt70BeQ/jN+f2HRU4h1NXd5+uOkLxQ06MALgVri46ZpUP9wUZlf+P58Yz72Vrmzq\n2vOapu3iAU0nYL+haTCPR3ZgVKuPVP9ui59/Ky1iff3jzO27NK23TzeN5vUPqz7i8L7UNFLX\nys6SRzXt1X93U9es72waCn9lT//sTsxlW5fL8BpepM2+j661TW12HV/YdATrn4/fH1m9q2nb\n+vamLtfnd+gjlGvZ6+ubPWhljPmzFlwHHO1mr/fw9KYTWvfPTVe1+vV71rq+zwtn5r/yMDW8\nbu75nnCIdo/o4Culr1bn73TwF7S1anx60x7M1ZZ3YQdfH+mkDr4Q4Mr0tabR985cZd56atio\nfdWzO/j6RLPTVzow/O+KrVhXD1vlueYvHrye51vv/+ORTUdfDrW+39nBo8Std/mH+1sP99jH\nzcz7bFc3e3Hh2Yts7vT6umkHLgY6O80P170RN+jgi8WuTFdWP9XBF8N91iqP3451uZn1sR2v\n4a16H5y3XdvxZt5H17NNbXYdn9Sht62nNHWNW7nvcNdBWu1/tB3re7PvA7Bdzmpsc44gwfa4\nounCdo8bP09qOkLwklYfMOE9HThB91OrzP9w0zUjqs4+zPP+efXAcfvrHfpLxKua9i7+cNM5\nQqc0fYh/qekD9lVdfXjgtWp8VtOe0kc37Vk9cbR/Z9ORtNlueBc27TF/UgfO1zq76RpOK8PY\nPrHpg/fYpr2166lho/Y3dUV5yaj7jk3XNTlvPOdLu/pgGluxrl7btMd1duSpQ50rdrjnW+//\n45VNX7wf3XTE6uSm0dI+Pmp5wyaeuw7/tx7usZ+bedxqQxm/owPddGbP1dvp9XVu0573n2m6\nMOZFTa+LT6yynPX60ljmTzV1sTy26cjBS8bfcHIHenect8rjt2NdbmZ9bMdreKveB+dt13a8\nmffR9WxTm13HF45l/2TTICbHNg2t/ZKm7oD/10zb+aHH1/ofbcf63uz7AOyIlXR+1oLrgKPd\nVh/d2Iz/NlPDixdUAwDLZV+OyMBazsoRJNh1zmwa4rumF/h2nOe0jG7f5k4Kfk+uswHsHi9o\nOqp606ahx2d31D2yA5eauKppUAfgEAQkOLrduXpmU9eOb5+5/yUdPPz2bvbYNjfM7I809Z8H\n2A2+3oHub09rOk/p/U1DfM+ej/rSDh4sAliFLnawNRbRxe6+Xf3E2PdmmFWAveb4pvNQDzW4\nw/7qvzadtwdc3VnpYgdbbqsHEFiP85s+EE9sOon1bU0jMl1xuAcBsOt8o3p400Vif6S6RdPl\nJS6uzmm6Btu7FlUcHG0cQQIAAPaysxq56JvWaAgAALBnCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAMMxiy5gh51Y3a46\nuTq+uqQ6vzqn+voC6wIAAJbAXglIZ1ZPq+5VXWOV+ZdXb6yeVb1zB+sCAACWyF4ISL9YPbu6\ntHpTdXZ1wfj9uOrU6s7VA6oHVj9evWghlQIAAAu3f0xnLbiO7XDL6oqmYHTyOtq+p6nb3Wnb\nXBcAALA8zmrkot1+BOn+TV3qnlB9fo22n6geX/199aAcRQJg+9y9OmHRRSypq6q3Nu3gBNhx\nuz0gndR0ftGn1tn+w01vzKdsW0UA7HUnVu+69rWv3TWusdppsXvbxRdf3P79+x9QvWHRtQB7\n024PSOdXx1Z3aDr3aC3f3jT0+XnbWRQAe9oxVc997nM7/fTTF13L0nnQgx7UpZdeutu/nwBL\nbLdfB+l1TecUvaw6Y422d69eXl1UvWab6wIAAJbQbt9D87nqSdULm44gndOBUewuaxrF7pTq\nTtXpTSPbPab6wiKKBQAAFmu3B6SqF1cfqJ7aNJT3I1Zp89mmEPUb1Ud2rDIAAGCp7IWAVPW+\n6rHj9ilNQ34fX32jKRxdsKC6AACAJbJXAtKKE6ubdyAgXdI0iMPXqq8vsC4AAGAJ7JWAdGb1\ntOpeTddFmnd59cbqWdU7d7AuAABgieyFgPSL1bObBmB4UwcGabi0aZCGU6s7N52f9MDqx3OR\nWAAA2JN2e0C6ZfXM6s3Vo6vPr9H2T6vnNw0Pfv62VwcAACyV3R6Q7t/Upe4JHT4cVX2ienz1\n99WDOvKjSNeprrmB9pfmPCgAAFio3R6QTmo6v+hT62z/4eqqppHujsStmoYL38iFePc3Baor\njvC5AQCATdrtAen8plHq7tB07tFavr0p1Jx3hM/7sabzmtZ7BOlOTUesNhKoAACALbbbA9Lr\nmobyflnTdZA+dJi2d69eUl1UvWYLnvuDG2h73BY8HwAAcIR2e0D6XPWk6oVNR5DO6cAodpc1\nBZNTmo7gnN50HtBjqi8solgAAGCxdntAqnpx9YHqqU1DeT9ilTafbQpRv9F07hAAALAH7YWA\nVPW+pi52NR0xOrk6vvpGUzi6YEF1AQAAS2SvBKRZnxvTavY1jUB34ZgAAIA9xKhpBzuu+mj1\n04suBAAA2HkCEgAAwCAgAQAADLv9HKSfGNN67duuQgAAgOW32wPSKdVdmq55tH/BtQAAAEtu\nt3ex+y9No9H9l6Zhvdearr+YMgEAgGWw2wPSedVPVv+yeviCawEAAJbcbg9IVa+s/rDpKNJN\nF1wLAACwxHb7OUgrntjUfe7iNdpdXv1S9fZtrwgAAFg6eyUgXVF9YR3trqz+3TbXAgAALKm9\n0MUOAABgXQQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGI5ZdAE77MTqdtXJ1fHVJdX5\n1TnV1xdYFwAAsAT2SkA6s3pada/qGqvMv7x6Y/Ws6p07WBcAALBE9kJA+sXq2dWl1Zuqs6sL\nxu/HVadWd64eUD2w+vHqRQupFAAAWKjdHpBuWT2zenP16Orza7T90+r51euaut4BAAB7yG4f\npOH+TV3qntDhw1HVJ6rHN52b9KBtrgsAAFhCuz0gndR0ftGn1tn+w9VV1SnbVhEAALC0dntA\nOr86trrDOtt/e9P/5LxtqwgAAFhauz0gva5pKO+XVWes0fbu1curi6rXbHNdAADAEtrtgzR8\nrnpS9cKm0evO6cAodpc1jWJ3SnWn6vSmke0eU31hEcUCAACLtdsDUtWLqw9UT20ayvsRq7T5\nbFOI+o3qIztWGQAAsFT2QkCqel/12HH7lOrkptHqvtEUji7Y4uc7qWl48dUuSrsag0IAAMAS\n2CsBadbnxrTi1OoeTQM6/OMWPcf+MQEAAEeRvRCQrlP9WvUDTUeM/rx61pj34qYLyK54y/j9\nSC8S+6XqyRtof8/qoUf4nAAAwBHaCwHpD6ofqq5ouibS/1vdpKlr3aOqN1afbhrl7j5NAeoe\nC6kUAABYqN0+zPcdqkdWz2k6knSdpkEaHlv9WPWE6v7j9j2aBnK4e9MRHQAAYI/Z7QHpbtXX\nql9uGtZ7f/Vfm7rS7a/+cK79bzddN+muO1gjAACwJHZ7F7tTmgZkuHzu/nOrG67S/qqmEe1O\n2Oa6AACAJbTbjyCdV53WNKT3rNtXt+jqw3Bfa7S/cNsrAwAAls5uD0jvrI6rnld9c3Vi9fNN\nXe++Uv3KTNtrVP++OrZ6x86WCQAALIPd3sXuY9XvV/+yeuLM/f+x+nD1n6rHNF3/6HbVTavX\nVB/Y2TIBAIBlsNsDUtVPVx9vus7QpU3DeP9u0/lGJ1W/UN22aRCHl1VPWkyZAADAou2FgHRF\n0zDfz1ll3rOqZ1cnV19uupAsAACwR+2FgLSWq5ouGgsAAOxxu32QBgAAgHUTkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAACGYxZdwA76\nnurB1R2qk6vjq0uq86sPVH9R/a+FVQcAACzcXghIN6/+rLrbzH2XVZdWx1V3rR5SPb16ffW4\n6os7XCMAALAEdnsXu2Or11Z3rn6rumd1vaZgdOL4eVJ1v+pF1QOqv2z3/18AAIBV7PYjSPev\nzqh+tHrpIdp8qfrrMb2/em513+rNO1AfAACwRHb7kZIzqiurP15n+/9c7a++bdsqAgAAltZu\nD0hXNv2Nx66z/bHVvqaQBAAA7DG7PSC9tynwPGmd7X9u/DSaHQAA7EG7/Rykt1XvqJ5T3b16\nVXV2dUHTSHbHVadUd6oeUz2wesN4DAAAsMfs9oB0VfWD1QurHxrT4dq+uHpKutgBAMCetNsD\nUtWF1T+rbtN0hOiMDlwo9hvVZ6sPVq+pzt3C571T6z/36Vu28HkBAIBN2gsBacVHx7QTblW9\nr7rGDj0fAACwBfZKQLp+0/lGn5u5757V46vTq0ubroH0wupTW/B8H+vAhWjX4zuq12/B8wIA\nAEdgLwSkM5uug/S06vfGfU+vnjnX7iHVv246T+l1W/C8Xx/Tely0Bc8HAAAcod0+zPdJ1Sua\nzkP6u3HfnZvC0TnVQ6sbN3WJ+6mmI0l/1HTECQAA2GN2+xGkH6iuU927+ttx30OrK6oHV5+Y\nafuC6jPVX1YPajrqBAAA7CG7/QjSjZrC0N/O3HdS02ANn1il/RuqK6tbbHtlAADA0tntAemC\npqNkp8/c97HqhEO0v0HTyHNf2ea6AACAJbTbA9Jrmq519AdNR46q/qS6dvWwubbXrn636SKx\nf7VTBQIAAMtjt5+D9NnqydV/bjpy9GfV/6qeV728aQCHj1Q3abqY7KnVvx/3AdEf9dcAACAA\nSURBVAAAe8xuD0hVL2oKR8+snlj9+My8fzFz+zNNI9m9YMcqAwAAlspeCEhVb2kaye5G1V2q\nm1fXbRrA4QvVB5sGcrhqUQUCAACLt1cC0orzxgQAAHA1u32QBgAAgHUTkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGDY\nSED60er31rG8T1VnbroiAACABdlIQDq9uscaba5dnVx9y6YrAgAAWJBj1tHmXePnTaobzPw+\nb191y+q46sIjLw0AAGBnrScgvba6W3Wb6lrVnQ/T9qvVS6uXH3lpAAAAO2s9AelXx8+zqod1\n+IAEAABw1FpPQFrx+9WfblchAAAAi7aRgHTemE6t7lSd0HTe0Wo+NCYAAICjxkYCUtWvV09t\n7dHvntHUJQ8AAOCosZGA9B3Vz1cfrP6y+mJ11SHaHmqkOwAAgKW10YB0btOIdpduTzkAAACL\ns5ELxR5fnZ1wBAAA7FIbCUjvrW7XoQdmAAAAOKptJCD9z6aQ9BvVcdtSDQAAwAJt5Byk764+\nWT2xelz1/uoLh2j7X8cEAABw1NhIQPqepiG+q65XPeAwbf8hAQkAADjKbCQgPa/6g+rKdbT9\n6ubKAQAAWJyNBKQvjgkAAGBX2khAutmY1nKN6tPVxzZVEQAAwIJsJCD9WPVv1tn2GdVZG64G\nAABggTYSkN5aPesQ8765+o7qltUzqzcdYV0AAAA7biMB6c1jOpyfqR5R/damKwIAAFiQjVwo\ndj3+Y9PRpO/f4uUCAABsu60OSFX/WN1pG5YLAACwrbY6IF2/+rbqK1u8XAAAgG23kXOQHjim\n1eyrTqq+r7ph9fYjrAsAAGDHbSQg3aNpEIbD+Wr1r6qzN10RAADAgmwkIP1+9d8PMW9/dXH1\n8eryIy0KAABgETYSkM4bEwAAwK60kYC04tTqcU0Xhj153Hd+9Y7qZdWXt6Y0AACAnbXRgHRm\n9cfVCavMe1T1K9VDq3cfYV0AAAA7biPDfF+v6QjR16qnVHesThnTt1ZPra5RvbI6fmvLBAAA\n2H4bOYL0gKbrHN21eu/cvM9XH6jeWr2nun/1F1tRIAAAwE7ZyBGk05vONZoPR7P+d/Wp6nZH\nUhQAAMAibCQgXVlde53LvGpz5QAAACzORgLS2U3nIf2zw7R5QHWTXCgWAAA4Cm3kHKQ3Vh9r\nGqjh96s3N10XaV91o+r7qidWH6n+amvLBAAA2H4bCUiXVz9Y/bfqZ8Y07++rh422AOxd16ge\n3fq6Zu8111l0AQAc2kavg/Sh6g7Vg6t7VqdV+5sGb3hb9T+qK7ayQACOSrevXnrqqae2b9++\nRdeyVK688so+//nPL7oMAA5hIwFpX1MYurx69ZhWXLMpGBmcAYAa57i+4AUv6IQTVru2+N51\n/vnn99jHPnbRZQBwCOsdpOE7mq5v9M2HmP+z1VuqW21FUQAAAIuwnoD0rU0DMtyl+q5DtLl+\nda/R7uStKQ0AAGBnrScg/ZfqWtWjqj8/RJtfrh5f3bR6/taUBgAAsLPWCkh3bDpy9PzqFWu0\n/aPqxdXDm4ISAADAUWWtgPRt4+fL1rm8FzUN7XrPTVcEAACwIGsFpNPGz4+vc3kfGz9vtrly\nAAAAFmetgLRywdfj1rm8lYvffX1z5QAAACzOWgHpE+PnPda5vPuOn/+4qWoAAAAWaK2A9D+r\nS6tfqI5do+31ql+qvlK96YgrAwAA2GFrBaQvVS+o7lb9WXXDQ7S7dfXG6vTqd6pLtqpAAACA\nnXLMOtr8YnXX6qHV91X/vXp/dXF1UnX36gFNo9e9sTprOwoFAADYbusJSJdU96t+tXpS9SNj\nmnVB9VvVr1dXbmWBAAAAO2U9AakOnIf0q9W9qts0jVh3QdMQ4G9PMAIAAI5y6w1IK75WvWFM\nAAAAu8pagzQAAADsGQISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwLDRYb4BAGDZ/Gb10EUX\nscReUP36oos4WghIAAAc7e5473vf+/T73e9+i65j6bz61a/u/e9//+0XXcfRREACAOCod/Ob\n37z73Oc+iy5j6bz73e9edAlHHecgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMxyy6gB10\nneq+1R2qk6vjq0uq86sPVG+tLltUcQAAwOLthYB0zepZ1ZOrax2m3Zerf1f9erV/B+oCAACW\nzF4ISH9SPbx6X/XK6uzqgurS6rjq1OrO1aOaAtItq59aSKUAAMBC7faAdPemcPSb1c916CND\nf179WvX71U9Wv1P93U4UCAAALI/dPkjDdzaFome0dre5K6pfGLfvu401AQAAS2q3B6Tjqiur\ni9fZ/kvVVU0DOgAAAHvMbg9IH23qRvjAdbZ/eNP/5JxtqwgAAFhauz0gvb76dPWy6knVKYdo\nd9Om7nV/UH1sPA4AANhjdvsgDV+vHla9unr+mL7YNIrdZU1d8E6prj/af6R6aNMIdwAAwB6z\n2wNS1Xur21aPbepqd0YHLhT7jeq86n9Uf1n9aXX5YsoEAAAWbS8EpJqOJP3nMe2EGzVdc+ma\n62x/3fFz3/aUAwAArMdeCUhr+aWmo0xP2KLlXdh0NOq4dba/efUtrT0UOQAAsI0EpMmtqjtu\n4fK+Uf32Btrfs/qXW/j8AADAJuz2gPTTY1rLNzcd7fmH8ftzxwQAAOwhuz0g3aDp6NA3qg+v\n0e7YDlxQ9rJtrgsAAFhCuz0gPa+6RfUvms4LenL196u0e2F15+quO1UYAACwfHb7hWIvbBp4\n4fuqm1Xvr85q/aPLAQAAe8huD0gr3tQ0CMNvV09vCkrftdCKAACApbNXAlLVJdUvVHervla9\ntfrd6nqLLAoAAFgeeykgrXh/dY/q56rHVx+s7rTQigAAgKWwFwNS1ZXVb1b/tPpQ01ElAABg\nj9vto9it5ZPVA6vvrq5abCkAAIf1o9UZiy5iSd160QWwe+z1gLTirYsuAABgDb9829ve9ltO\nO+20RdexdN7xjncsugR2EQEJAOAoceaZZ/aQhzxk0WUsnYc+9KGLLoFdZK+egwQAAHA1AhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMxyy6AACAOdetbrDo\nIpaQHduwAwQkAGBpXHbZZVWvWHQdwN4lIAEAS2P//v09+clP7o53vOOiS1k6T3nKUxZdAuwJ\nAhIAsFRufOMbd9vb3nbRZQB7lL6sAAAAg4AEAAAw6GIHsHknVD9eHbvoQpbQaYsuAAA2Q0AC\n2Lx779u37z/c5ja3WXQdS+eiiy7q/PPPX3QZALBhAhLA5u077rjj+r3f+71F17F03vKWt/SM\nZzxj0WUAwIY5BwkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAACGYxZdwALsq65THV9dUn1tseUAAADLYq8cQTq1ekb1nuri6qLqgnH7\nq9Xbq5+vTlxUgQAAwOLthSNI969eWZ3QdLTow03h6NLquKbwdLfqXtVTq4c0BSkAAGCP2e0B\n6frVn1Rfrh5Xvba6YpV2x1c/VP1m9efVt6TrHQAA7Dm7vYvdmdUNqh+u/qLVw1HVN6qXVo+p\nblw9aEeqAwAAlspuD0g3qy6v3rXO9m+urqpuvW0VsayeVO03HXJ68+b/tQAAR4/d3sXuq9Wx\n1cnV59fR/rSm0PjV7SyKpXTabW5zm37iJ35i0XUsnXe961296lWvOm3RdQAA7ITdHpD+evz8\nreoJ1WWHaXud6vlNe8v/apvrYgmdeOKJ3eUud1l0GUvnvPPOW3QJAAA7ZrcHpA9V/6mp+9R9\nqr+szm4axe6yplHsTqnuVP1g9U+qZ1cfWUSxAADAYu32gFT1lKahvX+++qnDtPto9XPVH+5E\nUQAAwPLZCwFpf/Xc6nnVP63OaDon6fim0es+W32wOmcLn/PY6lHVtdbZ/lZb+NwAAMAm7YWA\ntGJ/UxD64A4812nV05uC0nocP37u255yAACA9dgrAen7m84xum717urFTUeP5h3X1B3vt8e0\nWZ+qbreB9ves3tEU4gAAgAXZCwHpV6pfm/n9XzSdj/Swrn40aV918+r6O1IZAACwVHb7hWJv\n0hSQPl79UPXtTSPa3aB6S3XHxZUGAAAsm91+BOneTd3mHlf9zbjvb6v/MabXVXevPrOQ6gAA\ngKWy248g3bTpvJ73zN3/8erMplHmXl1de4frAgAAltBuD0hfaDqv6LRV5n2kemTTRWL/uN1/\nNA0AAFjDbg9I7246gvRvq2usMv+vmy4e+5DqVdWJO1caAACwbHZ7QDq7+qOmc5A+XN1hlTYv\nqv559eB25hpJAADAktrtAanqx6rnVae0+lGkqpdW96u+slNFAQAAy2cvnHdzefXTTdc+uuow\n7d5WnVHdo/r0DtQFR4X9+/dXHVudvuBSltGpiy4AANhaeyEgrbh0HW2uqN6+3YXA0eScc86p\nulX1sQWXAgCw7fZSQAI24fLLL++0007rOc95zqJLWTqvetWreu1rX7voMgCALSQgAWs65phj\nOu201UbL39tOOOGERZcAAGyxvTBIAwAAwLoISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMByz6ALYUU+qfmzRRSypGy26AAAA\nFk9A2lvudsYZZ9zlgQ984KLrWDqveMUrFl0CAABLQEDaY252s5v1Az/wA4suY+m88Y1vXHQJ\nAAAsAecgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nxyy6gAXYV12nOr66pPraYssBAACWxV45gnRq9YzqPdXF1UXVBeP2V6u3Vz9fnbioAgEAgMXb\nC0eQ7l+9sjqh6WjRh5vC0aXVcU3h6W7VvaqnVg9pClIAAMAes9sD0vWrP6m+XD2uem11xf/f\n3r1HSVLVBxz/jju7w7KrsoAsKwi4gvhc8ZEAgbMQIz6CaHR5CR5RJCbmxEeiJno46mjUGKNG\nxRgfEAgo+IxGVERFQDiiIoggb4XlvQjLKrO782Q6f/xuna6prd7peXRX9/T3c06fmb5VXfXr\n23d66ld1762S9XYAjgE+DnwT2B+73kmSJEk9Z6F3sTsSWAEcC3yb8uQIYAQ4BzgB2AN4SVui\nkyRJktRR+oBa+v19wGB1obTEu4j3taTJ9RcBY8CpwIfnsN8nAj+n+St0/UQXwCXA+Bz2O53T\n+/v7X7906dIW7qI7bd26lb6+PqybbQ0PDzM5OcmyZcuqDqXjjI6OMj4+zvLly6sOpeOMj48z\nMjLC8uXL6evrqzqcjjI5OcmWLVvYcccdWbRoUdXhdJyhoSGWLl1Kf/9C7+Qyc0NDQwwMDLBk\nSbOHNb1j8+bNLF68mIGBgapD6TjDw8NMTEycAZxSdSwdbhB4Lyz8LnYPA4uB3YDfN7H+KuKq\n2sNz3O8dxFWrZuu3j4ixlckRwLsnJia+PDQ01OLddKVHA8uGhoY2VB1IBxoAdhsaGrqr6kA6\nUD+w19DQ0G1VB9KB+oAnbd68+bdVB9Kh9t26devvqJ+kVN3q4eHhO4BHqg6kA+01Ojp6/+jo\n6GjVgXSg3cfGxraMjY15kFPu+qoD6Da19BisOI5WeBrx3r7E9FeRlgH/B0wCT25xXJIkSZI6\nxyApL1roV5BuAD4D/B1wGHA+kUE/QHSlGwBWAmuAlwG7Av8K3FJFsJIkSZKqt5CvIEF083gz\ncBf191r2uAU4qaIYJUmSJFVnkB65ggTxRj8FnAY8g+h2txsxtfcIsAG4DripqgAlSZIkdYZe\nSJAyNSIRuq7qQCRJkiR1poV+HyRJkiRJapoJkiRJkiQlJkiSJEmSlJggSZIkSVJigiRJkiRJ\niQmSJEmSJCUmSJIkSZKUmCBJkiRJUmKCJEmSJEmJCZIkSZIkJSZIkiRJkpSYIEmSJElSYoIk\nSZIkSYkJkiRJkiQlJkiSJEmSlJggSZIkSVLSX3UAaqsrgIOqDkKSJKkFvgocV3UQ6n4mSL3l\nNuAB4H1VB6Ku8krgRGBd1YGoq+wHnAc8H3i44ljUXS4D3gVcXnUg6iqfAW6vOggtDCZIvWUM\n2AhcVXUg6irPA0aw3WhmxtPPXwMPVRmIus4k8Fv8ztHMPEz9e0eaE8cgSZIkSVJigiRJkiRJ\niQmSJEmSJCUmSJIkSZKUmCBJkiRJUmKCJEmSJEmJCZIkSZIkJSZIkiRJkpSYIEmSJElS0l91\nAGqrsaoDUFcaw7ajmRsDanhne82c3zmajTH8vtE8qqXHYMVxqPVWpIc0E0uAPasOQl1pddUB\nqCvtgz1cNHMrgWVVB6GuNkjKi7yC1Fs2VR2AutIYcHfVQagr3VZ1AOpK66sOQF3p/qoD0MLh\nGRpJkiRJSkyQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmSJElKTJAkSZIkKTFBkiRJkqTEBEmS\nJEmSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIkSZISEyRJkiRJSkyQJEmSJCnprzoAVaIP\n2CM97gPuAR6pNCJ1i8cCTwKGgduBkWrDURfZJz2uAzZWGok62a7AamAUuBEYqzYcdZF98DtG\n86iWHoMVx6H2OBa4lfrnXiMSpFOqDEodby/g60xtN6PAx4EdK4xLna8PeBORVNeAl1YbjjrU\nrsA3iJN12XfMJqLtSNvjd4zmyyD17x8TpB5yPPFZ3wq8HjicSIxuT+UnVRaZOtljiDO5E8DH\ngBcCrwAuIdrN2ZVFpk63Cvg+MA5cgwcvKtcHXEYkRx8F1gJHpbIa8LrqQlOH8ztG82kQE6Se\ndB1x1n+PQvmziDZwadsjUjf4W8q/I5YCdxP/mJa1OSZ1h9OIEzAHAe/EgxeVO4poGx8rlC8j\nvmPuARa1Oyh1Bb9jNJ8GSXmRkzT0ln8C1hH/bPKuJQ5yH9v2iNQNbgJOBb5QKB8GribGMu7W\n7qDUFb4PHAD8rOpA1NFekX5+vlC+BTgXeDxwcFsjUrfwO0Yt4SQNveWCBuVrgcXAlW2MRd3j\nkvQoszdxEHNfu4JRV/lu1QGoKxwAbAZuLln2y9w6l7ctInULv2PUEiZIvetQYGfgucTgxmuB\n91QakbrNq4E1wCdwNjtJs7cnjU+y3Jt+PqFNsUiSCVIP+w71LnXnAW/HqwBq3vOJ7jBXE93v\nJGm2dgQ2NFg2nH46zlFS25ggLSwr2XaihauAE0vWPRFYAewPnAxcD7yK6M+r3nMh0V0u7+mU\n3x/rZOCzRHJ0JLC1taGpg/0LcEyh7HXAFRXEou41QePjkazc+yFJahsTpIVlkm3Pwj3UYN18\nv91PE9NjnkN0Y7C7VO95EBiYZp1HAR8B3kbcE+k11M/uqjc9zLbfOR7IaqY2Eifsyuycfjb6\nXyZJLeE0371jJ+JmfGXOIdrBc9oXjrrMF4g28kHiviXSTDgFrxr5HnGCr2wm1X8k2s26tkak\nbuR3jOZqEKf57jm7E2fgzm+wfGX66dlflfkQcVPhdxBjjmrVhiNpAfkRcdLlJSXLjiK64P24\nrRFJ6mkmSL1jA3FX8oOAtzD1CsAJwAuAO4Ab2h+aOtwhxJm5s4i73EvSfDobGCKuTu+ZKz8Z\nODwt39T+sCT1MrvY9Y69gLuIz/tu4p4St6fnfwQOqy40dbBvEW3keuJmfGWPIyuLTp3sUupt\n5E6iHd2UKxusLDJ1mqOJHgzDwE+A3xDt5Rqie7hUxu8YzadBUl7kJA295U5gP+Ak4EBgD+Kf\nzxnAmcA91YWmDraebWdHLCqb7U4apd4d87b0yBtvbzjqYF8HbgTeQMyu+gDwOWLsoxMHqRG/\nY9QyXkGSJEmS1MsGcZIGSZIkSZrKBEmSJEmSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIk\nSZISEyRJkiRJSkyQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmSJElKTJAkSZIkKTFBkiRJkqTE\nBEmSJEmSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIkSZISEyRJkiRJSkyQJEmSJCkxQZIk\nSZKkxARJkiRJkhITJEmSJElKTJAkSZIkKTFBkiRJkqTEBEmSJEmSEhMkSZIkSUpMkCRJkiQp\nMUGSJEmSpMQESZIkSZISEyRJkiRJSkyQJEmSJCkxQZK00KwFnjvL154O1IB95y+cpn057Xv3\nNuxjzxbuo1XaUT8L0Vz+HiSpJ/VXHYAkzbPvAdcCf1Z1IDN0LnANMFR1IB3K+tm+PuAC4D3A\nL3Ll3fr3IEmVMUGStNBspjsPor+dHipn/WzffsCLgE8Uyrv170GSKmOCJGmhKR4QPgPYBbiU\nOMu+P7ACWA/c12AbtfRzb6JL152FdQ8mvj8va/D6Q9I2fpor2wXYi+jafAfwYOE1TwN2S68Z\ny5X3AU8BHgPcDvy+wT4Xp3h3BTYAdwGPNFh3rlYT9fJH4KaS/TwNeBxR5wBPJN7bHSm2zMEp\n7p802M9aYBy4gm3rJ7+PxwBriPq5p7CN/dJ6c421uG5fer4MuDltP7M/8OhUvr3kZL7q8ZnA\nK9Pva4AR4Fdpu80mSAcCSxssGwKuamIbmenaeqbZtg0z+xy31x6mq3NJAuKfeA0YrDgOSZoP\n1wBn5Z5/nfiOO5D6AVENmAS+AuyQWzcbg/Rs4ELq34814FvA8rTeV1JZ2diOfdOyb6bnewPf\nTfvLtjWZyh6Xe13ZGJu/JBK5fBznA6sK+3wLcH9hvfXAywrrzXUM0uHADYX9bATeXFjvf9Ky\n1UQSOQ5MsG09fiOVrSnZ1wFp2VcLse9eeP4sYFP6/ejc618K3FaI9SGirmYTa37dpwPXE4la\nDdgKvDZt41e58mHg9SXv7XDmtx6/U9hWDTg0LSv+PTTy25JtZI9fNvF6aL6tQ/Ntu9nPcbr2\ncDjN1bmk3jVI/fvBBEnSgrIaeHzueXbgdBtwPHHFYhfgc6n8Y7l1swTpCuBTRFJ1IHHgViPG\ndwAckZ6fVrL/U9OyLDm5mDij/9fE2fKnAH9PHFT/sCTOLAH4U+KA+FZgHZGMvY04QL6K+iQ7\nr0yvuwQ4DHgycfB5S3r9U0r2MZsE6dnAKHGwfATwBOIK0AVpm3+TW/eMVHYVcBKRhC4h6roG\nvDetd3R6/r6S/X2IqfVYrJ8sefgR8f9rbW7ZIUQ93Ux0O9uTOEC+Mr3mDbOINb/uz1IdPIq4\nerORuCLx8/Se+oF9iDY3SlyxzLSiHpdR/8e+DtgJWJSWFf8eGtmLSO7zjy+lbX6widdD8229\n2bY9k89xe+1hJnUuqXcNYoIkqUdkB9YfLZT3E93mNlHvbpwlSGcV1l2Vyi9Kz/uI7jsPEges\neb8mruZk2xwnkpeiY4mDwuxAtpgAZGfin1h43X+m8rXp+QuJZKI4895xaXvvzJXNJUE6H9gC\nrCyULwXuJrpSZbJ6/Ehh3RWp/Mfp+Q5EYvGbkv3dQtTv4kLsWf1k+zij5LU/SMueWbL/zcRn\nN9NY8+ueWlj3LMoT5g+k8hfkylpRjxCfcw14MfPjL4h29nOa747fbFtvtm3P5nMsaw8zqXNJ\nvWuQlBc5BklSr7ig8HyCuFL0CiK5uCm37JzCuvcRZ8F3Tc9rwH8D7weOIrqKQVy9WQP8R9o+\nxAHY84gz4BfmtvlVGusHnk9047q9sOytwJuIA0mIg8gfAI8F/oQY+/Io6geDu21nP81aTBzk\n3wP8ecnyu4CDiKsQd+bKv1dYbxNxoLpLej5CdBV7DTFu5+ZUfgAx5uS/iIPu7fnfkljXElcn\nrivZ/2VEErE3Uw+Mp4s179LC83unKc+uILWqHufbLsDZRBJyAvW2PJ1mwQUWQwAABjhJREFU\n2nqzbXu2n2NZe5hNnUvqYSZIknrFXSVl2UD3lUxNkMrWHad+BhzgTKKL02upJ0jH5ZZl3kCM\ng/o+cZB2EZGsfZtIuso8nri6cneDOPJ2Bj5LdLVbRIx/GafeTWk+7ne3KsXzJOC87ayXTWiR\nubdknQmm1uO5RIJ0NPWuXMemn19sIrZiHa0CBojubWWyg+knMPXAuplYM/cXno9NU55to5X1\nOJ/OINrgScDvcuUr2TYJvAo4Mf3eTFtvtm3P9nMsaw+zqXNJPcwbxUrqFSMlZdlVmOLJosni\niiXuJs6Sv5j6VZrjgKuZesb7h8Q4kLcCNxIH/+cRSdhRDbaddStr5sz9WcAxxFWr3YmDyuXE\nWfr5ksVzGdEtqdHjysLrmqnHi4jZy9blyo4mDox/WvqKqbY0iHWsuGKSHYQPFMqbiTVTm2F5\nppX1OF/eCLycaKNnl8SxofB4KLe8mbbebNue7efYqD3MtM4l9TATJEm9YkVJ2U7p5x9muc3T\nieTqaOCpxOxmZ5astxH4JDFAfAXwamIc0xeJrnFF2UHndF2odiJm+boWeAdTr2DsWvqK2dmY\nfu5OJJqNHtMlCGUmgK8RA+lXU+9e96VZxjpd3e2cfm5ssLyVWlmP8+GpxAQQ64lEqegBYpKE\n/ONNhXWma+vNtu35+hw7vc4ldSATJEm94jklZc8gzorfMsttnk8kJccAryLOdp+bW95HHOwv\ny5WNEAf/pxH3aykOQIcYY7GeGM9UvDfNEUQ3prXEAWcf5d2Q1pWUzdYfiGmg9yXeT9ERwB5z\n2H7W9eko6lMzN9O9rswmYmzLGra9ugAxTmuEuMLRbq2ux7kYID6HJUSXuT9uf/VtNNvWm23b\n8/U5dnKdS+pQJkiSesU/MPVeLEcS90y5mOZupFlmgpheeC1wMjHWIt/l6FAi+Xp/4XV91BO2\nRjerPZM42MxPM70jMTPay4mk6B5i+uJnM3U2vVelMii/cjYbpxNxf5CpY18OJt735+ew7Z8S\n40heRLy3K5l90gpRd8uZOoMfxJia/YhEYHQO25+LVtVj1oW0eL+hZv0b8ffwfprr2lg0k7be\nTNvO1puPz7GVbVfSAuU035IWsmx66E8QYya+Qlz5GSXGK+SvLGVTBRenzIY4E102HfV+1L9H\njyxZfl5adgsxm9fXqN+U85MlcWbTWO9AjJuoEWOavpPinyTuLZPJ7olzLXFvp8uJZGMfIlnb\nCnyB6HI3l2m+F1O/b8yNxMHrhUSSuJ4YBJ+ZTT1+mPhMapTfvLPRNN9l+xggEt8aUYefI8bH\nTBJ1me9+OJNYG607yNSbs2ZOSeXH58paVY+HpXUfINr3X5W8ppF9ibp5hGivXyx5NKPZtt5s\n256vz3EmdS6pdw2S/p97BUlSr/h34oaQE8TVljOIKYmvzq1zMzFL13DJ6y+nfCD3rcRMX/cS\ns3cVnUgcrF5CnCVfQkzbfAjwltx6N6R9Z4PSR4iJFk5JyxYRs+UdCHw697q3E7OH3UTMEPaj\n9L7Wp31fRJytn8jtYzZXT8aJBPA4oh72ILpBvYMYN5Sf7Ww29XgOMe36JUQyVFSsn+3tY5SY\n2vkkYoKA1USy+Eaia9aDs4y10brrU3mxW9p9qfz3ubJW1eOlxHigXxDJ04aS12zPT4gkZBWR\nQBcfzWi2rTfbtufrc5xJnUsS4BUkSQvbXK6aNOOgtP13t2j7kiSp9QbxCpIkzdkKYvzCQ0w9\n8y1JkrqUN4qVpJk7lJj04VBiHMTxRJedbrGSGKDerCuJCSEkSVrwTJAkLXRzGXfTyCPEGIuL\niYHjF8/jttvhucR0ys06gRh0L0lST3AMkiRJkqReNohjkCRJkiRpKhMkSZIkSUpMkCRJkiQp\nMUGSJEmSpMQESZIkSZISEyRJkiRJSkyQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmSJElKTJAk\nSZIkKTFBkiRJkqTEBEmSJEmSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIkSZISEyRJkiRJ\nSkyQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmSJElKTJAkSZIkKenP/X4I8M9VBSJJkiRJFTkk\n+6UPqFUYiCRJkiR1DLvYSZIkSVLy/93sny05eEuoAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title “'physical_environment' domain histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
}
],
"source": [
"# Histogram visualisation of domain z-scores\n",
"for( current_domain in unique_domains ) {\n",
" domain_scores_filtered <- domain_scores[,current_domain] \n",
" domain_scores_filtered[domain_scores_filtered == \"NaN\"] <- 0\n",
"\n",
" title <- paste(\"'\", current_domain, \"' domain histogram\", sep = \"\")\n",
" x_label <- paste(\"'\", current_domain, \"' z-score\", sep = \"\")\n",
" y_label <- paste(\"Count\", sep = \"\")\n",
" hist(domain_scores_filtered, breaks=\"FD\", col=\"grey\", labels=FALSE, main=title, xlab=x_label, ylab=y_label)\n",
" box(\"figure\", lwd = 4)\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "b8917dee",
"metadata": {},
"source": [
"### Calculate dimension scores\n",
"Need to collate the domains into the dimensions"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "0b6b1a07-abcd-4e93-bf99-c066e3ea0046",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 7\n",
"\n",
"\t | domain | sensitivity | prepare | respond | recover | adaptive_capacity | enhanced_exposure |
\n",
"\t | <chr> | <int> | <int> | <int> | <int> | <int> | <int> |
\n",
"\n",
"\n",
"\t1 | age | 1 | 0 | 0 | 0 | 0 | 0 |
\n",
"\t2 | age | 1 | 0 | 0 | 0 | 0 | 0 |
\n",
"\t3 | age | 1 | 0 | 0 | 0 | 0 | 0 |
\n",
"\t4 | age | 1 | 0 | 0 | 0 | 0 | 0 |
\n",
"\t5 | health | 1 | 0 | 0 | 0 | 0 | 0 |
\n",
"\t6 | income | 0 | 1 | 1 | 1 | 1 | 0 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 7\n",
"\\begin{tabular}{r|lllllll}\n",
" & domain & sensitivity & prepare & respond & recover & adaptive\\_capacity & enhanced\\_exposure\\\\\n",
" & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & age & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t2 & age & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t3 & age & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t4 & age & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t5 & health & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t6 & income & 0 & 1 & 1 & 1 & 1 & 0\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 7\n",
"\n",
"| | domain <chr> | sensitivity <int> | prepare <int> | respond <int> | recover <int> | adaptive_capacity <int> | enhanced_exposure <int> |\n",
"|---|---|---|---|---|---|---|---|\n",
"| 1 | age | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| 2 | age | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| 3 | age | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| 4 | age | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| 5 | health | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| 6 | income | 0 | 1 | 1 | 1 | 1 | 0 |\n",
"\n"
],
"text/plain": [
" domain sensitivity prepare respond recover adaptive_capacity\n",
"1 age 1 0 0 0 0 \n",
"2 age 1 0 0 0 0 \n",
"3 age 1 0 0 0 0 \n",
"4 age 1 0 0 0 0 \n",
"5 health 1 0 0 0 0 \n",
"6 income 0 1 1 1 1 \n",
" enhanced_exposure\n",
"1 0 \n",
"2 0 \n",
"3 0 \n",
"4 0 \n",
"5 0 \n",
"6 0 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 11\n",
"\n",
"\t | CCA | CPRO | CMUN | CDIS | CSEC | sensitivity | prepare | respond | recover | adaptive_capacity | enhanced_exposure |
\n",
"\t | <int> | <int> | <int> | <int> | <int> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> |
\n",
"\n",
"\n",
"\t1 | 17 | 26 | 1 | 1 | 1 | 1.1377171 | -0.3378133 | 0.18457796 | 0.1073270 | -0.15329655 | -1.00827077 |
\n",
"\t2 | 17 | 26 | 10 | 1 | 1 | -0.9881374 | -0.4065854 | -0.33477437 | 0.8522391 | -0.26183757 | 0.04893220 |
\n",
"\t3 | 17 | 26 | 100 | 1 | 1 | -1.5969460 | -0.4065854 | -0.22140412 | 1.0122262 | -0.17316713 | -0.05159845 |
\n",
"\t4 | 17 | 26 | 101 | 1 | 1 | -1.8689267 | -0.4065854 | 0.02693072 | 1.3626742 | 0.02106336 | -0.81142134 |
\n",
"\t5 | 17 | 26 | 102 | 1 | 1 | 0.4071804 | -0.3116725 | 0.44354790 | 0.7414772 | -0.09187444 | 0.80062025 |
\n",
"\t6 | 17 | 26 | 102 | 1 | 2 | 0.7600790 | -0.3203095 | 0.33117214 | 0.3141994 | -0.30936550 | 0.44207919 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 11\n",
"\\begin{tabular}{r|lllllllllll}\n",
" & CCA & CPRO & CMUN & CDIS & CSEC & sensitivity & prepare & respond & recover & adaptive\\_capacity & enhanced\\_exposure\\\\\n",
" & & & & & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & 17 & 26 & 1 & 1 & 1 & 1.1377171 & -0.3378133 & 0.18457796 & 0.1073270 & -0.15329655 & -1.00827077\\\\\n",
"\t2 & 17 & 26 & 10 & 1 & 1 & -0.9881374 & -0.4065854 & -0.33477437 & 0.8522391 & -0.26183757 & 0.04893220\\\\\n",
"\t3 & 17 & 26 & 100 & 1 & 1 & -1.5969460 & -0.4065854 & -0.22140412 & 1.0122262 & -0.17316713 & -0.05159845\\\\\n",
"\t4 & 17 & 26 & 101 & 1 & 1 & -1.8689267 & -0.4065854 & 0.02693072 & 1.3626742 & 0.02106336 & -0.81142134\\\\\n",
"\t5 & 17 & 26 & 102 & 1 & 1 & 0.4071804 & -0.3116725 & 0.44354790 & 0.7414772 & -0.09187444 & 0.80062025\\\\\n",
"\t6 & 17 & 26 & 102 & 1 & 2 & 0.7600790 & -0.3203095 & 0.33117214 & 0.3141994 & -0.30936550 & 0.44207919\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 11\n",
"\n",
"| | CCA <int> | CPRO <int> | CMUN <int> | CDIS <int> | CSEC <int> | sensitivity <dbl[,1]> | prepare <dbl[,1]> | respond <dbl[,1]> | recover <dbl[,1]> | adaptive_capacity <dbl[,1]> | enhanced_exposure <dbl[,1]> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 1 | 17 | 26 | 1 | 1 | 1 | 1.1377171 | -0.3378133 | 0.18457796 | 0.1073270 | -0.15329655 | -1.00827077 |\n",
"| 2 | 17 | 26 | 10 | 1 | 1 | -0.9881374 | -0.4065854 | -0.33477437 | 0.8522391 | -0.26183757 | 0.04893220 |\n",
"| 3 | 17 | 26 | 100 | 1 | 1 | -1.5969460 | -0.4065854 | -0.22140412 | 1.0122262 | -0.17316713 | -0.05159845 |\n",
"| 4 | 17 | 26 | 101 | 1 | 1 | -1.8689267 | -0.4065854 | 0.02693072 | 1.3626742 | 0.02106336 | -0.81142134 |\n",
"| 5 | 17 | 26 | 102 | 1 | 1 | 0.4071804 | -0.3116725 | 0.44354790 | 0.7414772 | -0.09187444 | 0.80062025 |\n",
"| 6 | 17 | 26 | 102 | 1 | 2 | 0.7600790 | -0.3203095 | 0.33117214 | 0.3141994 | -0.30936550 | 0.44207919 |\n",
"\n"
],
"text/plain": [
" CCA CPRO CMUN CDIS CSEC sensitivity prepare respond recover \n",
"1 17 26 1 1 1 1.1377171 -0.3378133 0.18457796 0.1073270\n",
"2 17 26 10 1 1 -0.9881374 -0.4065854 -0.33477437 0.8522391\n",
"3 17 26 100 1 1 -1.5969460 -0.4065854 -0.22140412 1.0122262\n",
"4 17 26 101 1 1 -1.8689267 -0.4065854 0.02693072 1.3626742\n",
"5 17 26 102 1 1 0.4071804 -0.3116725 0.44354790 0.7414772\n",
"6 17 26 102 1 2 0.7600790 -0.3203095 0.33117214 0.3141994\n",
" adaptive_capacity enhanced_exposure\n",
"1 -0.15329655 -1.00827077 \n",
"2 -0.26183757 0.04893220 \n",
"3 -0.17316713 -0.05159845 \n",
"4 0.02106336 -0.81142134 \n",
"5 -0.09187444 0.80062025 \n",
"6 -0.30936550 0.44207919 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Create a vector/array of the dimension names\n",
"dimensions <- c('sensitivity', 'prepare', 'respond', 'recover', 'adaptive_capacity', 'enhanced_exposure')\n",
"\n",
"# Get the dimension and their associated indicator ID\n",
"dimension_indicators <- indicator_mapping %>% select(c('domain', all_of(dimensions)))\n",
"head(dimension_indicators)\n",
"\n",
"# Initialise the dimensions score dataset with the GUID\n",
"dimension_scores <- indicator_data_weighted %>% select(all_of(GUID))\n",
"\n",
"# loop through each of the dimensions and:\n",
"for (current_dimension in dimensions){\n",
" # Identify which indicators are used within this dimension (current_dimension)\n",
" # Then select the indicators marked with value 1, which means that the indicator is part of the dimension\n",
" current_dimension_info <- dimension_indicators %>% select(c('domain', all_of(current_dimension)))\n",
" current_dimension_info <- current_dimension_info %>% filter(dimension_indicators[, current_dimension] == 1)\n",
"\n",
" # Get a array/vector of the unique domains in this dimension\n",
" current_dimension_domains <- unique(current_dimension_info$domain)\n",
"\n",
" # Count the number of domains in this dimension\n",
" dimension_domain_count <- length(current_dimension_domains)\n",
"\n",
" # Filter the domain scores dataset to only use the domains in the dimension, and add the GUID column name\n",
" current_dimension_data <- domain_scores %>% select(c(all_of(GUID), all_of(current_dimension_domains))) \n",
"\n",
" # Sum each data row to get the total score for the dimension\n",
" index_start = GUID_length+1\n",
" index_end = dimension_domain_count+5\n",
" current_dimension_data[, current_dimension] <- rowSums(current_dimension_data[index_start:index_end], na.rm = TRUE)\n",
"\n",
" # Add the current dimension score to the overall results\n",
" dimension_indicator_score <- current_dimension_data %>% select(all_of(GUID), all_of(current_dimension))\n",
" dimension_scores <- merge(dimension_scores, dimension_indicator_score, by=GUID) \n",
"}\n",
"\n",
"# generate z-scores with the scale function in order to standardise the dimension data\n",
"dimension_scores <- dimension_scores %>% mutate_if(is.double, scale)\n",
"\n",
"# Print the first part of the dimension scores, which are now collated into one table\n",
"head(dimension_scores)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "de22f297-47c5-471d-9fb7-f2528f722353",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde7xld13f/9eQTG4ESMIl4aYSJFAQioJCARX8WSCgQlVQEVsveClSoCqV\niq2BilpqVcArWpSCAmqkXhBEAblIRapSYigEA8QgFwMBMpNkhiQzvz/W9zxmz8mZOefMuexz\neT4fj/U4e++19tqfvc5e56z3/n7Xd+2pDgcAAEC3mHcBAAAAW8XJM7f/onr7vAoBAACYk4dV\nD124c3hMF82rGgAAgDm6qJGLdLEDAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGE6edwEA\nm+T21X3G7UPVWzfpuZuxvnm4XfVF4/bh6i0z83bC+1tv222bbKX9BWDTHR7TRXOuA9hc960e\nPqa7zrWSzfGNHfl7d2ATn7sZ61vORvyuH9+R93Djonmb/f62g+22TbbS/gKwGS5q/O3SxQ52\nr+dVbx7T4+dcy1bxsKYQccac66j1rcXvmp1gK+2fwA6mix3sXvuOcXun+tPqi8ftQ0vMv3f1\ntnH7n1XvW8VzN7OWE7HZv+v13l47wW7aJhvxXtd7nwA4JgEJdq/dFpA+W737OPO/ZQ3P3cxa\nTsRm/67Xe3vtBLtpm2zEe13vfQLgmAQk2L32z9y+5hjLnFLdozqr+nT1keMsO+vO1V2qG6rL\nmw6YFrtTdcG4fXX1nnH7jPGap1Tvra5d5rVWWuOxThy/b3Xb6ptnlv2y6ryxrr8/znMfVJ0+\nbn+sev8Sr3ubjnybXvXX1WknWMuZ431Wfaq6ZInXO6u6/8z9d7Wy3/XxnN20ja+vLqsOLrP8\n8U7SP9bv/XbV+dU/VR9etL5Tx3NOa3rPy53Xsp0+f0u5VdO2uOVY5we6+Xle6/0+Vmol613p\ne13JtlvJ/rnYarbfrLNGPQfGcw5Ue6uHzizztuqmcXupbX9S9c9HDbMDlzTW9YXVOR3Zl/Z3\nc5uxjwDLMEgD7E4/2pH9/8GL5t21+s2mf+KHZ6ZD1Z80nQewlG+t/t+i59xQvab6/EXLfufM\nMv97PPYfmg5mFx6/vvqxY7zWams81onjf7To+bPTzy3z3N+cefxvjlHnD8ws89mmA5gTreX5\nM/c/1tKXavjBmWWuajooO97v+nhuVb2s6Xe48PxPVf+u+rqZx1YzSMPi3/stqhcteo13VHcc\nyz+h+kRHb8MnHaPe7fj5m/Wg6g0dvS0ONx1Ev6z6vCWes9b3cSyz9S60Oq50vcu919Vsu5Xs\nnwtOZPvV9CXGyxc97+rqGU2BaXZdp84877s6etuf0xRmFu8TZ1e/1BT+Ztd1Y/XqjnzWF2zk\nPgIc20Ud2Y8EJNilnli9fUznzzx+h+qjHf2P/OCi+zdVX7tofc9ftMxHO/pg6iNN3+wv+OaZ\neZd2dJBYPD110WudSI3HOmj7/aYDlcUHLjdW/32Z537NouctNULc22bmv3SNtZzfdBC5MO8r\nlni9t87Mf9F47Fi/6+PZU/1ZS/8+DlevXFTjrOMdIC/+vT/3GOt/Q1NLweLtsfB6X7Rovdv1\n87fgSd38wH7xdNUS73st7+N4Zuv9xDLr/f7jPHfxe13ttlvJ/lknvv32NA1ecqznvGjR/Vmz\n2/7vqhcuqrGmFrf3zDx+qOlLhtn9+LKm1uGl1rue+whwfBc1s68v3LhofvUAW8h/7sjfhT9q\n6spSU1ey2YOkD8w858tnHr+hunA8fovqZ2bm/fbMc2YPoj7d9C31z1X/snp2Rx80Xb4ONR7v\noO28jj64uNei+cd67t6mg51jHSie23SwtzD/EetQyxtn5r1o0bzbdvTB0gM7cd+wqI5fbOri\nc3Y3DyOrCUiLf+9XV89sGl1v8YHkpU0h7XHVTy96zdn3vt0/f/ccjy3M/4Px2G2qRzeFu9kD\n5tmWw7W8j+OZXe9nl1nvB4/z3MXv9US23XL7xFq23xMWrfvXm4L07cf7Xenn/BNNLUT/dzxv\n4cuQZ8wss79pgImquzd99hfmPfMY612vfQRY3kUJSMAxvKwjfxd+ZIn531l9fVNXrYUDjd+e\nec5vLVp+b1N3sIWD1zuMx2cPAg5Xv7roeYu/Nb3dGmvciIBU9ZKZeX+yaN73zMy7cp1q+ZaZ\neR9p+gZ8wb+ZmXdpa3PxzLo+0M278/3VzPwTDUiHm4YgX/Ali+Z9oiPneNXRrWPvmHl8u3/+\nZj9DV3Z0N66aWglma3nMzLy1vI/jWct6j/deT2TbLbdPrGX7/d7M4x/u5udm/9+Z+cf7nB9u\nGr1v76Jlvqb6oTEtHmji5TPP/Z3jrHc99hFgeRc19h/XQQIWm/2W+T83fRP6rdXdxmMvbTqo\n+MuODOE729XrYNO3tgvT/9fUpaamg4+HHON1F3/b+bpF92cPwE6kxo0ye0D+8OrWM/f/1aLl\n1qOW32tqtarpm+7Zc4q+bub2/1zj68y2Pr2+m9f+6jWuf8HLZ27/TUeftH5x03kqC2ZPej9n\n5vZ2//w9cub2a7r5IBh/1RSGF3zVcda1mvexGuu13o3Yd9ey/R4wc/u13TwELQ7cx/MTTSF8\n1h81tez8bPW3HbmW08M7Otic1bGtxz4CrIKABCz2Kx05mDi1+o7qFU3daK5sOtn4vjPLn9zU\nlWzBtzcdPM1OXzIz/wuXeM3D3XwEuI8vuj/7ze5qa9xIb+3IAfgpTQflNXXvmT0Qe8U6vd7B\nRev6xvHz1OpR4/ahdXi982ZuX7HE/H9Y4/pr+r1/aNFjn5y5/YHjzDt55ud2/vyd1NGDByx+\nzwtmu7Eda7CB1b6PlVrP9a73vrvW7Tf7OV/8WTzWY8fyt0s8trepS+pVTQOIvK0jF23+hpnl\n9tz8qdX67CPAKglIwGKfaOqS8rJuPoTvXarvazoQ+L7x2CmLlrms6VvMY02f6uY+N6ZZxxuW\nd7U1bqRDHd2astCK89iObJv/29JDcp+oX5u5vRCQvqJpWOOazlP6xzWsf09HdxVa/Lup9RlG\n+HPd/Pd808zt648zb8F2//yd2tEHx0tt6zq6ZWJxF7LZ567mfazUeq53vffdtWy/lXzOr1th\nHTdUn1ni8V9u6kp4dlPYeV1TSPyFpr8Ly1mPfQRYJd8uAEv5WNM38d/bdDDz4OpfNHVluWXT\nt7YvbjoZ+qNN/8QXDlRfWv3XLVjjRnpl9e/H7Uc3ffn0+Jn569V6tODvqnc2DWv8eU3XWZrt\nZvSyNa7/cFM3nluN+2cvscx5Szw2D9e1vT9/143pjHH/WF3Vbj9z+6oTLXqLWM99dy3b73BT\nSFsYQW4tn/OlugPesamFbMEPV/9t5v4vNV0zCdhitCABx3JSU3eutzX9U//6pvMEFrp7nNx0\ncFNHt47cp82zmhpX41jdXY7lXR25YOVtmw74FrraHWp15zGstJbZVqTHNI0uVtNoY69Zw+st\nmL0A55csMX+pIcbnZbt//t41c3upc6TO7sjoZzWdU7PdrWXbLd4n1rL9Zj/ns+cjLfjKY9Sw\nEvfp6Fpfu2j+/QO2JAEJmHVq00nFH2q6WvttF82/qqPPPVjo3vF7M499Y0ef53G7pu5eH2wa\nVekuc6rxeBZ3Ybn7CdT1ypnbP9aR1pc3tboWrJXW8qqOnKz9LdX9xu3fbeXdgo7nTTO3L+zo\na6pc0JGufVvBdv/8zQ6o8ehuHj5/vCNdwfY3/Y63oxPddsvtE2vZfos/5188c/9ere1zvrjL\n3ux1uB7T0QOs3GYNrwOsM13sgFkHm/rRf8G4/3+aDiY+0dSF5eFNXWFq6ibz1nH7F5vOGbhr\n08hMf9l0AL+v6aKHdxrLLR5NajNrPJ5PNnW1WTiH5yVNrTAfahqBaiVeWf2ncXu2u9tqu9et\ntJb9Tdv4KR3darLW0esW/HL19KYDy71N3/S/qqlb0jc3bduFkcfm/WXbdv/8/c+mLmdf3rQt\n39A0dPknxmMPmln2WU3XxdmOTnTbLbdPrGX7/Ur175o+4yc3nad2cVPL7zeMdXz+Cb7fv+3o\n7n8/39R18Pzq3zYF+68f8+7fdH2pNwVsCQvj5V805zqAreFWTRcePHyc6YpufhHSezd1VznW\nc17T0cPaHu9aKTV90z/7/NkWjBOpcbnXe/ES6/ijFT53wbsXPf+6jrQkzVpLLbMetGiZD7f6\n7oHH870dfaHbhek9TRemnH1s9mT3lV4Haan3PvsZWnyi/tNm5v39onnb/fN3VtPv+Fjru268\n/8XW8j6OZy3rPd5zT/Tvy3L7xIluv5o+Z0t9zv+uevLM/dVc72vB7IViZ6c3NH0e37Xo8YtW\nsN4T3UeA47uosf9oQQIW29d0Psujx8/zmw5qDjYduLy16WBz8T/u9zYdpD6xaXjrOzUdlHy4\n6VvixRctvKoj1+xYavSogx19TY/ZEa9OpMblXu/fNx1QPLypK9DHOnIuz3LPXfDCpou1LviL\nUetia6ll1jubuu8ttJAsXHhyvfxK07fg39X0rf+nm+p+WVPXtdnfzykdGSnseO9vuff+zo60\n8izumviPM89dPErfdv/8fabpoqIPawqfFzQdQH+qaZu8sqk1Y7G1vI/jWct6j/fcE/37stw+\ncaLbr6bW0r9pukjt3ca63lr9RvXVi97zrJX8XXhhR4LWnZu6Fr62qYXrpqZWqh9p6jb48aZR\n7k5bZr0nuo8AqzD7rQUA28f9O/I3/KZO7Nwp4NienhYZ2C0uauzv8+43DsCJOa3p2+kF/6u6\nfE61wHb18Or11aVNrVJ3mJl3SkcP0/3nm1YVMFe62AFsLz/dNCjDl3TkYO5g9Zy5VQTb12VN\n3fIWBoD4302DPhxuupbZwlDcB6r/vunVAXOjix3A9vHnHX1S9w0d/S03sDoXNp1fd6wBHj7V\nNCw3sLNdlEEaALalP236NvtQ9YGmgRTeO9eKYHt7XdOofE9sujbRnZpGZfxYU4vSq6pr5lYd\nMBdakAAAgN3sogzSAAAAcDQBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYDh53gUA\nsK2cWj2s2jPvQk7ApdXH5l0EAFubgATAanzNnj17fvfMM8+cdx2rcv3113fjjTf+j+op864F\ngK1NQAJgNU4+66yzuvjii+ddx6q84AUv6PWvf/1J864DgK3POUgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAMPJ8y5gk926\nuld1h+q06vrqY9X7quvmWBcAALAF7JaA9NjqP1QPrU5aYv4N1Z9Wz6/esYl1AQAAW8huCEjP\nrn6yOli9sbq0umrcP7U6r7p/9ajq0dV3Vy+dS6UAAMBc7fSAdLfqx6s3Vd9S/dMyy/529QvV\n65q63gEAALvITh+k4ZFNXeq+o+OHo6oPVd/WdG7ShRtcFwAAsAXt9IB0TtP5Rf+wwuXfXx2q\nzt2wigAAgC1rpwekj1V7q/uscPkvadomH92wigAAgC1rpwek1zUN5f2K6t7LLPug6reqfdVr\nN7guAABgC9rpgzR8onpq9WtNo9e9ryOj2H2uaRS7c6v7Vec3jWz3pOqT8ygWAACYr50ekKp+\no3pP9YNNQ3l/wxLLfLwpRP236rJNqwwAANhSdkNAqvqb6lvH7XOrOzSNVnegKRxdtc6vd5vq\nvzS1UK3EKdUXVI9Y5zoAAIBV2C0BadYnxrTgvOrBTQM6XLFOr3Fy0wh6p6xw+dtWD28KVAfX\nqQYAAGCVdkNAumVTa87XNLUYvaZ6/pj3G00XkF3wlnF/rReJ/VT15FUs/5Dqq6rDa3xdAABg\nDXZDQPr16gnVjU3XRPrP1V2autZ9c/Wn1UeaRrn7yqYA9eC5VAoAAMzVTh/m+z7VN1Y/3dSS\ndMumQRq+tfrO6juqR47bD24ayOFBTS06AADALrPTA9KXVtdWP9I0rPfh6veautIdrl62aPmf\na7pu0gM3sUYAAGCL2Old7M5tGpDhhkWPX9k0MMJih5pGtLvVBtcFAABsQTu9Bemj1R2bhvSe\n9c+ahtU+adHjp4/lr97wygAAgC1npwekdzQNnf3i6vbVratnNXW9+2z1ozPLnlT912pv9Reb\nWyYAALAV7PQudpdXL6n+bfWUmcdfWL2/+sXqSU3XP7pXddfqtdV7NrdMAABgK9jpAanq6dUH\nq8c1XYT1NdUvNZ1vdE71w9UFTYM4vKJ66nzKBAAA5m03BKQbm4b5/ukl5j2/+snqDtVnmi4k\nCwAA7FK7ISAt51DTRWMBAIBdbqcP0gAAALBiAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwnz7uATfSI6jHVfao7VKdV11cfq95T/UH1V3OrDgAAmLvdEJA+v/qd6ktnHvtcdbA6\ntXpg9bXVc6rXV0+uPrXJNQIAAFvATu9it7f64+r+1c9WD6lu0xSMbj1+nlN9VfXS6lHVH7bz\ntwsAALCEnd6C9Mjq3tW/rl5+jGU+Xb15TO+uXlQ9vHrTJtQH7F57qmc3fWmznfyzeRcAABtp\npweke1c3Va9c4fK/Wr2w+uIEJGBj3ar6iQc84AGdeeaZ865lxS6//PKuvfbaeZcBABtmpwek\nm5q6y+2tblzB8nubvtU9vJFFASz4nu/5nu5xj3vMu4wV+/mf//ne/OY3z7sMANgwO/1cm79u\nCjxPXeHyPzR+Gs0OAAB2oZ3egvS26i+qn64eVF1cXVpd1TSS3anVudX9qidVj67eMJ4DAADs\nMjs9IB2qvq76teoJYzresr9RPS1d7AAAYFfa6QGp6urq66t7NLUQ3bsjF4o9UH28uqR6bXXl\nOr7ufcZrrMQ91/F1AQCAE7QbAtKCD4xpM9y9KXTtWeXzVrs8AACwjnZLQDqr6XyjT8w89pDq\n26rzq4NN10D6teof1uH1Lm+6tslKt++XVa9P1z4AAJir3RCQHtt0HaT/UP3yeOw51Y8vWu5r\nqx9oOk/pdevwuvs2aFkAAGCD7PRhvs+pXt10HtLfjcfu3xSO3lc9rrpzU5e472tqSfrNphYn\nAABgl9npLUhfU92y+vLqb8djj2u6aOxjqg/NLPsr1T9Wf1hd2NTqBAAA7CI7vQXpTk1h6G9n\nHjunabCGDy2x/Buqm6ov2PDKAACALWenB6SrmlrJzp957PLqVsdY/uzqpOqzG1wXAACwBe30\ngPTapmsd/XpTy1HVq6ozqscvWvaM6peaRpL7s80qEAAA2Dp2+jlIH6++v/rVppaj36n+qnpx\n9VtNAzhcVt2l6WKy51X/dTwGAADsMjs9IFW9tCkc/Xj1lOq7Z+Z9+8ztf2waye5XNq0yAABg\nS9kNAanqLU0j2d2pekD1+dWZTQM4fLK6pGkgh0PzKhAAAJi/3RKQFnx0TAAAADez0wdpAAAA\nWDEBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgWE1A+tfVL69g\nff9QPfaEKwIAAJiT1QSk86sHL7PMGdUdqnuecEUAAABzcvIKlvnL8fMu1dkz9xfbU92tOrW6\neu2lAQAAbK6VBKQ/rr60ukd1enX/4yx7TfXy6rfWXhoAAMDmWklAet74eVH1+I4fkAAAALat\nlQSkBS+pfnujCgEAAJi31QSkj47pvOp+1a2azjtaynvHBAAAsG2sJiBVvaD6wZYf/e65TV3y\nAAAAto3VBKQvq55VXVL9YfWp6tAxlj3WSHcAAABb1moD0pVNI9od3JhyAAAA5mc1F4o9rbo0\n4QgAANihVhOQ/rq6V8cemAEAAGBbW01A+vOmkPTfqlM3pBoAAIA5Ws05SF9Rfbh6SvXk6t3V\nJ4+x7O+NCQAAYNtYTUB6RNMQ31W3qR51nGX/PgEJAADYZlYTkF5c/Xp10wqWvebEygEAAJif\n1QSkT40JAABgR1pNQPq8MS3npOoj1eUnVBEAAMCcrCYgfWf1Yytc9rnVRauuBgAAYI5WE5De\nWj3/GPNuX31Zdbfqx6s3rrEuAFg3l112WdW3j2k7uan66qZLbQCwCVYTkN40puN5RvUN1c+e\ncEUAsM4OHjzYAx/4wL7pm75p3qWsyvOe97yT9u3bd+686wDYTVYTkFbihdX3Vf+yev06rxsA\nTtjtbne7HvCAB8y7jFU5+eT1/jcNwHJusQHrvKK63wasFwAAYEOtd0A6q/ri6rPrvF4AAIAN\nt5q2+0ePaSl7qnOaTiS9bfX2NdYFAACw6VYTkB7cNAjD8VxT/fvq0hOuCAAAYE5WE5BeUv3R\nMeYdrvZXH6xuWGtRAAAA87CagPTRMQEAAOxIJzJ+6HnVk5suDHuH8djHqr+oXlF9Zn1KAwAA\n2FyrDUiPrV5Z3WqJed9c/Wj1uOqda6wLAABg061mmO/bNLUQXVs9rbpvde6Y/nn1g9VJ1e9W\np61vmQAAABtvNS1Ij2q6ztEDq79eNO+fqvdUb63eVT2y+oP1KBAAAGCzrKYF6fymc40Wh6NZ\n/6f6h+peaykKAABgHlYTkG6qzljhOg+dWDkAAADzs5qAdGnTeUhff5xlHlXdJReKBQAAtqHV\nnIP0p9XlTQM1vKR6U9N1kfZUd6q+unpKdVn1Z+tbJgAAwMZbTUC6ofq66n9VzxjTYv+vevxY\nFgAAYFtZ7XWQ3lvdp3pM9ZDqjtXhpsEb3lb9SXXjehYIAACwWVYTkPY0haEbqt8f04JTmoKR\nwRkAAIBta6WDNHxZ0/WNbn+M+c+s3lLdfT2KAgAAmIeVBKR/3jQgwwOqhx1jmbOqh47l7rA+\npQEAAGyulQSk/1GdXn1z9ZpjLPMj1bdVd61+YX1KAwAA2FzLBaT7NrUc/UL16mWW/c3qN6p/\n1RSUAAAAtpXlAtIXj5+vWOH6Xlqd1DTCHQAAwLayXEC64/j5wRWu7/Lx8/NOrBwAAID5WS4g\nLVzw9dQVru+W4+d1J1YOAADA/CwXkD40fj54het7+Ph5xQlVAwAAMEfLXSj2z6uD1Q9Xf9CR\nFqWl3Kb6j9VnqzeuR3Hr7JZNAe4+TUORn1ZdX32sek/11upz8yoOAACYv+UC0vovcNUAACAA\nSURBVKerX6meXv1O9V3Vp5ZY7gur36rOr57fFDy2ilOaavr+puHKj+Uz1U9VL6gOb0JdAADA\nFrNcQKp6dvXA6nHVV1d/VL272l+dUz2oelTT6HV/Wl20EYWuwauahh7/m+p3q0urq5paxk6t\nzqvu33Sdp5+q7lZ931wqBQAA5molAen66quq51VPrb5pTLOuqn62qfXlpvUscI0e1BSOfqb6\noY7dMvSa6r9UL6m+t/r56u82o0AAAGDrWElAqiPnIT2vemh1j6Zzeq5qGgL87W2tYLTgXzSF\noue2fLe5G5ve43c0naskIAEAwC6z0oC04NrqDWPaDk5tCm77V7j8p6tDHRmuHAAA2EWWG+Z7\nu/tAUwh89AqX/1dN2+R9G1YRAACwZe30gPT66iPVK5rOnzr3GMvdtal73a9Xl4/nAQAAu8xq\nu9htN9dVj69+v/qFMX2q6dypzzV1wTu3Omssf1nTaH0HN71SAABg7nZ6QKr66+qC6lubutrd\nuyMXij1QfbT6k+oPq9/u+BfDBQAAdrDdEJBqakn61TFthjs2ha3jXZh21pnj556NKQcAAFiJ\n3RKQlvMfm1qZvmOd1vfZpmsr7V3h8p9f3bPlhyIHAAA2kIA0uXt133Vc33VNF6ddqYdU/3Yd\nXx8AADgBOz0gPX1My7l904ANfz/uv2hMAADALrLTA9LZTa1DB6r3L7Pc3o5cUPZzG1wXAACw\nBe30gPTi6guqb6+urr6/+n9LLPdr1f2rB25WYQAAwNaz0y8Ue3XTwAtfXX1e9e7qouqUOdYE\nAABsUTs9IC14Y9MgDD9XPacpKD1srhUBAABbzm4JSFXXVz9cfWl1bfXW6peq28yzKAAAYOvY\nTQFpwburB1c/VH1bdUl1v7lWBAAAbAm7MSBV3dR0naIvqt7b1KoEAADscjt9FLvlfLh6dPUV\n1aH5lgIAAMzbbg9IC9467wIAAID5261d7AAAAG5GQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYDPMNzPoX1TOrPfMuZJUOVy+s3jHvQgCA7U1AAmZ91TnnnPPEhzzkIfOuY1Xe8Y53dPXV\nV1+SgAQArJGABBzlTne6Uz/wAz8w7zJW5Yorrujqq6+edxkAwA7gHCQAAIBBQAIAABgEJAAA\ngME5SACwRd10001V960+NedSVuua6q/mXQTAiRCQAGCL2r9/f6eddtpz9u7d+5x517JSN910\nU9ddd93h6lbVtfOuB2C1BCQA2MKe9axn9YhHPGLeZazYBz7wgb73e793T3XSvGsBOBHOQQIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYTp53AQBrdfjw4arTq7PnXMpq3GreBQAANycg\nAdveFVdcUfUjYwIAOGECErDt3XTTTT3ucY/rwgsvnHcpK/aZz3ymZz/72fMuAwBYREACdoTb\n3va2XXDBBfMuY8U++clPzrsEAGAJBmkAAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIDh5HkXMAd7qltWp1XXV9fOtxwAAGCr2C0tSOdV\nz63eVe2v9lVXjdvXVG+vnlXdel4FAgAA87cbWpAeWf1udaum1qL3N4Wjg9WpTeHpS6uHVj9Y\nfW1TkAIAAHaZnR6QzqpeVX2menL1x9WNSyx3WvWE6meq11T3TNc7AADYdXZ6F7vHVmdXT6z+\noKXDUdWB6uXVk6o7VxduSnUAAMCWstMD0udVN1R/ucLl31Qdqr5wwyoCAAC2rJ0ekK6p9lZ3\nWOHyd2zaJtdsWEUAAMCWtdMD0pvHz5+tTllm2VtWv1Adrv5sI4sCAAC2pp0+SMN7q1+snlp9\nZfWH1aVNo9h9rmkUu3Or+1VfV92u+snqsnkUCwAAzNdOD0hVT2sa2vtZ1fcdZ7kPVD9UvWwz\nigIAALae3RCQDlcvql5cfVF176Zzkk5rGr3u49Ul1fvW8TX3Vt9UnbHC5e++jq8NAACcoN0Q\nkBYcbgpCl2zCa92x+k+tfPuetoG1AAAAK7RbAtK/bDrH6MzqndVvNLUeLXZqU3e8nxvTifqH\npovNrtRDqr9Yw+sBAADrYDcEpB+t/svM/W9vOh/p8d28NWlP9fnVWZtSGQAAsKXs9GG+79IU\nkD5YPaH6kqYR7c6u3lLdd36lAQAAW81Ob0H68qZuc0+u/vd47G+rPxnT66oHVf84l+oAAIAt\nZae3IN21aXCGdy16/IPVY6vTq99v5aPNAQAAO9hOD0ifbDqv6I5LzLus+sami8S+sp3fmgYA\nACxjpwekdza1IP1EddIS89/cdPHYr60urm69eaUBAABbzU4PSJdWv9l0DtL7q/ssscxLq39T\nPabNuUYSAACwRe30gFT1ndWLq3NbuhWp6uXVV1Wf3ayiAACArWc3nHdzQ/X0pmsfHTrOcm+r\n7l09uPrIJtQFAABsMbshIC04uIJlbqzevtGFAAAAW9Nu6GIHAACwIgISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADCfP\nuwDYoe5c/Vl1yrwLWaWz5l0AAMA8CUiwMc6t7vW0pz2tU07ZPhnp4osvnncJAABzJSDBBnr0\nox/dGWecMe8yVuwtb3lLBw8enHcZAABz4xwkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgOHkeRcAK/BF1XnzLmKV7jHvAgAA\nWD0Bie3g9aeddtqd9+7dO+86VuyGG27owIED8y4DAIBVEpDYDk5+1rOe1SMe8Yh517Fib3zj\nG3v+858/7zIAAFgl5yABAAAMAhIAAMAgIAEAAAwCEgAAwGCQBgBg3Xz6059euHlFdXiOpZyI\n11TfNe8igPkSkACAdbNv376qnv3sZ5916qmnzrmalXvb297Wm970pnvOuw5g/gQkAGDdPexh\nD+uMM86YdxkrduWVV867BGCLcA4SAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwnz7sAAIB5279/f9Wdqx+ecymrdaj6\n7eqKeRcCO4WABADsepdffnmnn376F9z1rnf9qXnXshpXXnll119//d7qJ+ZdC+wUAhIAQHX3\nu9+9F73oRfMuY1We8YxndMkllzhlAtaRHQoAAGAQkAAAAAYBCQAAYHAOEgDANnX48OGq06uz\n51zKat1Q7Z93EbAUAQkAYJu64oorqn5kTNvJoeqe1d/PuxBYTEACANimbrrpph73uMd14YUX\nzruUFTtw4EDPfOYzb1Hdet61wFIEJACAbey2t71tF1xwwbzLWLHrrrtu3iXAcRmkAQAAYBCQ\nAAAABgEJAABgcA7S7vLE6hvnXcQJuM28CwAAYHcQkHaXC88///wnPOhBD5p3Havyqle9at4l\nAACwSwhIu8wFF1zQd3/3d8+7jFV59atfPe8SAADYJZyDBAAAMAhIAAAAg4AEAAAwOAcJAACW\nd3p1YXXSvAs5AX9VXTHvIrYLAQkAAJb32D179vzOmWeeOe86VuX666/vxhtv/B/VU+Zdy3ax\nGwPSnuqW1WnV9dW18y0HAIBt4KSzzjqriy++eN51rMoLXvCCXv/612/HVq+52S3nIJ1XPbd6\nV7W/2lddNW5fU729elZ163kVCAAAzN9uaEF6ZPW71a2aWove3xSODlanNoWnL60eWv1g9bVN\nQQoAANhldnpAOqt6VfWZ6snVH1c3LrHcadUTqp+pXlPdM13vAABg19npXeweW51dPbH6g5YO\nR1UHqpdXT6ru3DRCCQAAsMvsqQ6P28+tLppfKRviPza9r1NWuPxJ1eeq51Q/tYbXvVv1zlbe\nQndyUxfAU6ob1vC6y/m1k08++btOP/30DXyJ9bdv375OO+209u7dO+9SVuyGG27owIEDnXnm\nme3Zs2fe5azY9ddf3+HDhzvjjDPmXcqq7N+/v1NOOaVTTlnprj5/hw4d6tprr+2MM87opJO2\nz7mzBw4c6MYbb2y7jeJ07bXXdotb3CJ//zaev3+bazv+/Tt8+HD79++v6Tzwm+ZczmqcsmfP\nnltut79/RrFbsYuqH6ud38XummpvdYfqn1aw/B2bWtWuWePrXtHUarXS7bunqcaNDEdV/+nG\nG2981b59+zb4ZdbdFxw4cOAfDxw4sNHbZz3tqe6+f//+v593Iat0ZnXrffv2fXTehazSnQ4e\nPHjNwYMH98+7kFX6wuuuu+7yjnxRtR3sre68b9++D8+7kFU659ChQ+3bt+/qeReySv7+bR5/\n/zbXF1bb7u/f4cOHt+Pfv6pL513AdnN4TBfNuY6NcO+m9/abLd+KdMvq96tD1QUbXBcAALB1\nXNTIRTu9Bem91S9WT62+svrDpgR9VVNXulOrc6v7VV9X3a76yeqyeRQLAADM305uQaqpqf/p\n1ZUdea9LTZdV/2ZONQIAAPNzUbukBammN/qi6sXVFzV1u7tD09DeB6qPV5dU75tXgQAAwNaw\nGwLSgsNNQeiSeRcCAABsTTv9OkgAAAArJiABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAPz/7d17tFxVfcDxbzAhzwIBkXfAABKwYAqIsMIKqI1QBGwL4gOFimJLlyirta3W\nUq5YaLW26kKXS5cBK2goVmkBlUcREQFbGsSC8ggkCCFSIQmvQMjr9o/fnjVzz53JnbmZmZ05\n5/tZa9bMnLPvPr/sc3Lm/ObsvUeSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIkSZISEyRJ\nkiRJSkyQJEmSJCkxQZIkSZKkxARJkiRJkpKJuQNQX90JHJk7CEmSJPXVT4GjcgcxKEyQqmUp\n8BTwydyBVMAc4ArgGGBN5liqYCFwO3Bp7kAq4C3AR9Ozeu9G4LPpWb11FjAPeH/uQCpgOnAr\n8B7ggcyxVMEFwPO5gxgkJkjVsg5YCSzOHUgFDKfne4DncgZSES8AK/DY7of9gPXY1v2ynvhy\ny/buveOJc4lt3Xvbpef7gbtzBlIRK3MHMGgcgyRJkiRJiQmSJEmSJCUmSJIkSZKUmCBJkiRJ\nUmKCJEmSJEmJCZIkSZIkJSZIkiRJkpSYIEmSJElSYoIkSZIkScnE3AGor9blDqBC1gGbgA25\nA6mIdXh894tt3V+2d//Y1v2zgfiMtL37w3Yeh+H0GMoch3pvZnqoP2bnDqBCdgWm5Q6iIiYC\ne+cOokL2xi8z+2UacS5Rf/gZ2T9e/7VniJQXedKtltW5A6iYpbkDqJAncwdQIRuAX+UOokJs\n6/55MT3UH35G9o/Xfx1yDJIkSZIkJSZIkiRJkpSYIEmSJElSYoIkSZIkSYkJkiRJkiQlJkiS\nJEmSlJggSZIkSVJigiRJkiRJiQmSJEmSJCUmSJIkSZKUmCBJkiRJUmKCJEmSJEmJCZIkSZIk\nJSZIkiRJkpRMzB2AspgA7JEevwaeADZmjajcJgP7puelwLN5wym9HYC5wOPAI5ljKZttgDnA\ndsBjwIq84VTCXOKYvg3P0730CmAWsDNxbD+ZN5xS8xokn8OBGcCdwMuZY9nqDafHUOY41B+n\nAUuo7/dh4uT0gZxBldQU4DPAS4xs7/8A9skXVqm9iUiMhoHPZo6lbN5BJESNx/IPgb1zBlVi\n04GvUm/rGXnDKbX3M/rY/jlwbMaYysprkHyOJBLRYWDPzLFsrYaoH5cmSBXyTmJfLyE+EI4l\nTkrL0vIzs0VWTt8k2vUa4GTgeOAr1PfBtvlCK53JREK0CbgLE6RuO474YL2PSJTmAR8H1gIP\nEl8GqHuOAB4CngIexQSpl84m2vde4L3Elyx/DbxAHN8H5gutdLwGyWcScYzXrvlNkJobwgSp\nku4lbqnuUVj+OuIYuLXvEZXXHKJNbyG6EzT6blp3XL+DKrFTgDXEh+6RmCB122LignHXwvLz\niLY+p+8Rldu9wM3A7sD1mCD1ygTiztFKYKfCug8T7f73/Q6qxLwGyed8YD3wfUyQNmeIlBc5\nSUO1/CVxIflEYfn/Ev9xtu97ROW1kWjvvyF9E9HgJ+l5975GVG7LgMOAhbkDKaFZwKHAtYwe\nl3Epcayf0u+gSu4iYAGO8eq1acCniWRoZWGd5+nu8xokjwOATwCfJ+5Mqw1O0lAtP2ixfD5x\n+/WuPsZSdkuAf2yxbp+GMuqOu3MHUGJz0/PiJuueIz5w5zZZp/G7MncAFbEG+EKLdfukZ8/T\n3eM1SP9NIMYyrgAuAC7OG87gMEGqrqOBHYlv3c8lvsH526wRVcMc4H3EBf3tmWOR2lHritHq\nbsYKYpzGVGJCEmnQTSMuJtcAl2WOpay8BumPs4kE9DjgxcyxDBQTpOq6jvrt7EXAR4npNtU7\ns4gZ7DYApzO66520NZqWnte2WF9LiqZjgqTBN4WYYOdg4jxd7A6m7vAapPd2I7qQXg7cmDmW\ngWOCVC67MHqQ42LiJF90OjCT6Jt6FvAL4F3EgGC151PA2wvL3kf8vkDR64nZ7LYB3gw80NvQ\nSuckRndZ/DKtu8eoezak51afF7Xl6/oQi9RLryK+xDqc+FxclDecUvMapPcuIc7ff5Y7kEFk\nglQumxg9iHpVi7Lfa3j9ReAe4luGvWj9TbFGeo7R7d3sIvGdRDeNR4ATiWl71Zm1jG7rF3IE\nUkG1weszW6zfkTju3R8aZIcQE5FsB5wA3JQ3nNLzGqS33kZMiPFe4OnMsQwsp/mujh2AV7ZY\ndzlxHBzav3Aq4Qwicb0e+K3MsVSF03x31xFEe/5zk3XbAKuJ6XvVG07z3XsHE18mLiXGiao3\nvAbpj4nAcmJ21/cUHrXzybnpvbNZjzSEv4NUObsSF+rNun9B9E8dBn67bxGV3wnE7e2r8W5t\nP5kgdddE4i7S/U3WHYNt3WsmSL21F3F3+iFizIZ6w2uQ/plB/dp+rIc/8j3SECZIlXQrsa8/\nwsgfL303ceJ6FL9N6Jbtgd8Q/aqnZo6lakyQuu9iok0/3rBsR+BnRPe6fXMEVREmSL11AzG5\nyAG5A6kAr0H6Z0aLx5eIffAaPKc0M4QJUiXNAh4n9vdy4ofwlqX3zxLfBqs7ziPa9XHgpy0e\n52eLrnw+R71d7yPafkXDsmvyhVYKU4nzxTDxuzA/IsbgbQA+kC+sUnotI88TzxDt/t8Ny07O\nFl25zKX++dfqPH11tujKx2uQ/D5PtPeeYxWsqCFSXmS3n2p5DNgfOBN4A7AHMTByITGJgNOZ\nds8zjJ5RsGh9PwKpiPXUB/auZXTbv9zfcErnJeCNxCyNC4jxdJcDl9L8B2Q1fsOMHKR+T5My\nG/sUSxWMdZ723NE9XoPk9zBxzHtct8E7SJIkSZKqbIiUF9nXU5IkSZISEyRJkiRJSkyQJEmS\nJCkxQZIkSZKkxARJkiRJkhITJEmSJElKTJAkSZIkKTFBkiRJkqTEBEmSJEmSEhMkSZIkSUpM\nkCRJkiQpMUGSJEmSpMQESZIkSZISEyRJkiRJSkyQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmS\nJElKTJAkSZIkKTFBkiRJkqTEBEmSJEmSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIkSZIS\nEyRJkiRJSkyQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmSJElKTJAkSZIkKTFBkiT1ykHAscC2\nXSrXrb+TJGmzhtNjKHMckqTm5gOH5Q5iHK4kPl927VK5bv1dK4PazpKkLTdEPS8yQZKkrdwL\nwB25gxiHk4GPAdPT+wnA9cARY5Trdv3tGtR2liRtuSFMkCRpYDwJ3JA7iC54DfF5c/xWWn9Z\n2lmS1LkhUl40MXMgkqSxvQA832T5TsAsYjzpr4CnN1PHbKIr2rPAA8DGwvqDgJ2BW9P7VwOv\nSvU+2aLOsbZ/UKrjDuAA4A/T8kOAtcDPUjyN5Q4DJgE/brHN+cB64M426z8ImAjc1qK+ecQH\n4h20bueiNwBTW6x7HljcRh017e7DCcAcYDtgGfCbzdS5P7Ev29nX2xHttQx4olBurGNGkkrL\nO0iStHW7B/h6w/u9ge8Bm6ifwzelZTsX/vZY4JcN5YaBlcCHC+X+Ja2bTSQT64ENadm/AzPG\nsf3GMULXFWIYBo5uUu476fUhTdphblp3VQf1/2t63Wxs0X5p3dXpfbGdW3m4ybZqj/9p4++h\ns314AvBoYTvXArsVyp0ILC2UWwV8pFCu1m6vA1an16c2rD+W9o4ZSSqTIexiJ0kDYzawe8P7\nW4g7JGcTdxXmAB8CXgRuaij3O8DLxEX7AmAv4CjgB8R5/48byi5MyxYDZwJTiNnh/iktv2Ac\n229MYKZT//A5BdgBeEWTcqem159s0g4Xp3Und1D/grTskib1faJQX7GdW5lFJFeNj2+mui5q\n4++h/TY8gkhWl6R/12HAnxPJ62Lqs9HOS8seBI4D9iQSnbtSXB9sqLOWDP8n0WbzqU900ckx\nI0llMoQJkiQNrPXAj5osP424eK4lHtcCa4BdCuWmAsuJLl01XyM+Cz5TKDszLf/hOLZfnGXu\nYzQfI9RYbgrRpeu+JvU/RHRBm9RB/ROI7mNPM3o68J8D/0d0wdsSbybu/vxXB3W124a1u0yv\nLpT7Ulo+P72/kfi3H1woN5PoOrisYVltXy9ssv1OjhlJKpMhHIMkSQNrOXA4caegcVKBqxpe\nTwJ+lxhX8sYmdTwOHEncDXmsYfn3C+VWExfMO3W4/fFaS3TpO4MYV/RgWj6XGFvzZSK5aNcw\ncClwIXAS0YUPYkKHQ4DPEXdexmsn4BtEEvLuDupqpw0nAm8CfsHIBAfgPOBcIkmaRCRKS4B7\nC+VWE10mjye69TUmON8tlB3vMSNJpWKCJEmD54PAvxFTWj8B3Ex0gbqG6KIFMT5lCrAvsGgz\nde3KyIvdFU3KbKB+R6Pd7W+JbxEJ0qnUu6ydlp6vGEd9lxFdBP+IeoL0joZ1W2Ih0S3vTOCR\nhuW7UJ/womYxcHp63U4b7k7sw+VNttuYJO4GTCbGHzVTS4r2YmSCVKx3vMeMJJXKNmMXkSRt\nZW4ixsucB9xPJA+LiG/4T0plat3QbiO6R7V63FWoe1OXtr8lbiZmaTulYdmpRAIwnt8pWk7c\npTmemPUOIkG6m9F3XDpxDvA24t/+jcK6TcTsf42PVQ3rO9mHY92VqpVb12J9LZmaXFi+pkU9\nnR4zklQ6jkGSpME2hbgzsYoYv7M9MUnBMDFupx21cSn7NVn3DM3HBG1u+zC+MUg1X6Q+q15t\n9roLx/i7VvUD/EFa96fAgen1hzbzbxrLgcSdnmXU/71bolkb1sZ/jZUU1srd3mJ9bQKJuel9\nq33d6TEjSWUyRMqLvIMkSYNlAjEWZ3rDsrXERfAlxO/aHEwkNQ8TF8H7N6lnAbBHD7e/pWpd\nvE6iPgX1eLrX1VxLTMjwduBdxN2Wb42zrskpvm2JpObZDv++3TZcTUzvfQijf3dpAdFFb34q\ntyyVK94lAnh9qv/+MeLq1TEjSQPFBEmSBsvRxDf8xbspE4BD0+tfp+evpeUXMXIM0VHEWJev\n9nj7RWvTc/F3fpq5gxgvcxzRje0uxr6zsbn6NxDTW88HziL+/aualGvHp4nfELqQ8XX566QN\nLyMSqcZp1qcBf0e0y9KGcjOIu2iNziSSnUXE9N1j6cUxI0kDxy52kjRYFlHvCnUV8G3qP176\nhYZyk6j/fs39xEX0DUSy8CgxGL+mky527W6/2AXumPT+KeKOzu+3KFfzD8RF/TDNf6S03fpr\n9qf+mffWJvW1Yz9ifNFGoh2uaPJoR7ttOIUYEzRMjJe6jhjPtImRXQQnE7+tNJzKf4UY57Qp\n/d0rG8publ93csxIUpkM4TTfkjSwTieSg7cSM51tJKbnvpKRdzTWpzKnAicS3aNWAX9BXPg+\n01D2QWLWtZeabO8nRNLR6fZ/meqsTR5wKzE19e+lbT/ZolzN5cS00sOp7qJ2669ZQsw0N5WY\nPW68fpyed9uCOtptw7XEVN9nAG8hut99B/g6IydLeJmYovt0YgzWbGJfUnLdOwAAAT5JREFU\nn0PcOVvbUHZz+7qTY0aSSss7SJKkKqglW+fnDkSStNUZwkkaJEkVMpMYP7OKmCFPkqSmTJAk\nSWV2NNEl7QHgtcCfELO+SZLUlAmSJKnMNhKzvt1CjNH5dt5wJElbOydpkCSV2Z3EpA2SJLXF\nO0iSJEmSlJggSZIkSVJigiRJkiRJiQmSJEmSJCUmSJIkSZKUmCBJkiRJUmKCJEmSJEmJCZIk\nSZIkJSZIkiRJkpSYIEmSJElSYoIkSZIkSYkJkiRJkiQlJkiSJEmSlJggSZIkSVJigiRJkiRJ\niQmSJEmSJCUmSJIkSZKUmCBJkiRJUmKCJEmSJEmJCZIkSZIkJSZIkiRJkpSYIEmSJElSYoIk\nSZIkScnEhtfzgL/KFYgkSZIkZTKv9mICMJwxEEmSJEnaatjFTpIkSZKS/wdvWKuw3H/W6gAA\nAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “'sensitivity' dimension histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebxtd13f/1fIdEkICRBJGCWAERMZKzNqqoIMPxmq0AhaW9o+QJxogUJb\nW4OU6s9aRCIq8aeIoEZAU4aqyKBErApFKRCGhFFCgEAYQubp9o/1Pb+778k9955zz7DP3ef5\nfDzW4+zhu9f+rHXPPne99/e7vuuwancAAAB0i3kXAAAAsF0cMXP7r6p3zasQAACAOXlE9fCl\nO7vHcta8qgEAAJijsxq5yBA7AACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgOGIeRcAwNyc\nWH3ruL27eufMc99QnT5u31Sdv4V1bVeH2j5ZT72H2rYCbBgBCTgY965uN25/vPrMHGvZKTZj\nnz+iOm/cvrG9/0/4zup14/a11a4NeL9D3aG2T9ZT76G2rQAbxhA74GD8bPXnY3ninGvZKexz\nFsEjqjOqY+ZcB8CK9CABB+PrK9xm82z1Pn9rdf9x+6YteL9DwU7aJ5uxradVfzluf0v1kQ1a\nL8CGEpCAgyEgbb2t3udfq963Be9zKNlJ+2QztvUHN3h9AJtCQAIOxhUzty+fuX3H6tRx++vV\ne8ft46p7Ng3r/XB11T7WOfvaL1fvrw6v7jte/859vOZO1Z2r65vOy/naAda71ppmHTna37a6\nurqwvffDZm/HSvt8tW5TfdNM7dceoP3+TtLf1zbWNOnD3atLq08tW9/R4zW7qg9U1xzg/df6\nbztbxzFN23pU9aHqygO811Gj/QnVV6qL2/c+XsvEBcc17Ytjxzovqm5Yoe1GbcdqrWa9q93W\n1ey7pfPnzpx57EHVyaP9x/ax3rXsv1knjHquGa+5pumz+/CZNn/ZdM5drf3zup6/A7WxnxFg\nE+0ey1lzrgM4dPx0e/52PGTm8afPPH5R03/4L286kFh6/IrqP+xjnf9yps1fNx2AvH/cX35g\n9LSmULN7Zrm+acKBb1zWdj011RQsfq3poG/2/W6o/qC6wxZtx0r7/ECOq1411rv0+suqn6ge\nv2x7Zv3AzHPLD9Rm9+lfN4XMly17j//Vnn3z5OoLM899rXrqCvUe7L/tX4/H/t1Y/9LjV1c/\ns8J73aX63fb+XdjdFAje0nSuzKz97ZMlD67+rL33xdLv2Kuqu+7jNevdjpXM1rvU67ja9R5o\nW9ey7968rM3s8tJl6z2Y/Vd1fPXqZa/7cvVTTYFpdl1Hz7xutZ/Xtf4d2MzPCLA5zmrPZ1BA\nAtbsKdW7xnL3mcfPbM/flEuq17TygdFzl61z9rUfrH65vQ9Clrx42Xouae8Dvoubeh82oqZj\n2nOwtHTwd9n4ufTYhdWttmA7Vtrn+3NY9bb9bO/vr1Bb7f8AeXYbL6heuML6/6ypp+CGfTx3\nQ3umGF+ynn/bC6p/u59tfday97r9WP9sm2uX3b+x+r5V7pOaDmiXH9gvX764j+1ez3bsz2y9\nXzjAen9sP69dvq1r3Xdv6Oa/AzeM5b/PrPdg999hTZOXrPSaly27P2s1n9f1/h3YyM8IsHnO\naubvxNKNs+ZXD7AgntzeBxFXNh303K56aNNJ2UvPX1Hdeua1yw/mLq/+T9M3zL812nz7TJvr\nq8eMx29RvWTmudduUE0/tey5bxmP36Pp2+ml5569BdtxML6/vQ+4frVpiM9tunkYWUtAmn3u\nK0374tlNs+stP5C8oCmkPaH6xWXv+bKZdR7MPllex9eb9vMjqxe090H7x5dtw3+eee7NTcO9\nqm7Z3kHiolXuk28ejy09/8bx2PHVo5vC3ewB8+wssuvZjv2ZXe/XDrDeT+zntcu39WD23ckz\nj++u7rVsnevZf7Of8d3VK5uC9DeM7V3t7/lKn9f1/h3YqM8IsLnOSkACNsHsQcHupmFhsx6y\n7Pkf3M9r39o03n/Wa2ee/71lzx1Zfa49B9i334Ca/p+mXqXndvMTzF8985rXzTy+WdtxMP5w\n5n0u6uaXdnj3zPMHG5B2N01BvuQBy577QtOB85LzZ577XzOPb8S/7W8se93yb+1PnHnuVTOP\n72t45dOrf9L0+7G03/a3T86Zee4z7T2Mq6ZegtlaHjvz3Hq2Y3/Ws979bevB7LsDBaT17L8/\nmnn8U938/Or/M/P8/n7PV/q8bsTfgY34jACb66zGZ88kDcBm+t1l9/+m6WDgpHH/AU3DvPbl\nvzYdDM/6jpnb1zZ9szzrkqYDsSOqh1X/Y501vXkshzedx/CI9hx8zR7QnLDCNmzmdqzGt83c\n/tNuPl3zH1QPPMh1z3r1zO2/a/qWfWm40R82naey5J1NvUU1ne+xZCP2yfJv2/+kqbdjyYnV\nl8bt2Z6Y/9x04v3bmw5IP9me3oPVetTM7fO6+SQY727qBbnzuP9d1R+vsK61bMdabNR6N3rf\n1fr23z+aafc/u3kI+r3qPqusY1+f1434O7ARnxFgiwhIwGa5sfr0Ph7/dHvCyP56R/5+2f0j\nZl5X9c/HspJ7bkBNRzZ9o/SjTcPSVnLYfp7bjO1YrZNnbu9ru/9hHetesrvpoHjWl9pz8HfR\nPp5bcsTMz/Xuk93VR5c99vll92f/z3tF9a+bDriPrv7FWGo6EH9z05DED+ynjiWHt/fkAcu3\neckn2nOAv9JkA2vdjtXayPVu5L6r9e+/2d/z5b+LKz22kuWf11r/34GN+IwAW8gHD9gsV7fv\nC0xeN3N7+VCWJddXX1322FHL7l/YNOxqJZdtQE2/3jRcqKaDnD9tChU3NH2LfN/9vH9t3nas\nxmHtvS3X7aPNRkwjfF03/8b+xpnbV+/nuSUbsU+u6+bbuL9pob/QNGzr55qGQx0789ydq2c2\nhYAfb/o92J+j2/vgeF/7uvbumVg+hGz2tWvZjtXayPVu5L6r9e2/1fyeH2gK/9n1L/+81vr/\nDmzEZwTYQgISsFlu1TT8ZPl//rebub2va9vUvkPMVU0HGksH079V/b+bWNMd2vOteNXzq/82\nc//XOvCB0WZtx2osnVB+3Li/r2++T97HY/OwVftkuc819VQ9o+mA/yFNE3c8qumg//Dq7KYJ\nAy7Zz3quGssx4/5K5wh9w8ztLx5s0dvERu27Wt/+29008cpSb8x6fs/39XndiL8DwCFm+Qm7\nABvpocvu37q9h0dduMb1zQ7ZOX3FVvu32ppOb+9vtf/nstfd7yDfvzZmO1Zj9gKcD9jH89+x\nj8fmZav2yXKHN53v8pdNB77/pDqlPUOijmgKAAfynpnbD9vH87dpz+xnNZ1Tc6hbz75bPhxt\nPftv9vd89nykJd+5Qg2rsZl/B4BtSkACNtO/a++/M89p7+Ewb13j+v5o5vYPtHewObH6bNN5\nCv+rPecqHGxNy4fqzF5/57HtfbHW4/db9c1txHasxjtmbj+mva+pcup47+1iq/ZJTcOz3tx0\nIH9pe/cg1tQ7MXt+zvIex335nZnbj+7m4fO/tOf37Irq9astdps52H23fIjZPZbdX8/+W/57\nfv+Z+/dqfb/nm/l3ANimDLEDNsvVTTOkvbvpAOZbmqbLXfJnTRdmXItfbTq/4S5NQ+X+pjq3\n6fouZ1Z3HO2WZrxaT01/397Dfn6lacjQ3ZtO1v6jpm/Ma/oW+QXtfaC2mduxWr9e/WTTgeWR\nTd/0n9s0LOnMpmFSp4y28/7CbKv2SU29Hl+t7jbu/++mA+4vNP17n9GensbPNU27fCC/0zTk\n7Nub9uWfNU1d/oXx2INn2j6v6bo4h6KD3XdfahoKt3S+0jlNs9V9sunaP+vZf6+ofqLpd/yI\nplng/rBpyNz3j3V840Fu72b+HQC2MddBAjbK7LU/rqwe394Xf1xaPtbe38Quf+3+Jg84bbx+\n+TqXlvPae+rd9dT0U/tot7vp4O2WTcOCZh8/axO342A9o+mk7+Xrf3/ThSlnH5vtSVvtdZD2\ntY2z2/XMZc/9eHvv81nr+bfdVx13Xvb62R6045ouzrnSe+1umvlvdqr0A73fCU29Kyut76qx\n/cutZzv2Zz3r3d9rD2bf1RQslrd788zzB7v/avo929fv+QerH5q5v5brfS3ZjL8DB/sZATbP\nWY3Pnh4kYLPcoukE7fs1zWh1r6bhKn/Z9I3vlcvaf7Hpm99aeRarqg81HUg/pelaKHdsOnD6\nVNM32fu7sOJaa/rl9hxg3alpSNH/bPpm+8amb6f/Q9Nwoc83XVdm1xZsx1q8oulb8H/Z9K3/\nV0Z9r2oauvbOmbZHtWemsP39exzo3+pv29PLs/wE/c/OvPazy55b6z45UB3Xtvf2zf77fr16\nZNNwrkc29QgcN17z6aaej/Pa++D2QO/31aYeyUc0hc9Tmw6gL2vaJ7/f1Jux3Hq2Y3/Ws979\nvfZg9l3Vv2k64D+jaaje50a7JQe7/2rqLf27ptnmThnrOr/67ep7lm3zrNX83dmMvwMH+xkB\ntsjsNx4A67Ha3pOttB1rArbOT6ZHBjiwsxp/K+Y95hwAYD3OaLo20QVNvVKzF3s+qr2n6f6L\nLasKOGQZYgcAHMoubBqWtzQBxF83Tfqwu3pie6bivqb671teHXDIEZAAgEPZJdWTq99rmujh\n7t38tIEvVz9cfXhLKwMOSQISsJFWO9HCVtqONQEb60+aZuV7StO1ie7YNCvj55p6lM6tLp9b\ndcAhxyQNAADATnZWJmkAAADYm4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwHDHvAubg\nsOrYald1dXXlfMsBAAC2i53Sg3Ry9cLqPdUV1derL47bl1fvqp5X3XpeBQIAAPO3E3qQHlW9\nvjquqbfoo03h6Nrq6Kbw9MDq4dVzqu9rClIAAMAOtHssZ825js1wQvXl6h+qx7dyINxV/XBT\ncLq4aQgeAACwM5zVyEWLPsTucdVtqqdUb6xuWKHdNdWrq6dWd6oesyXVAQAA28qiB6S7VtdX\nf7PK9u+obqruuWkVAQAA29aiB6TLqyOr26+y/R2a9snlm1YRAACwbS16QPrz8fOXqqMO0PbY\n6uVNYw/ftplFAQAA29Oiz2L3oepXq2dV31m9qbqgaTKG65pmsTupuk/TJA4nVj9XXTiPYgEA\ngPlb5Fnsarow7E9Wn2nPtu5rubD6kTnVCAAAzM9ZjVyw6D1INW3oy6qzq2+tTms6J2lX0+x1\nn68+UH1kXgUCAADbw04ISEt2NwWhD8y7EAAAYHta9EkaljyyqQfpldUzm3qP9uXo6lPVs7em\nLAAAYLtZ9HOQfrqbn2/08ere+2i7q8XeFwAAwM2d1cgKi96DdOemgPSJ6snVA5pmtLtN9c72\nHZIAAIAdatHPQfr2pmFzP1T99Xjs76u3jOVPqgdXn51LdQAAwLay6D1Id2nqKnvPssc/UT2u\numX1huqYDX7fuzfNkLe/acWXLze0+IEVAAC2tUU/IP9S03WQ7tB0HaRZF1Y/0NST9PvV92/g\n+36yaWKIo1fZ/vTqpS1+YAUAgG1vkSdpOL26qXp1dfgKbZ4+2ryh6fpI89gXDxvve9QWvy8A\nALCDJmm4oPrdpnOQPtoUmJb7repHqsfmGkkAALCjLXpAqqmH6OzqpFbuRXp19V3V17aqKAAA\nYPtZ9HOQqq6vfrJ6XtNQupX8ZXVa9ZDq4i2oCwAA2GZ2QkBacu0q2txQvWuzCwEAALannTDE\nbi2Obuo9+rfzLgQAANh6AtLeDqvuVN163oUAAABbT0ACAAAYFv0cpEeNZbVWmuUOAADYARY9\nID2ses68iwAAAA4Nix6Q/qT66eo3q1euov1R1Ts3tSIAAGDbWvSA9LfVi5uugXR29cEDtN+1\n6RUBAADb1qIHpKoXVd9bnVs9sLp6vuUAB+Eh1a3mXcQW2F39VXXNvAsBgJ1qJwSkG6ofaDrA\nOrH6zH7a3li9pfrYFtQFrM4J1V8fc8wxHX74Ys+jcsUVV7R79+4zqz+Ydy0AsFPthIBU08Vf\nX7+KdtdXj97kWoC1OaLq7LPP7pRTTpl3LZvqKU95Sl/60pd2yt9lANiWXAcJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYDhi3gXMwWHVsdWu6urqyvmWAwAAbBc7pQfp5OqF1Xuq\nK6qvV18cty+v3lU9r7r1vAoEAADmbyf0ID2qen11XFNv0UebwtG11dFN4emB1cOr51Tf1xSk\nAACAHWbRA9IJ1bnVV6sfqv64umEf7XZVT65eUp1XfXOG3gEAwI6z6EPsHlfdpnpK9cb2HY6q\nrqleXT21ulP1mC2pDgAA2FYWPSDdtbq++ptVtn9HdVN1z02rCAAA2LYWPSBdXh1Z3X6V7e/Q\ntE8u37SKAACAbWvRA9Kfj5+/VB11gLbHVi+vdldv28yiAACA7WnRJ2n4UPWr1bOq76zeVF3Q\nNIvddU2z2J1U3ad6fHVi9XPVhfMoFgAAmK9FD0hVP940tffzqmfup91F1XOrV21FUQAAwPaz\nEwLS7upl1dnVt1anNZ2TtKtp9rrPVx+oPjKvAgEAgO1hJwSkJbubgtAHm8432lVdnesdAQAA\nw6JP0rDk5OqF1XuqK6qvN52HdEXTjHXvahqCd+t5FQgAAMzfTuhBelT1+uq4pt6ijzaFo2ub\nJmk4uXpg9fDqOdX3NQUpAABgh1n0gHRCdW711eqHqj+ubthHu13Vk6uXVOdV35yhdwAAsOMs\n+hC7x1W3qZ5SvbF9h6OaJmt4dfXU6k7VY7akOgAAYFtZ9B6ku1bXV3+zyvbvqG6q7rnO9717\n0zWYjl7j6w5b5/sCAADrsOgB6fLqyKZpvS9dRfs7NPWqXb7O9/1k07lPR62y/enVS5tm2gMA\nAOZk0QPSn4+fv1T9i+q6/bQ9tnp5U0h52zrfd3d1/hraX7XO9wMAADbAogekD1W/Wj2r+s7q\nTdUFTbPYXdc0BO6k6j7V46sTq5+rLpxHsQAAwHwtekCq+vGmqb2fVz1zP+0uqp5bvWorigIA\nALafnRCQdlcvq86uvrU6remcpF1Ns9d9vvpA9ZF5FQgAAGwPOyEgLdndFIQ+MO9CAACA7WnR\nr4O0VkdXF1f/dt6FAAAAW09A2tthTReKvfW8CwEAALaegAQAADAs+jlIjxrLah2+WYUAAADb\n36IHpIdVz5l3EQAAwKFh0QPSn1Q/Xf1m9cpVtD+qeuemVgQAAGxbix6Q/rZ6cdNFYs+uPniA\n9rs2vSIAAGDb2gmTNLyoen91bnXLOdcCAABsY4veg1R1Q/UD1UOqE6vP7KftjdVbqo9tQV0A\nAMA2sxMCUk0Xf339KtpdXz16k2sBAAC2qZ0wxA4AAGBVBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGI6YdwFb6NjqjOr06vbV\nrurq6nPV+6vzq+vmVRwAADB/OyEgHVW9uPqx6pb7affV6uerX6h2b0FdAADANrMTAtK51ZOq\nv6teX11QfbG6tjq6Orm6X3VmU0A6pXrmXCoFAADmatED0oObwtFLque2cs/QedWLqnOqZ1S/\nUn1wKwoEAAC2j0WfpOGhTaHohR142NwN1fPH7TM2sSYAAGCbWvSAdHR1Y3XFKtt/pbqpaUIH\nAABgh1n0gHRR0zDCR6+y/ZOa9slHNq0iAABg21r0gPSn1cXVa6pnVSet0O4uTcPrXll9fLwO\nAADYYRZ9koarqidWb6hePpbLmmaxu65pCN5J1Qmj/YXVE5pmuAMAAHaYRQ9IVe+tTq2e1jTU\n7rT2XCj2muqS6i3Vm6rXVtfPp0wAAGDedkJAqqkn6TfGshXu3nS9pV1rfN1hm1ALAACwSjsl\nIFXdsanH6Mszj+1qGlJ3SvW5pl6kL9/8pWv2yep7q6NW2f706qUdeCpyAABgE+2EgHRqdW51\n/3H//OqpTWHkXU3haMlXqsePx9dj93if1bpqne8HAABsgJ0QkH6/um9TYLm6elhTYPpEdevq\nPzbNdHda00x3r20KTSZqAACAHWbRA9J3Vg+ofqD6w/HY3ar3j8e/o2kShyV/Vr29emT15i2r\nEgAA2BYW/TpI31J9qT3hqOpTTbPWXdLe4ajqHdVXq3ttRXEAAMD2sugB6bjq6/t4/MrqihVe\nc1Wrn1wBAABYIIsekD5V3aW6w8xjRzSdh3Rqey4Qu+ROo+1nt6I4AABge1n0gPS2pt6iNzad\nh/R9TcPtTqz+vvqdpum/q76p+t3qpvE6AABgh1n0SRq+Uv276ter143HdldPr/6haVKGz1bX\ntWdY3X9NDxIAAOxIix6Qqs5p6i16fNPU3W+oPjCe++7qedU9qy809Sj95hxqBAAAtoGdEJCq\n3jOW5d45FgAAgIU/BwkAAGDVBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBhLQHpn1W/vor1/UP1uIOuCAAAYE7WEpDuXj3kAG2OqW5fffNBVwQAADAnR6yi\nzd+Mn3eubjNzf7nDqlOqo6svr780AACArbWagPTH1QOrb6puWd1vP20vr15d/d76SwMAANha\nqwlIPzt+nlU9sf0HJAAAgEPWagLSknOq125WIQAAAPO2loB0yVhOru5THdd03tG+fGgsAAAA\nh4y1BKSqX6ie04Fnv3th05A8AACAQ8ZaAtKDqudVH6jeVF1W3bRC25VmupunY6szqtObpiLf\nVV1dfa56f3V+dd28igMAAOZvrQHpM00z2l27OeVsiqOqF1c/1jQL30q+Wv18Uy/Z7i2oCwAA\n2GbWEpB2VRd0aIWjqnOrJ1V/V72+aRu+2LQdRzedU3W/6symgHRK9cy5VAoAAMzVWgLSe5t6\nYQ7r0OlheXBTOHpJ9dxWrvu86kVNM/U9o/qV6oNbUSAAALB9HGiyhVl/0RSS/ltTz8uh4KFN\noeiFHTjU3VA9f9w+YxNrAgAAtqm19CB9R/Wp6l9VP1S9r/rSCm3/aCzzdnR1Y3XFKtt/pWni\niWM3rSIAAGDbWktA+sdNU3xXHV99737afqztEZAuatrGR1d/vIr2T2rqVfvIZhYFAABsT2sJ\nSGdXr2zqkTmQyw+unA33p9XF1Wuqn67+sPrCPtrdpXpq9Z+qj4/XAQAAO8xaAtJlYzmUXFU9\nsXpD9fKxXNY0i911TUPwTqpOGO0vrJ7QoTdTHwAAsAHWEpDuOpYDObyp1+bjB1XRxntvdWr1\ntKahdqe150Kx11SXVG9puvjta6vr51MmAAAwb2sJSE+vfmaVbV9YnbXmajbPVdVvjGUr3L3p\neku71vi6wzahFgAAYJXWEpDOr168wnPfUD2o6SKr/6V6+zrr2gyHt/f5U7eqHlGaSVAAACAA\nSURBVNcUZq5tmpXvL5pmsVuvTzb1Vh25yvanVy/t0Lm+FAAALKS1BKR3jGV/fqr6/uqXDrqi\njXdK9aqm3qNXj8ceVf1edbtlbd/fNJPdJ9b5nrurd66h/VXrfD8AAGADrOVCsavxy029SY/c\n4PUerCOberMe3J7eozs2TUF+TFOQe1r1L6tzq3s3nYu0luAIAAAsiM0IAp+u7tP2mCr7cU09\nSP+0aQKGqjObLgT73e3dI/Zb1f+ufrGph2k1100CAAAWyEb3IJ1Q3b/62gav92B9U1PP0R/O\nPHa3phC3r+GC5zQNjzt90ysDAAC2nbX0ID16LPtyWHXb6nuazut51zrr2ijXNE3OcFz11fHY\npa18naMbmwLSDZtfGgAAsN2sJSA9pGkShv25vPo3TVNcbwd/Pn6+qPqJcfu86j81XQ/pQ8va\nP6epV+09W1IdAACwrawlIJ1TvXmF53ZXVzTN/radLrT6weoV1Y83nRf1iurd1QuqNzRNSX5h\ndefqh6rHV29t+/SAAQAAW2gtAemSsRxqnlVd3BSKfnfZc7+97P651b/egpoAAIBt6GBmsTu5\nqbflQdXtx2Ofq/6qek17zvXZLm5q6ik6u3pM9cDqG5suFHtD9aXqA029Yx+dU40AAMA2sNaA\n9Ljq95smPVjuzOqnqydUf7vOujbD15p6iM6ddyEAAMD2tJZpvo9v6iG6sumcnntXJ43lvk0T\nHBxevb7atbFlAgAAbL619CB9b9N1jr6teu+y5y6t3l+d3zQD3KOqN25EgQAAAFtlLT1Id286\n12h5OJr1v6t/qO61nqIAAADmYS0B6cbqmFWu86aDKwcAAGB+1hKQLmg6D+mf7KfN9zZdU2i7\nXCgWAABg1dZyDtJbq483TdRwTvWOpusiHVbdsfqe6l81XXj1bRtbJgAAwOZbS0C6vnp89T+q\nnxrLch+unjjaAgAAHFLWeh2kD1WnV4+tHlbdodrdNHnDX1Zvabr4KgAAwCFnLQHpsKYwdH31\nhrEsOaopGJmcAQAAOGStdpKGBzVd3+gbVnj+2dU7q3tsRFEAAADzsJqAdN+mCRn+UfWIFdqc\nUD18tLv9xpQGAACwtVYTkH6zumV1ZnXeCm3+Q/XD1V2ql29MaQAAAFvrQAHp3k09Ry+v/uAA\nbX+3+u3qSU1BCQAA4JByoIB0//HzNatc329VhzfNcAcAAHBIOVBAusP4+YlVru/j4+ddD64c\nAACA+TlQQFq64OvRq1zfsePnVQdXDgAAwPwcKCB9cvx8yCrXd8b4+emDqgYAAGCODhSQ/qK6\ntnp+deQB2h5f/fvqa9Xb110ZAADAFjtQQPpK9YrqgdXrqtut0O6e1Vuru1e/Ul29UQUCAABs\nlSNW0eYF1bdVT6i+p3pz9b7qiuq21YOr722ave6t1VmbUSgAAMBmW01Aurr6rupnq2dV/3Qs\ns75Y/VL1C9WNG1kgAADAVllNQKo95yH9bPXw6puaZqz7YtMU4O9KMAIAAA5xqw1IS66s/mws\nAAAAC+VAkzQAAADsGAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAxHzLsAYF2+tTp63kVsshPmXQAAsHMISHDoelj1\nV/MuAgBgkQhIcOi65S1ucYvOO++8edexqT772c/2rGc9a95lAAA7hIAEh7jjjjtu3iVsqmOP\nPXbeJQAAO4hJGgAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAAhiPmXQAAk6uuuqrqJ6onzLmUrfCK6u3zLgIAlhOQALaJa665pvvf\n//4PvtOd7vTgedeymd797nd36aWXfiIBCYBtSEAC2EYe+9jH9t3f/d3zLmNTveAFL+jSSy+d\ndxkAsE/OQQIAABgEJAAAgGEnDbE7tjqjOr26fbWrurr6XPX+6vzqunkVBwAAzN9OCEhHVS+u\nfqy65X7afbX6+eoXqt1bUBcAALDN7ISAdG71pOrvqtdXF1RfrK6tjq5Oru5XndkUkE6pnjmX\nSgEAgLla9ID04KZw9JLqua3cM3Re9aLqnOoZ1a9UH9yKAgEAgO1j0SdpeGhTKHphBx42d0P1\n/HH7jE2sCQAA2KYWPSAdXd1YXbHK9l+pbmqa0AEAANhhFj0gXdQ0jPDRq2z/pKZ98pFNqwgA\nANi2Fj0g/Wl1cfWa6lnVSSu0u0vT8LpXVh8frwMAAHaYRZ+k4arqidUbqpeP5bKmWeyuaxqC\nd1J1wmh/YfWEphnuAACAHWbRA1LVe6tTq6c1DbU7rT0Xir2muqR6S/Wm6rXV9fMpEwAAmLed\nEJBq6kn6jbFshVOarre0vwvTAgAA28xOCUgH8u+bepn+xQat79PVY6ojV9n+9OqlG/TeAADA\nQRKQJveo7r2B67upeuca2l+1ge8NAAAcpEUPSD85lgP5hqYJGz427r9sLAAAwA6y6AHpNk29\nQ9dUHz1AuyPbc0HZ6za5LgAAYBta9IB0dnW36p9XX65+rPrwPtr9f9X9qm/bqsIAAIDtZ9Ev\nFPvlpokXvqe6a/W+6qzqqDnWBAAAbFOLHpCWvL1pEoaXVv+xKSg9Yq4VAQAA285OCUhVV1fP\nrx5YXVmdX/1adfw8iwIAALaPnRSQlryvekj13OqHqw9U95lrRQAAwLawEwNS1Y3VS6pvrT7U\n1KsEAADscIs+i92BfKp6dPUdTRd3BQAAdrCdHpCWnD/vAgAAgPnbqUPsAAAAbkZAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABhM880iOrF6QnX4vAvZZPeadwEAAItGQGIRPfXII4/85RNP\nPHHedWyqK6+8siuuuGLeZQAALBQBiUV0+N3udrde8YpXzLuOTfXa1762c845Z95lAAAsFOcg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAxHzLsAAHaWz3/+81X/tPpH\ncy5lK/xJ9ZJ5FwHA6glIAGypr33ta933vve924Me9KC7zbuWzfSe97yn973vfTckIAEcUgQk\nALbcaaed1g/+4A/Ou4xNdcUVV/S+971v3mUAsEbOQQIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIDhiHkXAACL6LLLLqs6tfr5OZeyFT5RnTPvIgA2goAEAJvg4osv7ra3ve3d\n733vez9/3rVspksvvbQPf/jDlyQgAQtCQAKATXLPe96zn/mZn5l3GZvq7W9/ey9+8YvnXQbA\nhnEOEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwLCTroN0bHVGdXp1+2pX\ndXX1uer91fnVdfMqDgAAmL+dEJCOql5c/Vh1y/20+2r189UvVLu3oC4AAGCb2QkB6dzqSdXf\nVa+vLqi+WF1bHV2dXN2vOrMpIJ1SPXMulQIAAHO16AHpwU3h6CXVc1u5Z+i86kXVOdUzql+p\nPrgVBQIAANvHok/S8NCmUPTCDjxs7obq+eP2GZtYEwAAsE0tekA6urqxumKV7b9S3dQ0oQMA\nALDDLHpAuqhpGOGjV9n+SU375CObVhEAALBtLXpA+tPq4uo11bOqk1Zod5em4XWvrD4+XgcA\nAOwwiz5Jw1XVE6s3VC8fy2VNs9hd1zQE76TqhNH+wuoJTTPcAQAAO8yiB6Sq91anVk9rGmp3\nWnsuFHtNdUn1lupN1Wur6+dTJgAAMG87ISDV1JP0G2PZCqdU764OX2X7nfLvAAAA29pOOjC/\nXXWr6jNNM9Xty+HVD1fvG8vB+nT15Fa/f0+vXrqO9wMAADbATghI31T9dvWwcf+SpusinbOP\ntkc2TdTwwtYXkG6q/mIN7a9ax3sBAAAbZNFnsTus6byih1UfrN7YdMHYVzQNtztsfqUBAADb\nzaL3IP3j6n7VLzRN411TL9EvVj9ZXVk9ez6lAQAA282iB6R7jZ8/P/PY9dVPVV+t/nPTxWRf\nvsV1AQAA29CiB6RdTUPq9nWOz880nZ/0y7k4LAAA0OKfg/SxpvOMHrnC809vuk7S66pv36qi\nAACA7WnRA9Jbq882zWL3z6tjlz1/TfW46qOj7XO2sDYAAGCbWfSAdHVTMFqavvs++2jzpeq7\nmqbl/i9bVRgAALD9LPo5SFVva5rJ7mnVp1Zoc3n1mKaLxP6z/bQDAAAW2E4ISFWf7MC9Q7ur\n3xkLAACwAy36EDsAAIBVE5AAAACGnTLEDgDYBDfeeGPV0dX3zLmUrfC16j3zLgLYXAISAHDQ\nLrzwwqrbNV0uYye4bfWVeRcBbB4BCQA4aDfddFO3u93tet3rXjfvUjbVpz71qZ7+9KeXYydY\neM5BAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgOGIeRfAlrpFdfy8i9gCt5x3\nAQAsrBOqG+ZdxCa7vrpi3kXAvAhIO8t/r5497yIA4FBz2WWXLd28cJ51bJHd1QOr9867EJgH\nAWlnOeGhD31oP/IjPzLvOjbVr/3ar3XVVVfNuwwAFsg111xT1S/+4i92q1vdas7VbK4f/dEf\nPWz37t0nzLsOmBcBaYc5/vjjO/XUU+ddxqa61a1uJSABsCnucY97dPzxiz1a/bDDDmv37t3z\nLgPmxiQNAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAcMe8CAADYPnbv3l11ZvVt\ncy5ls91UnVt9Zt6FsL0ISAAA/P92797dne985391zDHHzLuUTfXpT3+6a6+99obql+ZdC9uL\ngAQAwF6e/exn94AHPGDeZWyqZzzjGV100UWHzbsOth/nIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAz/t727D5arru84/r7mObmEBCLhGRJAEChQlRRFJTpUm6mgaLTV\nOlAQy1QaO5VhgKrlMmhFUDoVWhWwoghNO7Q8qIAICoWBIg+Gh4JheBBIYyA8hOzNfcpNbv/4\nfbd3s2ySTe7u/vaefb9mds7dc36757vnJHv2s79zfuvvIEmSJKnjrFmzBuBE4KjMpbTCNcD1\nuYsYLwxIkiRJ6jhr167l4IMPPnz+/PmH566lmZYtW8aKFSvWYUCqmwFJkiRJHWnhwoUsXrw4\ndxlNdeGFF7JixYrcZYwrXoMkSZIkScGAJEmSJEnBgCRJkiRJwYAkSZIkScGAJEmSJEnBgCRJ\nkiRJwYAkSZIkSaETfwepC5gBTAX6gXV5y5EkSZLULjqlB2lX4DzgfqAXKAGr4++1wN3AmcDM\nXAVKkiRJyq8TepA+AFwL7EDqLVpOCkeDwBRSeDoSOBo4AziOFKQkSZIkdZiiB6RZwFJgDfBp\n4CZguEa7qcDHgYuB64AD8dQ7SZIkqeMU/RS7PwZmA58AbqR2OAIYAK4CPgXsASxqSXWSJEmS\n2koXMBJ/nwf05CulKc4hva7JdbafAAwBXwQuGMN65wH3UX8P3UTSKYCTgfVjWO/WXDFx4sTP\nTJs2rYmryK+/v5+NGzcyY8aM3KU01fr16xkYGGCHHXbIXUpTbdy4kXXr1jF9+nQmTJiQu5ym\nKpVKTJ06lUmTJuUupal6e3uZNGkSU6ZMyV1KU/X19dHV1UXR33MHBgYYHh6mu7s7dylNVX7P\n7e7upqurK3c5TVUqlTrmPXfKlClMnlzvx8Txqb+/n+Hh4e8Bp+aupc31AOdC8U+xWwtMAnYB\nXqqj/W6kXrW1Y1zvc6Req3q3bxepxmaGI4AvDw8PLy2VSk1eTXbTgZ1KpdKK3IU02ZuAeaVS\n6enchbTA/n19fU8z+oVOUe0zMDDwu4GBgaHchTTZ3KGhof6hoaGxvte2u5nAtFKp9GLuQpps\nMrBbqVR6LnchTdYF7Nfb2/tU7kJaYL++vr5ngY25C2myPQcHB18dHBzsy11IC/xP7gLGm5G4\n9WSuoxkOJr22q9l6L9IM4AbSm8FbmlyXJEmSpPbRQ+SiovcgPQ78M/A54Bjgx6QEvZp0Kt0U\nYC5wGHA8MAf4GvBkjmIlSZIk5VfkHiRIXeKfB15g9LXWuj0JnJSpRkmSJEn59NAhPUiQXui3\ngEuAQ0mn3e1CGtp7AFgFPAr8JleBkiRJktpDJwSkshFSEHo0dyGSJEmS2lPRfwdJkiRJkupm\nQJIkSZKkYECSJEmSpGBAkiRJkqRgQJIkSZKkYECSJEmSpGBAkiRJkqRgQJIkSZKkYECSJEmS\npGBAkiRJkqRgQJIkSZKkYECSJEmSpGBAkiRJkqRgQJIkSZKkYECSJEmSpGBAkiRJkqQwMXcB\naql7gaNyFyFJktQmLgWW5C5C7cWA1FmeAVYD5+UuRA2xgPTGviB3IWqYm4F/BG7JXYgaYglw\nAPD53IWoIfYD/g04FliTuRY1xtXA87mLUPsxIHWWIeAV4MHchaghZgEjuD+LZD3wLO7TolgF\n7IL7sygGY/ow8HLOQtQwfcBw7iLUfrwGSZIkSZKCAUmSJEmSggFJkiRJkoIBSZIkSZKCAUmS\nJEmSggFJkiRJkoIBSZIkSZKCAUmSJEmSggFJkiRJksLE3AWopYZyF6CGGsJ9WjTu02JxfxbL\nEDACrM9diBrG/6ParJG49WSuQ803O24qhi5gXu4i1FB74xdXRdIN7JK7CDXU/NwFqKF2B6bm\nLkJto4fIRR6IO8truQtQQ40Az+YuQg31fO4C1FC9cVNxPJO7ADXUytwFqD15DZIkSZIkBQOS\nJEmSJAUDkiRJkiQFA5IkSZIkBQOSJEmSJAUDkiRJkiQFA5IkSZIkBQOSJEmSJAUDkiRJkiQF\nA5IkSZIkBQOSJEmSJAUDkiRJkiQFA5IkSZIkBQOSJEmSJIWJuQtQNnOBfYCXgBeADXnLUQMc\nAcwC7sL9OR7NAeYDg8ATwFDectQA+8btUeCVrJWoETxuFsvOwDygBPyW9N4r/b+RuPVkrkOt\n8W7gQUb3+wjwInBazqI0JjOAyxjdn915y9E2mgP8B+nDVnkfvgYsyVmUxqSLtP/6SfvzQ3nL\n0Rh53CyWtwG/ZNP92QdcBEzNWJfy62H034QBqYMcAawDXga+ALwfOAV4lvRv4JR8pWk7LQCe\nBFaTvgEzII0vXYz2+H0DeC9wXMwbAU7OV5q2027ALcB6YBkGpPHO42ax7E/qMXodOIe0PxcD\nd5L25/fzlaY20IMBqSMtJe3rhVXzD4v597a6II3Zo8DtwO6kD2UGpPHlONI++2bV/BnACuB/\ngQmtLkpjcgnpw/NRwNkYkMY7j5vFcglpvy2umj8NWEk6zW5Kq4tS2+ghcpGDNHSWn5C+Mbmj\nav4jpG9Udm91QRqzrwJ/SHpj1/hzQkwvq5q/DriG9H/ynS2tSGN1C6nX4b9zF6KG8LhZLD8A\n/gz4cdX8fuBxYDIpLKnDOUhDZ/nRZubvTOp1+FULa1FjLM1dgMbkCKAXWF5j2QMVbe5uWUUa\nq5/mLkAN5XGzWB5g9L210s6k99qngDUtrUhtyYAkgAtI10JckrsQqcPsCfxuM8vKvYJ7tagW\nSfXzuDn+HQrsARwA/BVpf34ma0VqGwYknQWcCnwHuCFzLVKnmQ6s2syy/pjOaFEtkurjcbMY\nvgJ8OP5+ADgRewQVDEjFMpc0EkulB0nn21abCFxKGqb0u8DpzS1N2+lnpN/dqHQI/v5GUQyz\n+ffh8nx/D0lqDx43i+VrpGs99wY+BdwDnEu6tlcdzoBULBt547fRr9ZoNxu4ljQqz9nA15tb\nlsbgZRxRp8heIf1/rGWnmNb6PyyptTxuFs99cQP4B9IAK+cDtwL35ypK7cGAVCyreeNQpNV2\nBG4DDgI+Blzf5Jo0NrV6/1Qcy4E/Iv2/fL1q2Vtj+kRLK5JUzeNmcUwHZvHGkV83kAY9OhZ4\nDwakjucw351lImloy4OARfgmL+V2G+nC4EU1lh1HOgXvFy2tSFIlj5vF8iDpd8p2qLFsbkw9\nrVmAPxTbSc4h7euTcheipvCHYsefOcBa4GnSiHZlp5D25fdyFKWG8Ydixz+Pm8VyHml/Xs2m\nA+AcRjoLZ5g0qp06Uw+Ri7riD0j/aHoyFaTWWEM6VeC+LbQ5gc0PO6z2cgibfoA+iLR/7ydd\njwbw98CNLa5L22Yx6ULhDaR9txNp3z5MOmXW3+QYX+5k9LrB3UnDtC9ndD/egsfa8cTjZrFM\nAm4inUq3BvgN6UvFg0m9+WcC38xWnXLrIQ3U4TVIHWZZHW1Gtt5EbWIEGKi4X2v/Otpd+7uW\ndJ3RXwAHkr7F/C5wOZvuX40Pg4y+jz4Tt0rrW1uOxsjjZrGsBz5A6tVdRBol9lXSwAxXAw/l\nK03txlPsJEmSJHWyHiIXOUiDJEmSJAUDkiRJkiQFA5IkSZIkBQOSJEmSJAUDkiRJkiQFA5Ik\nSZIkBQOSJEmSJAUDkiRJkiQFA5IkSZIkBQOSJEmSJAUDkiRJkiQFA5IkSZIkBQOSJEmSJAUD\nkiRJkiQFA5IkSZIkBQOSJEmSJAUDkiRJkiQFA5IkSZIkBQOSJEmSJAUDkiRJkiQFA5IkSZIk\nBQOSJEmSJAUDkiRJkiQFA5IkSZIkBQOSJEmSJAUDkiRJkiQFA5IkSZIkBQOSJEmSJAUDkiRJ\nkiQFA5IkSZIkBQOSJEmSJAUDkiRJkiQFA5IkjX97AwuBnTPX0c7cRpKkuhiQJGn8+wTwS+Dt\nuQtpY24jSVJdDEiSNP71xrSUtYr25jaSJNVlYu4CJEljVv3hvxt4B/As8BwwGzgAGAIeA4Yr\nHjsdWFDR9iDgzcBdVeuYEcsmRtuXqpZvyzorzQH2AkaAZ4C1VcsbVV+9AWku8NYtLH8UeGUr\nz1E2iXRq35uBV0mvb3Pboby9SsDTpO1Wy0zgLcAEar/ORm0vSepoI3HryVyHJGn7fIT0Pr5v\n3D807l8EfJ30YXs45q0CPljx2INi/vnA5fH3YxXLpwL/BAwyerwYAW6rWN+2rhNScLgN2Fjx\nnBuBHwA7NqG+6m20OZ+uep7q24e28viy00mvu/KxK4GTq9rNAH7I6LYaIYWV6nbdpG2zvuo5\nf1H1mhq1vSSp0/Qw+p5oQJKkca6bFFDKZwWUPySvBG4mhZEJwDGkD9+9wG7Rdl60vR34NXA8\ncFTFc/876UP5l0g9K/sBp5F6ep4i9Vhs6zoBHiGFqCXAIcDhpGA1Avyool2j6qveRpvTDexf\ndVsI9AMvV72GzTkmar4VeBcwH3hv3B8Bjq5oe0PM+wbwTuBY4F5SWPxIRbubo90FpB6kA4Ez\nScHqKWBatGvU9pKkTtODAUmSCqscVvpJp7BVOj2WnRH394z7G4B9qtq+ndEP79WWxLJyT8e2\nrLMb+CLwuRrP+wTQx+g1so2qb3u9iTS4wwjw4Tof86Vov7Bq/izgK8AfxP0jo933q9rtSgo+\nP4/774p219ZY11dj2Z/H/dzbS5LGqx4iF3kNkiQV1wOkXo9K5WtRjqya/xDpmpVKi2I6DPxp\n1bLJMX0Pm37Ar2edvaQP9l2k6252q3i+daTekG42vR6pUfVtq7NJQefbpN6eerwQ09OBh4HX\n4v4aUngqK592+JOqx68inXo3GPePjel/1ljXjcDfknqtrqyYn2t7SdK4Z0CSpOJ6oca8VTGd\nWzV/RY2282N61hbWset2rvPjwMWM9nj0x3RqLK8eZbVR9W2LI4HzgMcZ7f0qO5/0GiqdTDo9\n7hrgo8BiUq/TfaTeoOtIgzyUleuv9doGK/7eN6bP1GhXDkF7Vc3Psb0kqRAc5luSimugxryN\nMa3+gmxdjbaTYvpBUq9OrVv1aWf1rPNIYCnpWpj3kXovZpB6jW6r8fhG1levblLQ2QB8khTg\nKq0lBb/KW3nkufWx3vcBVwB7kILWI8D1jF4vVK5/cyPblZXb1RrZbn1Mp1TNb/X2kqTCsAdJ\nkoprdo15s2K6po7Hl0+Vm0Pt4LO96/wk6Qu6M4A7qtpWX7/U6PrqdSlpgIa/JgWbahfFbUvu\nYPT1Hchor9PZwLmkob8Bdt7K82yp3U4xrWfo8WZuL0kqDHuQJKm43lZj3qExfaKOxz8Q00U1\nlu1Kujam+ou2etZZDlHVp4zNA36/jrrGUl89/gQ4CbgJ+NZ2PH4mKVxVWk4aQnyY0VHsHorp\nUbzRZaSQBvBgTBfUaFe+ruvXddTVrO0lSYXjKHaSVCzlEeU2sOlIcVOBZAMjggAAAqBJREFU\n/4pl74555WuAKofWLusGVpN6GyoHdZhEGlFthNEP7duyzi/H/dMq2s0mDebwWCyb1+D66rUP\nqadrFbDLNj627HZSb828qvnviJp+GPd3JA3g8CKbjjj3sWj3nbg/k9SLtJJNhxnvJg0CMUQa\nrhtav70kqSh6cJhvSSqscli5ljRowl2kHxl9MuYvrWi7pQ/UkK5X6SN9qL4u2v2W0R8j3Z51\n7k66hmcQuBq4ihQA/g74QrS/h9SL06j66nVVPPaReK7q20freI4FwOuk65ZuJb3Gn5Ne70uk\n0+3KTiAFnF7Sbx3dE+tfzqanKx4fj3+FFLCuJAWmjcBfVrRr9faSpKLowWG+JanwXiP1FCwB\njiCNxnYxcHlFm0HgTjZ/yt3PSD8o+lnSj7nOBn4K/Ctw93aucyXpVLq/IfV8rCadfnYTabCG\nfUnDf29oQn1b81ysD1LYqDazjuf4FfB7wIkxnUPqkToL+Bc2Hb78uqj7s6TX8QIpZH6bTQeG\nuDGe61TSKYtdpB99vRJYVtGu1dtLkgrJHiRJKpZyb84VBV+nJEmN0kPkIgdpkCRJkqRgQJIk\nSZKkYECSpOLpI12Hsrzg65QkqeEcpEGSiud5YGEHrFOSpIazB0mSJEmSggFJkiRJkoIBSZIk\nSZKCAUmSJEmSggFJkiRJkoIBSZIkSZKCAUmSJEmSggFJkiRJkoIBSZIkSZKCAUmSJEmSggFJ\nkiRJkoIBSZIkSZKCAUmSJEmSggFJkiRJkoIBSZIkSZKCAUmSJEmSggFJkiRJkoIBSZIkSZKC\nAUmSJEmSggFJkiRJkoIBSZIkSZKCAUmSJEmSggFJkiRJksLEir+PBs7KVYgkSZIkZXJ0+Y8u\nYCRjIZIkSZLUNjzFTpIkSZLC/wF3muUVZyITmwAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “'prepare' dimension histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebxtd13f/9c1N7lJIBBAEqABTCxKARGHyBSFFggIFqyKMjjU6VeLVK3g\nUIcaVIqtI6JWwEaGqEiBODBUqFFRiBOWggyCoIBNgAAGbpKbm+n+/ljf49335Jx7z7zP8Hw+\nHutx1l77u9f67HXW2We991rru/ZVRwIAAKBPm3cBAAAA28X+mfE3VX8yr0IAAADm5ILqoQsP\njozhonlVAwAAMEcXNXKRU+wAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAAhv3zLgCAZX16\ndb8xfqT6ozku787Vfcf4LdUbN7mWnWCnrZP11LvT3ivAmglIwEp8TnWnMf6+6kNzrGUvuaC6\ndIzf3LGf2ZvxOzne8h5W/c8xfrg6dQOWt9PttHWynnp32nsFWDOn2AEr8aPVH4zhy+dcCxO/\nE3aDC6qHV6fPuQ6Af+IIErASB5cZZ362+nfyhurzxvgtW7C8nWAvrZPNeK/3qf54jP+L6t0b\nNF+AdRGQgJUQkLafrf6dfLJ66xYsZyfZS+tkM97rkzd4fgAbQkACVuKamfFPzYzfrfqsMf6J\n6m3VSdXnVme0dKcC/6w6p7qx6dqZT55g2adU96rOrP6x+odFNSxVy8HqLWP8jOqfN51S/K7q\nuhMsb+E151W3Gct8b3XTMm2XWgc1nTJ0r1H/O6trT7DMO4z2h6r3NF3ncTzL/U5WarXLO95F\n+sutg09vWo8frf5+0fwOjNecWr29uv4Ey1/JdrNRv4uVbnOr6bhgHtvUSq1kvit9rytZdwvX\nzz1pZtoXVXcZ7f92ifmuZv3NOnPUc/14zfXVydVDZ9r8cdM1d7X6z7STmz5f7tjRv6VrurWt\n+BsBNtCRMVw05zqA7euHOvpZ8aCZ6d88M/3ypp2Et43Hi3dentoUUI7MDDc2dQpwzyWWeffq\n15p2OmZfc0v1e03XLcz6ppk2723aufjFRa+/pvqB47zPB1avH3UdWfS6F1f3WOI1s8u9fEz7\n3qYd+IXph6ofWWaZZ4x5zy7z49V/qB4/M23x+lzud3Iia13eV808t3hHbfE6+LTq5xct483V\nXUf7J1YfmXnuk9VTlql3NdvNen8Xq93mjrdOFsxjm1rObL0LRx1XOt8TvdfVrLtXL2ozO/zc\novmuZf1V3b566aLXfaL6zqbANDuvAzOvW+ln2h2q/94U/mbndVP1mx3d1hds5t8IsDEu6ujf\nnIAEnNBXV38yhvNmpj+po58hf109t2N3FBY8u2N3Iq7o2J2yf2g6QrDgrNFm9jWHFz2+ufrX\ny9RyRXXJovazwzOXeI9P6dY7YYuHqzraDfZSy31H9d3Hef3TFr12X/W/j9P+N2bGFweW5X4n\nx7Oe5R1vB3nxOnjWMvN/fdORgpuWeO6mbr1uV7vdrOd3sZZt7kShYR7b1PHM1vuRE8z324/z\n2sXvdbXr7re79TZw0xh+ema+a11/+5o6L1nuNT+/6PGslXymnd7R0HSkKQR+fPxcmPae6rbL\nzHcj/0aAjXNRM58LCyMXza8eYIdavMP1qer/Nn0LfPFo88UzbW6svnRM/7TqZ2aee/nMfP/z\nzPRXN516U3Vax+7UvXfmNU/s2B2Wa5t2sO5UPbjpAvCF56+pbjfz2s9u2ulbeP53xrTbV49p\n2hGf3bmZ7QF0dh38Y9M38z9XPar6/o7dUXzfovX3lR27A/RLTafc3KFbh4OVnE50IutZ3vF2\nkBevg09U39XUu97iHcl3NIW0J1Q/tWiZPz8zz7VsN+v5XaxlmzveOpnXNnU8s/P95Anm+/7j\nvHbxe13LurvLzPQj1b0XzXM962/2s+BI9atNQfrO4/2udDtf7jPtO2faXNPUwUTVZzZt+wvP\nfdcy892ovxFgY12UgARsgNl/+keaero6eVGbl888/+uLnju5urKjO8FnjekvnnnNUqfEfVP1\nFU2nli3sGC2u5YcWveZBi56fvUD8BTPTP9Sxp9zU9I3u7GsfO/Pc4uW+cNFrF39T/Okzz71y\nZvp7u/WtF/585vmNCEjrWd5KA9KRpi7IF3z+ouc+0rTjvOCNM8+9eWb6Wrab9fwu1rvNLV4n\n89qmjmc98z3ee13LujtRQFrP+nvVzPS/79bXW//fmeePt50v95n2ZU1HoZ/ZrTuaeOnMa//n\nzPTN+BsBNtZFjb8190ECNtJ/adphnfUlM+OHm779XRge0XRqTk07MQ8Z47Pfiv/npm9un1qd\nO6Zd3LQT9Kct3+Xwry16/KdNOx4LPn9m/MKZ8Uu7dYcFf970jfWCf7XMMuvW3/C+btHj2Z3O\nL5wZ/1/d+r385nGWsxZbtbyXzoz/VcdetP7KputUFsxe9H7HmfG1bDeLreZ3sRHb3Kx5bVOr\nsVHz3eh1V+tbf18wM/6abh2CFgfu41nqM+3VTUd2frb6Px29l9PDOzbYnHmc+W7E3wiwSfRi\nB2yk/7Po8f7q7JnH/3YMy/nn4+fzq29t6rXsQPWNY6hpp+jVTaeHvX2Z+dxcfWCJ6R+YqWfh\nqMNJHXuh93tb2vtHPbX8heFHqr9ZNO3Dix7Pfu7eZWZ8qXo/uMxy1morlnek+rtF0z7W0esx\nFq/fj82M75/5uZbtZnEdq/ldrHebmzXPbWqlNnK+G7nuav3rb3Y7X7wtLjdtOYs/02o6onRR\n9e+bTk9dzr5lpm/E3wiwifyhARvlxurqRdNOWfT4PU2nRi3n4+PnR5pOoXlO06kpt5lpc071\nbU07ZE+vfnmJ+Rxq6W+qb5gZXzht5kDH7sjMtpk1+y3y4tN9Zl+7+PXLnRq3r2NP3VlquRvZ\nre9WLe+Gbv2eb54ZP3Sc5xasdbtZXMdKfxe1/m1u1ry2qdXYyPlu5Lqr9a2/lWznK+nqf2H+\niz/TanoP3zTGjzQdjf1g0/q7oKlL8OPZiL8RYBMJSMBGWSqQXNe0M7Cww3tx9V9XOL8rm44a\n/Lumna8HNXW2cGHTDthJ1fOaLt6+YtFrb9t0qsviHY07zYwv3EfnujGcPh4vd1rRnWfGr1rh\neziehQu8zxiPl/om+i5LTNspy1uP9Ww367GebW7WvLapedqodVfrW39HmjpoWTgas57tfKnP\ntLt29OhY1fdVPznz+L934oAEbHOuQQI22+xpNfddttXSTmq69uCPm3ZCvqLpuoaF01P2N+2M\nLeXBix7frmNPxXrPzPhfzIwvdT3LHTraU1VN1z9shNkbYn7+Es9/yRLTdtLy1mM92816rGeb\nmzWvbWqe1rPuFp+Otp71N7udz16PtOBhy9SwEvft2Fpfs+j5B6xj3sA2ISABm+1VM+Nf1bEh\n5dOr/9d0LcGbO3oNw6ubdqo+2rFHfWr6pnj2WonFR4kWfG/HfsY9o2NPvXnDzPhLZsYf062D\nwo/PvPaa6hXLLHO1LpsZ/9KOvcfJZzWtr4201ctbj9VuN+uxUdvcrHltU1ttretu8Slmn7no\n8XrW3+Lt/PNmHt+79W3ni0/Zm70P12M79qbNt1/HcoA5coodsNl+qekahLs3nfb2p9XLmu7B\n8qTqbqPdbK9UV1efMcb/smnn5yNNp9w8vKNHh65s6gJ3sUPV+WOelzV90/xlM8+/vukmkAte\n0nR60Bc3harXN3Uz/ZEx7YEzbb+n6R4mG+GXq+9o2tE7uemb95c1nSb0pKb3t9AT2EZ8obXV\ny1uPtWw3a3W49W9zi81rm9pqa113H2s6FW7heqUXNPVW93dNPcStZ/09v/oPTdv4/qZe4F7Z\ndMrcV4553HON7/f/dOzpf7/QdOrgeU2dNryq6chZTUeTvr9jAxuwQyz0rX/RnOsAdp7j3Rtl\n1n2aTns5ssxwacd2j3tG040Sl2t/pKkXttluq2drubZ6fMfeaHJh+NuO/dZ3wZlN34Qvt7zr\nmi4yX+06OGfRfO636Pl/13QR9uLlva3pRpGz0xbfj2Ut1rq8ld4Haal1MPu7/7ZFzz195rm/\nXfTcareb9fwu1rvNLbW8eW1Ty1nPfI/32rWsu5qCxeJ2r555fq3rr6btbKnt/K+rr515vJr7\nfS2YvVHs7PD6pu3xLxZNv2gF813r3wiwcS5q/K05ggSsx1UdvUfHcj1NVb2zaWf3q5vuV3K3\npp2bv2/6tnnxzQ8PVo9qOrXmUU3fzp7R9G31B5q+hb605XdgPq3pYvAHNPWede9R3x83fbt8\n7RKvubrpKNMFTUHhs5p2dj5e/Vn1Gx17H6UFJ1oHhzv2PiaLl/38pm+lv7npW/h/HO1f3HQq\n2exrT+nW92RZrbUu73jv80Tr4M86epRn8QX6/2/mtf9v0XOr3W7W87tYyzZ3ouXNa5taznrm\ne7zXrvXv9T827fA/vOlUvStHuwVrXX81HS39q6be5s4d83pj9aLqkYve86yVfKY9t6NB6581\nnVr4mqYjXDc3HaX6gabTBj/cdH+pU08w37X+jQCbZPYbDoCdaqVHs4C97TtyRAa4tYsanw3z\nPsccAGAjPbzp3kTvaDoqddbMc6d0bDfdf7hlVQE7hlPsAIDd5D1Np+UtdABxeVOnD0eqL+9o\nV9zXVz+95dUB256ABADsJldUT6x+vamjh/O69WUEn6i+rnrXllYG7AgCErBbrLTDCGD3e11T\nr3xf3XRvors19cp4ZdMRpZdVn5pbdcC2p5MGAABgL7sonTQAAAAcS0ACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAY9s+7AAD2vE+rHladNO9C1umm6o3VLfMuBIC1E5AAmLcHVZed\nccYZ865jXQ4ePFj1kOryOZcCwDoISADM2/6q3/qt32rfvn3zrmVNbrnllh75yEeW/6sAO55r\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYNg/7wK22O2qe1dnVadWh6orq3dX182xLgAAYBvYKwHpcdX3Vg+t\nTlri+RurN1TPrt68hXUBAADbyF4ISN9fPac6XP1+9Y7qqvH4QHWX6gHVo6vHVN9aXTyXSgEA\ngLna7QHp3OrHq8uqJ1cfPUHbl1e/WL2u6dQ7AABgD9ntnTRc2HRK3Td2/HBU9XfV1zVdm/Sl\nm1wXAACwDe32gHTHpuuLPrjC9n9T3VKdvWkVAQAA29ZuD0hXVidX911h+89vWidXbFpFAADA\ntrXbA9LrmrryvqS6zwnaPrD69epg9ZpNrgsAANiGdnsnDR+pnlb9SlPvde/uaC92NzT1Ynd2\ndf/qvKae7Z5SfWwexQIAAPO12wNS1Yuqt1XPaOrK+yuXaPPhphD1k9V7tqwyAABgW9kLAanq\nr6qnjvGzq7Oaequ7vikcXbXBy7tN9czqtBW2P7k6p/qaDa4DAABYhb0SkGZ9ZAwL7lI9qKlD\nhw9s0DLOaLqm6eQVtr99dX719U2n+QEAAHOwFwLSbaofq76s6YjRpdWzx3MvarqB7II/Go/X\ne5PYD1ePXUX7h1Rvqo6sc7kAAMA67IWA9KvVE6ubmu6J9J+bTmf7cPWk6g3VPzT1cvewpgD1\noLlUCgAAzNVu7+b7vtVXVT/VdCTpNk2dNDy1+qbqG6sLx/iDmjpyeGDTER0AAGCP2e0B6fzq\n2uoHmrr1PlK9qulUuiPVixe1/7mm+yZ94RbWCAAAbBO7/RS7s5s6ZLhx0fQPVXdaov0tTT3a\nnbHJdQEAANvQbj+CdEV116YuvWf9i+ozqpMWTT9ttP/EplcGAABsO7s9IL25OlA9r7pzdbvq\ne5pOvftk9UMzbU+q/mtT19xv2toyAQCA7WC3n2L3vuoF1b+vvmVm+nOrv6l+qXpK0/2P7l3d\nvXpN9batLRMAANgOdntAqvqO6v3VE5puwnpp9d+brje6Y/V91Wc1deJwSfW0+ZQJAADM214I\nSDc1dfP9U0s89+zqOdVZ1dVNN5IFAAD2qL0QkE7klqabxgIAAHvcbu+kAQAAYMUEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABj2z7sAANblnOqx8y5ine417wIAYIGABLCzPfXUU0/9iXvc4x7zrmPNrr766j76\n0Y/OuwwAqAQkgJ3u084777x+4Rd+Yd51rNmll17a8573vHmXAQCVa5AAAAD+iYAEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAw7J93AVvoNtXDq/tWZ1WnVoeqK6u3VW+sbphXcQAA\nwPzthYB0SvXs6tur047T7urqJ6r/Vh3ZgroAAIBtZi8EpJdV/6b6q+oV1Tuqq6rD1YHqLtUD\nqic1BaRzq2+bS6UAAMBc7faA9MCmcPQz1TNb/sjQpdWPVS+o/l31C9Vfb0WBAADA9rHbO2l4\ncFMoelYnPm3upur7xvjDN7EmAABgm9rtAelAdXN1zQrb/2N1S1OHDgAAwB6z2wPSe5tOI3zM\nCtv/m6Z18u5NqwgAANi2dntA+l/VP1SXVE+rzl6m3d2bTq/71ep943UAAMAes9s7abiu+vLq\nt6tfHMPHm3qxu6HpFLyzqzNH+/dUT2jq4Q4AANhjdntAqnpL9VnVU5tOtbtPR28Ue311RfV7\n1e9WL69unE+ZAADAvO2FgFTTkaQXjmEr3KN6fXXyCtufOn7u25xyAACAldgrAanqpKYe7Rbc\ntnpcdV7TKXVvrf6wqRe79bqy+i8dDT4n8pnV93birsgBAIBNtBcC0rnVi5uOHr10TLuw+vXq\nTovavq2pJ7v3r3OZN1YvWUX7hzQFJAAAYI52ey92J1e/Xz2wo0eP7la9qjq9+tmma5O+uXpZ\n9TlN1yLtheAIAAAsstuDwOOajiB9TVMHDFVParoR7COqy2baXlz9ZfVTTUeYXrt1ZQIAANvB\nbj+CdK+mI0evnJn2GdUHOjYcLXhB03VA9930ygAAgG1ntwek65s6ZzhjZtpHW/4+Rzc3BaSb\nNrkuAABgG9rtAekPxs8fm5l2adNRpPss0f4ZTevkLza3LAAAYDva7dcg/XX1/Orp1f3H+J9X\n31/9dvXj1Xuqc6qvrR5fvaH6k3kUCwAAzNduD0hVT6v+oSkU/dqi51606PHLqm/dgpoAAIBt\naC8EpFuajhQ9r/rS6vzqnk03ir2p+lj19urV1d/MqUYAAGAb2AsBacEnm44QvWzehQAAANvT\nbu+kAQAAYMUEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgGE1Aenrq19ewfw+WD1uzRUBAADMyWoC0nnVg07Q5vTqrOqz11wRAADAnOxfQZs/\nHT/Pqe4w83ixfdW51YHqE+svDQAAYGutJCC9tjq/uld1WvWA47T9VPXS6tfXXxoAAMDWWklA\n+tHx86Lqyzt+QAIAANixVhKQFrygevlmFQIAADBvqwlIV4zhLtX9qzOarjtayjvHAAAAsGOs\nJiBV/bfqGZ2497tnNZ2SBwAAsGOsJiB9UfU91dur360+Xt2yTNvleroDAADYtlYbkD7U1KPd\n4c0pBwAAYH5Wc6PYU6t3JBwBAAC71GoC0luqe7d8xwwAAAA72moC0h82haSfrA5sSjUAAABz\ntJprkL6k+vvqW6qvrd5afWyZtq8aAwAAwI6xmoD0L5u6+K66ffXo47T92wQkAABgh1lNQHpe\n9avVzSto+6m1lQMAADA/qwlIHx8DAADArrSagHSPMZzISdU/VO9bU0UAAABzspqA9E3Vj6yw\n7bOqi1ZdDQAAwBytJiC9sXr2Ms/dufqi6tzqx6vfX2ddAAAAW241AemyMRzPd1ZfWf3smisC\nAACYk9XcKHYlntt0NOlRGzxfAACATbfRAanqA9X9N2G+AAAAm2qjA9KZ1edVn9zg+QIAAGy6\n1VyD9JgxLGVfdcfqkdWdqj9ZZ10AAABbbjUB6UFNnTAcz6eq/1i9Y80VAQAAzMlqAtILqlcv\n89yR6prq/dWN6y0KAABgHlYTkK4YAwAAwK60moC04C7V1zbdGPasMe3K6k3VJdXVG1MaAADA\n1lptQHpc9RvVGUs896Tqh6onVH+2zroAAAC23Gq6+b590xGia6unV59TnT2Gz62eUZ1UvaI6\ndWPLBAAA2HyrOYL06Kb7HH1h9ZZFz320elv1xuovqgur39mIAgEAALbKao4gndd0rdHicDTr\nL6sPVvdeT1EAAADzsJqAdHN1+grnecvaygEAAJif1QSkdzRdh/QVx2nz6Oqc3CgWAADYgVZz\nDdIbqvc1ddTwguqypvsi7avuVj2y+pbqPdX/3tgyAQAANt9qAtKN1eOr36q+cwyLvav68tEW\nAABgR1ntfZDeWd23emz1kOqu1ZGmzhv+uPq96qaNLBAAAGCrrCYg7WsKQzdWvz2GBac0BSOd\nMwAAADvWSjtp+KKm+xvdeZnnv6v6o+ozN6IoAACAeVhJQPrcpg4ZvqC6YJk2Z1YPHe3O2pjS\nAAAAttZKAtL/qE6rnlRdukybH6i+rrp79YsbUxoAAMDWOlFA+pymI0e/WP3mCdr+WvWi6t80\nBSUAAIAd5UQB6fPGz0tWOL+Lq5OaergDAADYUU7Ui91dx8/3r3B+7xs/77G2cgC21M9U/3be\nRazTqfMuAAB2kxMFpIUbvh5Y4fxuM35et7ZyALbUvR784Aff4cILL5x3HWt2ySUrPcAPAKzE\niQLS342fD6peuYL5PXz8/MBaCwLYSne/+9172MMeNu8y1uy1r31t11577bzLAIBd40TXIP1h\ndbj6vurkE7S9ffWfqk9Wv7/uygAAALbYiQLSP1bPr86v/md1p2Xa/fPqDdV51S9UhzaqQAAA\ngK1yolPsqr6/+sLqCdUjq1dXb62uqe5YPbB6dFPvdW+oLtqMQgEAADbbSgLSoepfVT9aPa36\nmjHMuqr62eq/VTdvZIEAAABbZSUBqY5eh/Sj1UOrezX1WHdVUxfgf5JgBAAA7HArDUgLrq1e\nPwYAAIBdZbUBaSf7l9Vjq/tWZzXdXPFQdWX1tup3qj+fW3UAAMDc7YWAdM+mHvjOn5l2Q9Np\ngweaOqD419UPVv+r+trq41tcIwAAsA2cqJvvne7k6rXVA5o6kXhI0/2aDlS3G3cZqV0AAB9Y\nSURBVD/v2NQJxcVNvfH9brt/vQAAAEvY7UeQLqzuU3199dJl2vxj9QdjeGv189XDq8u2oD4A\nAGAb2e1HSu7T1Lveb6yw/QurI9XnbVpFAADAtrXbA9LNTe/x5BW2P7na1xSSAACAPWa3B6S3\nNAWep62w/TPHT73ZAQDAHrTbr0H64+pN1U9VD6xeWb2j6Qa3NzR10nB2df/qKdVjmu7x9KZ5\nFAsAAMzXbg9It1SPr36leuIYjtf2RdXTc4odAADsSbs9IFV9ovqK6l5NR4ju09EbxV5ffbh6\ne/Wa6kMbtMx91YOr01fY/r4btFwA5uuzq+vmXcQ6vaud/x4A1mwvBKQF7x3DUva3sddjnVv9\nUXtr/QLsWUeO/NOJBy+cZx0b5JnVT8+7CIB5sQM/+eWmm8l+4QbN7/2tvOe8mm5g67ongB3u\n537u57r//e8/7zLW7OlPf3rvfOc7T5l3HQDztNsD0u3GcCKnNwWac8bjT40BAADYQ3Z7QPru\n6kdW0X7hGqRnVRdteDUAAMC2ttsD0ifHz+ur36yuXqbdI6s7V78xHv/pJtcFAABsQ7s9IP1s\nUy92P93U3ff3VP9jiXa/0nQN0ndtXWkAAMB2s5E9t21XL67+RfW6piD0B01dfgMAABxjLwSk\nqquqp1aPbeqC+23VD7S6nuYAAIBdbq8EpAWva7op6y9XP1a9pTp/rhUBAADbxl4LSFXXVv+x\nelB1S/Xm6tFzrQgAANgW9mJAWvAXTTeG/eHq0+dcCwAAsA3s5YBUdVP1E9WZ1RfPuRYAAGDO\ndns33yt1eN4FAAAA87fXjyABAAD8EwEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAAhv3zLgAA2B6uuOKKqh+uvmfOpazXxdUz510EsDMJSABAVYcPH+4R\nj3jEaRdccMFp865lrV7/+td3+eWXf/a86wB2LgEJAPgn5557bg972MPmXcaavetd7+ryyy+f\ndxnADuYaJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY9s+7\nAGDHen513ryLWKcHzLsAAGB7EZCAtXriox71qDt8xmd8xrzrWLNLLrlk3iUAANuMgASs2Rd/\n8Rd3wQUXzLuMNXvFK14x7xIAgG3GNUgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAw7J93AVvsdtW9q7OqU6tD1ZXVu6vr5lgXAACwDeyVgPS46nurh1YnLfH8\njdUbqmdXb97CugAAgG1kLwSk76+eUx2ufr96R3XVeHygukv1gOrR1WOqb60unkulAADAXO32\ngHRu9ePVZdWTq4+eoO3Lq1+sXtd06h0AALCH7PZOGi5sOqXuGzt+OKr6u+rrmq5N+tJNrgsA\nANiGdntAumPT9UUfXGH7v6luqc7etIoAAIBta7cHpCurk6v7rrD95zetkys2rSIAAGDb2u0B\n6XVNXXlfUt3nBG0fWP16dbB6zSbXBQAAbEO7vZOGj1RPq36lqfe6d3e0F7sbmnqxO7u6f3Ve\nU892T6k+No9iAQCA+drtAanqRdXbqmc0deX9lUu0+XBTiPrJ6j1bVhkAALCt7IWAVPVX1VPH\n+NnVWU291V3fFI6u2uDlnVn9WHXKCtvrFAIAALaBvRKQZn1kDEvZV92zunoMa3VSU0g6sML2\nZ6xjWQAAwAbZCwHptOqHqsdXt63+rOnmsX+9RNsDTfdDelZ10TqW+fGmeyqt1EOqf7WO5QEA\nABtgt/diV/WS6geq+zXdF+lrqre0ugADAADsAbs9IH1u9VXV7zVdd3T7pu6+31q9uHry/EoD\nAAC2m90ekL5g/HxaRztieFf1JU33SHpRdcHWlwUAAGxHuz0g3bk6Un1g0fTDTafavat6VdM9\nkAAAgD1utwekDzT1THf/JZ67pqnjhluajibdZQvrAgAAtqHdHpD+sLquemF17hLPf7D6sqYj\nTW+qvmjLKgMAALad3R6QPlz9cNO1SO+vHrxEm7+sHtZ049g/2rrSAACA7Wa3B6Sqn2nqye73\nm+5PtJS3N/V496vVzVtUFwAAsM3shRvFVr1yDMfzseqbxgAAAOxBe+EIEgAAwIoISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAMP+eRcAq3Ra\n9ZBq37wLWafzqvfPu4h18vkBAOw6dnDYaZ5UXTzvIgAA2J0EJHaa/eecc04veclL5l3Hml1+\n+eX94A/+YK961as688wz513Omj3iEY+YdwkAABvONUgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMOyfdwEAABzjftXF7fwvsq+vnlB9fN6F\nwGoISAAA28u9Dhw4cP7Xf/3Xz7uONTt06FCXXHJJ1dkJSOwwAhIAwDZzyimn9OQnP3neZazZ\n1VdfvRCQYMfZ6YduAQAANoyABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAw/55FwAAsFEOHTpUddfqiXMuZT2+aN4FwF4mIAEAu8Z73/ve9u/f/wWnnXbay+dd\ny1odPnx43iXAniYgAQC7xpEjRzr//PN79rOfPe9S1uyFL3xhr371q+ddBuxZrkECAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgGH/vAsAAGB3\nueGGGxZGf6+64ThNt7sj1f9XXTbvQtg6AhIAABvq0KFDVX3DN3zDOXe6053mXM3aXXzxxV19\n9dWfmYC0pwhIAABsioc//OHd8573nHcZa/byl7+8q6++et5lsMVcgwQAADAISAAAAIOABAAA\nMLgGaW/58uop8y5inc6bdwEAAOxeAtLe8oRzzjnniQ94wAPmXceavfWtb513CQAA7GIC0h5z\nv/vdr+/+7u+edxlr9pznPKd3vetd8y4DAIBdyjVIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAADD/nkXAAAA29HNN99cdc/qC+Zcynq9pzo47yJ2CgEJ\nAACW8LGPfazqB8ewkz2/+rZ5F7FT7MWAtK+6TXVqdai6dr7lAACwHR05cqRv//Zv78ILL5x3\nKWv23Oc+t8suu+zAvOvYSfZKQLpL9e+rx1b3qU6fee5g9bbqt5vS9ae2vDoAALalU089tTPO\nOGPeZazZKaecMu8Sdpy9EJAurF5RndF0tOhvqquqw9WBpvB0fvXQ6hnVv67+Yi6VAgAAc7Xb\nA9KZ1cuqq6uvrV5b3bREu1OrJ1Y/U11afXZOvQMAgD1nt3fz/bjqDtVXV7/T0uGo6vrqpdVT\nqn9WfemWVAcAAGwr+6ojY/xZ1UXzK2VT/Kem97XSky9Pqm5o6qnkJ9ax3HOrP2vlR+j2N50C\neEp14zqWeyK/sn///m8+7bTTNnERm+vQoUPdfPPN3fa2t513KWt20003dejQoW5729u2b9++\neZezZgcPHuy0005r//6deyD6mmuu6eSTT+7AgZ177eqhQ4c6cuRIp59++okbb1M33nhj119/\n/Y4+x7+mv4nTTz+9k046ad6lrNk111zTKaecsqOvWbjuuuvat29fO/l/3eHDh7vxxht39P+6\nW265pWuvvXbH/00cPHiwAwcO7Oi/iUOHDnXTTTf9j+pb5l3LNndR9SO1+0+x+1R1cnVW9dEV\ntL9r01G19XbU8IGmo1YrXb/7mmrczHBU9cM33XTTyw4e3NHd4B+ozj548OAH513IOt3rmmuu\nee+8i1incw8dOvShlj8yuxOcfcMNN1x/ww03fHLehazDbarbHzx48Ip5F7IO+6rzDh48+L55\nF7JOn3nddde9v6NfPO5Edzt8+PAnDx8+vJNPM799derBgwc/Mu9C1mF/dfeDBw/+3bwLWad7\nXXfddTv9f909Dh8+/JHDhw8fnnch6/SOeRew0xwZw0VzrmMz3Kfpvf1aJz6KdJumnuxuqT5r\nk+sCAAC2j4sauWi3H0F6Z/VL1dOqh1W/25Sgr2o6le5AdXZ1/+rx1adXz2m62zAAALAH7eYj\nSDWduvEd1Yc6+l6XGt5TfcOcagQAAObnovbIEaSa3ujPV8+r7td02t1ZTV17X199uHp79e55\nFQgAAGwPeyEgLTjSFITePu9CAACA7Wm33wcJAABgxQQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBh/7wLYEtdXj1o3kUAAOwgP1798LyLYOsISHvL+6urqmfNu5A97rzq5dWF1SfmXMte\n97PV31fPnXMde93nVy/o/2/v3oPlrMsDjn/PkJAQriFgCJDQcKlRAVMsMBgGEUppMWptGcyU\nwbRV2+nUikrtzbaeItRRS71gncEKaJWhWKUtoCIUKUIRhFAuFhA0iYSbhBDCLfdz+sfzbHf3\nzW6yJzlnfyfn/X5mdnb3fX/77rO/dy/vs7/LC8cBQ4VjqbvLgFuBy0sHUnNvJg7ITykdiLga\neKJ0EOovE6R62QCsApaUDqTm1ub1fcAzJQMRa4Cf42eitN3zegkmSKW9TBwM+pkoaw6wGffD\neLCe2BeqEccgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIk\nSZKUTJAkSZIkKZkgSZIkSVKaVDoA9dWG0gEIiP0wDGwsHYjYgJ+L8WAD8XkYLh2I/EyME+6H\n8cN9UVPDeRksHIfG3vS8qLxDSwcgAPYH9iwdhBgA5pYOQgDMAnYrHYTYBTikdBACYDYwuXQQ\n6otBMi+yBaleVpcOQP9vaekABMDK0gEIiB+kZaWDEABPlQ5AAGwGflY6CAGwonQA6j/HIEmS\nJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZ\nIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKk0oHoCIGgIPy8hTw\nBLC5aET1NQU4LK+XAmvKhlNruwBvBF4BlhSOpW5+AZgFrAIeKRtK7c0H9gFuxd+FUnYB5gD7\nA48BT5cNp9ZmAHOBF4HlwPqi0aivhvMyWDgO9cdZwKM09/swkSC9p2RQNTQV+CSwlvZ98R/E\nwaL6ay5wG7EP7i4cS53MB+6h/TPwE+DNJYOqqd2BL9LcD3uUDae23g08Sftn4j7g5IIx1dEx\nwM2074dXgE8Rv9+amAZp7m8TpBpZROzrR4kv4ZOJxGhZLl9cLLL6uYKo82uAtwG/BlxCc//s\nWi602lkMvAD8D7ARE6R+mQWsBFYD7wMWAO8CVhAHIq8rF1rtHEe03K0k/iU3QSrjvUTdPwCc\nA5wC/CXwErAOeE250GrlcKLFaA3wF8R+OBO4hdg/l5cLTWNsEBOkWnqAaB4+qLL89cR74Ja+\nR1RP84j6vpno7tjq6lx3er+DqqkZRH1/jujmuA4TpH65iKj7t1aWz8/lV/U9ovp6ALgJOBC4\nHhOkEgaIlqNVxPdSq/cT++Tj/Q6qpi4m6vvMyvLdiH20nvi90MQzSOZFjkGqlz8l+jY/UVl+\nP/HP+d59j6ieNhP74nbyX4oWtwHvIA5UNPY2EC1415YOpIbeQYyBvK6y/F7gLmAh0ZK6oc9x\n1dGFwNeBodKB1Ng04BPAs0SS1Oq2vPZ3oT++AvyALX8X1gIPAqcSyZLjkSY4W5D0JuI98E+l\nAxGfI/bFiaUDqSlbkPpjL+J9Xk2OGr6Q64/sW0RqsAVp/PlNYp/8VelAam4GkcA+WjoQjZlB\nbEGqvROBfYE3AH9MtCL9TdGINA/4XWLQ+n8XjkUaSwfn9ZNd1jeWzwZ+NPbhSOPWNOCjwMs4\n9qWEI4lhCUcQYyUHiDHcmuBMkOrrOppd6q4E/oTo7qIy5hAz2G0CzmbLrnfSRDItr9d1Wb82\nr3fvQyzSeDWVmNDnKOJ3odo9XmPvAuDteftuYiKZH5YLR/3iiWInlpnAw5XLFV3Knk3MknMB\n0cXuf4mZ1DQ6PsaW++KELmWPBe4kzj1yapbV6BjJZ0L9symvu/1J11ju+CPV1auIiXwWAr9H\n/JGp/vs48E7gw8QY7tuBjxSNSH1hC9LEMsSWJ5R7rkvZb7Xc/jwxMPqrRJeWbv/qqncvsOW+\n6HSwt4joNvFT4odw+diGVTsj+UyofxqD0Kd3Wb9vXruvVEdHExME7AWcAdxYNpxauzMvAJ8m\nxuh9DLiBmExGE5iTNNTHPsB+XdZ9lXgfHNO/cGrvXcQB/PXAnoVjUXCShv4YIM7tck+X9dcQ\n30fV6Y419pykoayjiD8GlhLjUtV/0+g+Y+C7ic/Hh/oXjvpokMyL7GJXHwcQX7rdpjOemdd2\naemPM4DLiHFHC4mT0kl1MQx8j/in/ODKuj2Jk1gvYcvpjqWJbDbRWvQsceJku1uXsQRYRuc/\nLj1WqhFbkOqjcRboc2k/QelvEy0Zy3FcWj/sDTxDjPvarXAsamcLUv/8KvF9dA0xGB2ij/9l\nufycQnHVnS1I5XyXmKDk1aUDqbm/JT4DV9A+UczRwEpiDOURBeLS2BukmReZINXIHGAFsb8f\nJ04+tyzvryEma9DY+wBR5yuAO7pc/rpYdPVyDu31PkR0/WpdVm3h0Oj5B+Kz8AwxIP3xvP9l\n2v/E0dh5He3v9+eJffDDlmVvKxZdfcyn+Vvc7Xfh34pFVy+TiZa8YWA1cdLYB4iTvA8B55UL\nTWNsEM+DVEuPEf96LAaOJ+b2vxe4lJgowClE++N5ojVvazb2IxCxmfZJSb7foYxTro+dDxGD\nnRcBs4gk6Wo8EOynYdo/A/d2KLO5T7HU3bZ+F9b3JQptJFq4FwK/DhxCDFG4gWhV6jZ2UhOM\nLUiSJEmS6mwQJ2mQJEmSpHYmSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckE\nSZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIk\nSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIk\nSZIkSckESZIkSZKSCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKk\nZIIkSZIkSckESZIkSZKSCZIkaSJ7E3BM6SAkSTsPEyRJ2rmdBLyhdBDj2E3AF1ruW1+SpK2a\nVDoASdIO+TZwP/DG0oHsJKwvSdJW2YIkSTu3l4AXSwexE7G+JElbZQuSJO3cqgf8rwX2B24B\n9gKOBpYBT1QedyhwALAGeBjY3GX7M4A5xB9qPwOeraw/MsvcAgwArwamA8uBp7YS9xEZZ7fn\nb30dAHOBV2UMT3fZ5nTgF4n6eAgY7lCm1wTpeGC3LuteBJb0sI2GbdVhwwAwj9hvy4BntrLN\nkdTfaLwPJKlWhvMyWDgOSdLI3Qt8ueX+vxDf6a8HVuftM1vWnww8SPO7fxhYBby/st1DgG8B\nQy3lhnLZ/i3lvpHrjqd5gN0oexUwtbLdhcDSyvM/B5xbKfeVXHcocCuwEdiUy/4d2KNS/u+y\nTGObjwK/lMvuaClXra9uflKJsfVydw+Ph97rEOAMIqlsfZ5rgVmVcr3W32i9DySpLgZpfh+a\nIEnSTuxQ4MCW+43E4j+J7/WTiBYCiIRhPXGAfxowGzgB+E4+5g9atnMzsA54L9GqMQ94H/AK\ncGNLucaB+FJgETCZaDG5JJdf1FJ2AZHk/Bg4HTiYOFC/K8v+fkvZS3PZEmAxkWjtmtsbBj7a\nUvZ3aCYuC4jWlT/K56kmSNX66mYOcHjlckU+z4U9PB56r8PjMs5Hgd8iJpE4j6irJTS7w4+k\n/kbrfSBJdTGICZIkTUhfIr7TL+2w7lrgZWBmZfluwONE96+GjcB/ddjGWcTB+y55v5Eg/X2l\n3CSii91qmt25b8iyR1XKTie6vi3r8Do+2aHsMPC9lmV3ES1XB1XKfjDL3sGOO5Vo/bmT3run\n91qHjVamuZVy/5jLT8r721N/O/o+kKS6GMQESZImpMaB8VsqyycDa4muY4s6XH6Qj5uT5ZcR\nB92nb+P5GgnSqR3WXZ3r5uXzrwMe6bKdRuvFIZXXcXKHsi8B9+XtKUSryv0dys1ldBKkGcTY\nnReAw0bwuF7qcBKxXx7osG4yzdaj7a2/HX0fSFJdDJJ5kZM0SNLE9Hjl/iyim9phwJVbedwB\nwGNEd61vANcTycFNxEH4NUQXsaoVHZY1JlOYmY+ZQnTF66TRajGb9haMJzuU3USz9eWAvF2d\nfIB8HaPhUqJb3mLgpy3LZ9KcRKJhCXB23u6lDg8k9kt1f0G0QDXMYvvqb0ffB5JUO07zLUkT\n08uV+5Pz+laiK1W3y11Z7kZivM4HiBnhziIOqFcAb+3wfOs6LBvK60ktz7+hS7yNZGBKl210\n09juxg7rGpMj7Ig/BN5OvPZ/7rD9pyuX51rW91KHjfg3bSOO7a2/HX0fSFLt2IIkSfWwKq8P\noHMy0+0xn83LVGICgYuBrxFdsNa0lJ3Oli0O++T18zQThxldnmvfSpy9akzZvXeHdTOIqbO3\n12uISSGWE4lS1Uo6dwFsta063Fa9NIxW/W3P+0CSasUWJEmqh+eJcSeHE7O8VZ1Gc5KDgSyz\ne8v6dcQsbhcT59WpThRwTIdtHkm0sjxCTNawjDgfT7WVA+DYfI6Htv1S2vycGBv0WrZMhk4Y\n4bZaTSFae3Ylusyt2XrxLfRah6uJBOxotjzv0mlEF72TGL36G8n7QJJqyQRJkurjS8SB+4U0\nx/BAJBLXAF/M+ycSSc35lccP0EyEqieB/SDt5/Z5C3EOnptptvJcTpy/6M8rj11MHKxfSUw/\nPVLfAfajvZVnD+AjbLuLXjefIOI/H7h9Ox4/kjq8nEikWqcunwZcQHTvW9pSbjTqr9f3gSTV\nlrPYSdLE0Zi97PAO6ybTnO3sIeKA+7vE+JfltM/QdmWWewT4OvCvNE+e+tmWco1Z7D5DjMG5\niphGej0x/qW1ZWkKkTANE2NgLiHG6QwRs7jt1+PreB74Ucv9eUQLzxAxY903M5aLiG5wd3bY\nxtYcntvaTNTD1zpcetFrHU4l6mOYqIfrMv4h4rxJDaNVfyN5H0hSXQySeZEtSJI0sfyYmFlt\nbYd1G4mWnXcSg/APIrpufRiYT/sMbWcDv0Gcx2ca0dXs28TJSs/tsO1PEScY3ZRlLwV+Gbin\npcx64FeIFo8VxAQGzxEtP8cCz/b4Om6jfRKBh4mTq36eSJQ252s6j5g57r7qBnrwfSIJmUWc\nkLV66UWvdbgOOAV4D/Ag0arzTeD4fE0No1V/I3kfSFIt2YIkSdpejRakXpMGSZLGo0FsQZIk\nSZKkdiZIkiRJkpRMkCRJO+JBYqzL9sw+J0nSuGOCJEnaEecTJ0tdWTgOSZJGhQmSJEmSJCUT\nJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmS\nJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmS\nJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJElpUsvtBcCf\nlQpEkiRJkgpZ0LgxAAwXDESSJEmSxg272EmSJElS+j+hiEI3RqgxogAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “'respond' dimension histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd7xtd13n/9eFNAghBDAJXVooUQRUkIA0kWJGmmUoiiOOI4MoKqDM/PxJ\nsA86IAqKjHVAqSMDUqSIDMVR+cEwQJAiECkJmAAhCenJ/f2xvse778m5956+z93n+Xw81mOX\n9d1rf/bK3jfrfdZan7Wn2hsAAABda94FAAAA7BRHzNx/T/XueRUCAAAwJ/ep7r30YO+YzphX\nNQAAAHN0RiMXOcQOAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJWK9vrO4/\nplvMtZLFtxXr+pHV3jFduWze987Mu3ST3u9wd7itk43Ue7h9VoBNJSAB6/WL1d+M6ZFzrmXR\nWdcsgvs0hfzrzrkOgIM6Yt4FAIetCw9wn8233ev6rdXdxv2rt+H9Dge7aZ1sxWe9c/Wucf9O\n1Uc3abkAm05AAtZLQNo+272uv1p9YBve53Cym9bJVnzWx27y8gC2jIAErNdFM/cvmLl/0+qU\ncf/L1Qera1ffVB1X/a8VlnWz6ubVFdUnmzbQDuWk6pZNhwp/qjp3Fa85rrpNdWz1leoTXfP8\nm6p7VtcZ98+pPrbCmOPb91f2qvd1zfCyms+1mvV1oHW9WidUt68uqT5eXXaI8V9XnTruX129\n8xD1Vt24ad3+S3XWsuUdPV5zTPWhDn1ey3rXW02Hb92+Oqr6SPW1Q7zXUWP8DZq+E59r5XV8\nsHWy3Gq/Z5v5OVZrNctd7Wddzbr7xupG1WNmnrtHdfIY/08rLHct62/WDUY9l47XXFodWd17\nZsy7qqvG/bX+W3Vkdbvqhu37LV3UNW3HbwTYYksnYp4x5zqAw8vPt+/fj2+bef5HZp7/300b\nEx9s5WYAj6/+cWb83qaN4tdUtzrA+3539f5lr1l6r28/wGvuWb1lLHv2NRdVf9oUtGb92cyY\n9x9gmT8zM+arTRs26/lcq1lfB1rXh3Lc+Hyzn/tL1U9UD595bi1NGp64rN5rVb+97D3+trrJ\nGP991Rfbf1097gD1rmW9La+j6mfH8peev6R61gHe6xZN/50vWfZ+V1dvbjpXZtZqGhes9Xu2\nGZ/jQGbrXQruq13uoT7rWtbd65eNmZ1+a9ly17P+avpjxUuWve7L1VObAtPsso6eed1q/606\nofq9pvA3u6wrq1e077u+ZCt/I8DWOaN9v0MBCViX76/ePabbzDz/mPb9u/Lh6vntv0Gx5Ffa\nf2Pj7PbfePtc056EWT+z7DXLpyuaNu5mPa5rbnAtn86tvmHmNf9m2fyVOse9a2b+H23gc61m\nfR1oXR/MnuptB/nML1vhfZYcbAN5tt4zq2cfYPlvadpTcOUK865s//VdG1tvZ3bw78aTl73X\niWP5s2MuW/b4qqYwvpp1Uuv7nm30cxzMbL1fPMRyf/wgr13+Wde67l7bNb8DV47pv84sd73r\nb09T85IDvea3lz2etZrf3nXbF5r2NoXAL43bpec+Xl3vAMvdzN8IsLXOaObfiqU7Z8yvHmCB\nLN8wu6D6v01/LV4KEt8+M+aK6mHj+WtVz52Z98qZ5d61/Tckntt0yMrNqj+Zef6rTX/xrbpD\n0wbe0rzXjeeOrx7atNE9uyGz1NnzyKaNoANtQJ7UtBG4NP8BG/hcq1lf6/E97b/B9btN6+uE\nrhlG1hKQZud9pekv9T/V1F1v+YbkmU0h7RHVby57z9+eWeZG19tXmvaS/Fb1ndUz23+j/ZPL\nPsMvzMx7fdPhXjUdVjkbJD6xynWy3u/ZRj/Hwcwu96uHWO6nDvLa5Z91Pevu5Jnn91Z3XLbM\njay/71u27D9u+jfh68bnXe33/EC/vafOjLmoqcFE1W2bvvtL837qAMvdrN8IsPXOSEACtsjs\nxsHepo5YRy4b88qZ+X++bN6RTef9LG0snzie/+OZ13xohdf8y8z8/zCef/HMc59t/8Nravrr\n7Wyt3zUzb/a1b172uv+wbLlLG2zr+VyrWV/r8T9mlvmJrnlZh3+Ymb/egLS3qQX5krsvm/fF\n9p3LVdO5LEvz/nbm+c1Yb/9t2euW/9X+xjPz/nTm+f/cNT2xenTT4YxL6+1g62Qj37ONfI6D\n2chyD/ZZ17PuDhWQNrL+/mLm+bO65rnV/3dm/sG+5wf67f2b6uljWt5o4iUzr33VQZa7Gb8R\nYOud0fj9uQ4SsNV+tWnDdtZ9Z+5f1vRX4qXpO5oO4alpY+e0cf87Zl7zxmXLu6LppP7rjGnp\nr78Pnhnzmq7ZnOAfmv46veSBM/dnN9TvX11/5vGjlo1baoW8ns+13Erraz2+Zeb+X3XNds2v\n2IT3qGkjccn72/+k9f/RdJ7KktmT3m84c38z1tvyv7a/adnj2QAwuyfmF5q+L4+vbj2e+6Om\nDe+/a3VtrjfyPVtuLZ9jLTZruZu97mpj6++bZ+6/oWuGoOWB+2BW+u29vmnPzvOq/9O+aznd\nv/2DzQ0OstzN+I0A20gXO2Cr/Z9lj49oOkRtyb8b04Hcrqmz1M1nnvvMCuMuX/b42u1/Uvcn\nWtmnZpY9O/6dTRvmN23q1vXQpj0dx7f/BtpLx+16PtdKlq+v9Tp55v4/rzB/pXW4VnurTy97\n7rz2nY+xfJ2fN3P/iJnbja63vV2z0+AXlj2e/f/d71c/2vTf/ejqh8dU04b465sOSVy+p3Il\nG/2ezVrr51itzVzuZq672vj6m/2eL/8uHui5A1npt3dk01+V/2P7Dt1dyZ4DPL8ZvxFgm/nx\nAVvpiur8Zc8dtezxx5sOoTqQLzV1iJvdAFlNy9+jl71meYCarXH2NUuubtrL8tPj8cObAtLp\n7fsM/7d9G4Lr+Vwr1bJ8fa3HnvY/VGilz74ZbYQv75r/La6auX/JQeYt2Yz1dnnX/IwH+458\nsemwrV9rOhzq2Jl5N6+e1BQCnlK96CDLqY1/z2at9XOs1mYudzPXXW1s/a3me37xKmpYWv5K\nv70XNR02WFPY+aumPy5c2bQ36ZsOsdzN+I0A20xAArbSSofYXNy00bC0YfxH1X9ZxbJmX7Oa\nQ08uHtN1x+MDHUL0dTP3l19L6WXtC0gPbTqn4pEz8186c3+9n2vWag9JOpSlE8qPG49X+sv3\nySs8Nw+bsd7W45ymPVU/1rTB/23VvZoO9zq2ac/G7zQ1DDh75UVUm/M9O9xs1rqrja2/vU3X\ncVraG7OR7/lKv72btG/vWNXPVb8x8/j3OnRAAg5DzkEC5mH28JtTDzhqfx+cuf/NK8x/XlM3\nqLe1r0nDe2fmr3Tuygnt60pV07kOs97bvgtZ3qhpQ/Ch4/HVXfP8hvV8rq0yewHOu68w/74r\nPDcv81pv12463+VdTRu+j246l2bpkKgjmgLAoWz0e3Y42si6W3442kbW3+z3fKV/F+53gBpW\n49T2r/UNy+bfdQPLBnYwAQmYh7+Yuf+97X9eyY2rzzedc/C37TvvYLZL1He3/wbTqU3XiPmO\nMS2dX/PfZ8Y8tGuGgl9u3yE6F1WvXqHWl83cf1b79sq8vWv+dXw9n2urvH3m/sPa/5oqp3TN\n60XN03aut6ObzpP5dFPnwxstm39u+5+fs/wQqJVsxvfscLDedbf8ELPbLnu8kfW3/Ht+t5nH\nd2xj3/Plh+zNXofru9r/os3Hb+B9gB1Im29gMx3qgpo1dXz6zMy486oXNJ3X8OmZ518+85rr\nNf21eGnel5tOBn9x+19Q9K0zrzmi/dvmXtq0MfYbTV22ZtvtPukAtd5p2bil6Yc26XOtZn2t\nx+2aNvCWlv2VpkOCfrdp3X1qZt7yw4tW2+Z7pXpn/xstX6dPmZk3+5f/rVhvN2///16zAfGl\nM89/uun78PSmrmxvn5l3dvs6lR3s/TbyPdvI5ziYjSz3YK9dz7qrKdjMznvheF1tbP2d0v7f\n8wuaLgnwh03nFJ01M28t7exr+mPI12bGfKzpO/zcpvA320r/iqbrS91jFctdz28E2HpntO/3\nJyABm2q1G/x3bv8NheXTa9p/A6umvzx/+CCveUP7t+OuaeP79Qd5zcVNGyUH84EVXnPcAcau\n9XNtVUCq6RyR2QvaLk0fbLow5exzsye7b3dAqs1fbwcLAMc1HYp5oPfa29T5b7ZV+qHeb73f\ns8MtIK1n3dV0TtLyca+fmb+R3+mTWvl7/uHqB2YerzUg1f4Xip2d3tL0fXzvsufPWMVyBSTY\nmc5o/P40aQA227ntu5bHgTpSVX2kaaP4+5vaZt+0aSPorKZDaFa6SOInm06KfnT1nU0beVeN\n51/T/tcQWXJ+08Ue79MUCk5p2rD5UvX3TYfQffEQn+n57b/H6D3VhZv0uVa7vtbj95taF/9I\n9fVNe5H+V9PFPm/c/uvrqPZ1CjtYTYeq9+/bd82a5Ycgfn7mtZ9fNm+z19tl7f/5vjZz/8Km\n789Dx+1tmjb8L2vauH9n0/dpduP2UO+33u/ZRj7HwWxkuQd77XrWXU3NTv6p6fpBRzc1enjN\nzPyN/E5f1HR9oSc2nQd1/qjjT6oHLfvMs1bz23t++4LWzZoOLXxDU0fLq6rvabpg7m2bDi98\nU1PXza34jQDbyB4kAGAR/WT2yACrc0bj3wtNGgCAw9X9m65NdGbTXqkTZ+Yd1f5tut+xbVUB\nhzWH2AEAh6uPNx2Wt3TB2v/d1OBhb9M1y5ZacV9a/ddtrw44bDnEDgA4XD2s6fy6AzV4+FJT\nW26AgzkjTRoAgAXwpqaGLd/fdG2imzZ1ZTynaY/Sy5vafwOsioAEABzuvtZ0/aM/nnchwOFP\nkwYAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGI6YdwFzsKc6tjqmuqT62nzL\nAQAAdordsgfp5OrZ1Xuri6oLq3PH/Quqd1fPqK4/rwIBAID52w17kB5cvbo6rmlv0ceawtFl\n1dFN4elbq3tXT6u+uylIAQAAu9DeMZ0x5zq2wg2qL1efqR7egQPhMdUPNgWnzzUdggcAAOwO\nZzRy0aIfYnd6dUL1/dXrqisPMO7S6iXV46qbVQ/bluoAAIAdZdED0i2rK6q/W+X4t1dXV7fb\nsooAAIAda9ED0gXVkdWJqxx/k6Z1csGWVQQAAOxYix6Q/mbcPq866hBjj61e2HTs4du2sigA\nAGBnWvQudh+pfrd6cnW/6i+rM5uaMVze1MXupOouTU0cblz9WvXxeRQLAADM3yJ3savpwrA/\nWX22fZ91penj1Q/NqUYAAGB+zmjkgkXfg1TTB/3t6neqb6ju3HRO0jFN3eu+UH2o+ugmvue1\nqvu2+j10e0ZNf7aJNQDAdji6uk/T/8sW3UWtvvETcJjaDQFpyd6mIPShbXivW1WvbPXr94im\nC9m+sqnrHgAcLh6xZ8+eV1zvetebdx1b6qqrruriiy+uumH1lTmXA2yhRQ9IP1U9tSl4PLu6\neJve99OtvnNe1WnVe9odf30DYLEcccMb3rBXvepV865jS5111lk98YlPrMXfdoJdb9G72N2g\n+vrqp6sPNzViAAAAWNGiB6Ql92w61+i11Vuqu823HAAAYCfaLQHpH5tOIP2xpnD0/uqvmvYo\n2VUOAABUuyscXF29uHpF9TNN5yc9pDq/enP13qbrJn2p6Ryic+dTJgAAMC+7ZQ/SrK9Wz6pu\nXv1E9U/Vv61+s3pj9ffVj8+tOgAAYG520x6k5S6sXjCmm1XfXt2lukXTniQAAGCX2c0Badbn\nq5ePCQAA2KV24yF2AAAAK1r0gPQH1b2qy+ZdCAAAsPMt+iF2nxsTAADAIS36HiQAAIBVE5AA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYDhi3gXMwZ7q\n2OqY6pLqa/MtBwAA2Cl2yx6kk6tnV++tLqourM4d9y+o3l09o7r+vAoEAADmbzfsQXpw9erq\nuKa9RR9rCkeXVUc3hadvre5dPa367qYgBQBQ1eWXX7509zerS+dYyna4rDqj+vKc64C5WPSA\ndIPq5dX51Q9Ub6yuXGHcMdX3Vc+tXlPdIYfeAQDDueeeW9Vpp532hCOPPHLO1Wytd77zne3d\nu/e11V/PuxaYh0UPSKdXJ1TfVf3dQcZdWr2k+kL1luphTXudAAD+1TOe8YyOP/74eZexpR70\noAe1d+/eeZcBc7Po5yDdsrqig4ejWW+vrq5ut2UVAQAAO9aiB6QLqiOrE1c5/iZN6+SCLasI\nAADYsRY9IP3NuH1eddQhxh5bvbDaW71tK4sCAAB2pkU/B+kj1e9WT67uV/1ldWZTF7vLm7rY\nnVTdpXp4dePq16qPz6NYAABgvhY9IFU9pam19zOqJx1k3Ceqp1d/uh1FAQAAO89uCEh7q9+u\nfqf6hurOTeckHdPUve4L1Yeqj27iex5VPbZpD9Vq3HYT3xsAAFin3RCQluxtCkIf2ob3Oql6\nZoc+72nJMeN2z9aUAwAArMZuCUgPbDrvaCkcHdl0ON0Tqts0XTH6A9Xzq/+xCe/32epOaxh/\nWvWephAHAADMyaJ3sav6xaYrQT94PN5T/c/qV5sObfvn6vzqPk0Xh/35OdQIAADsAIsekE6p\n/p/qzdXLx3PfNaa/aLru0SlNF5Q9tWkv0rOqr9/uQgEAgPlb9ID0gKbP+MTq8+O5+1Zfq36o\n+tLM2H8czx3Rvr1NAADALrLoAemE6srq7Jnnjqg+VV20wvgPVVdVN9r60gAAgJ1m0QPSJ5sC\n0X1nnvs/1c1buUHFXaprt29vEwAAsIssekB6Q1PY+fOmTnY1NWL4bFPzhtm22nevXlZdWL1x\nG2sEAAB2iEVv831x9ejq9U2d7D5R/UP13uoZ1WPGczdvuoDsFdXjqvPmUSwAADBfix6QagpE\nd6x+uvq+6vEz8249pgua9h79avXh7S4QAADYGXZDQKr6cvX/jum46lbV9ZoaOJzXdC0kF2kF\nAIBdbrcEpFkXZi8RAACwgkVv0gAAALBqAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAcMS8CwAAYOfYu3dv1e9WF865lO3wzOpt\n8y6CnUVAAgDgX+3du7fTTz/9lJve9KbzLmVLveY1r+m88867SwISywhIAADs5wEPeEB3v/vd\n513GlnrHO97ReeedN+8y2IGcgwQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwHDHvAgBggZ0w7wK2wbHzLgBgMwlIALA1fq769XkXAcDaCEgAsDVO\nOPXUU/uJn/iJedexpV72spf14Q9/eN5lAGwaAQkAtsixxx7bKaecMu8yttQJJ+yGowiB3UST\nBgAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIDhiHkXMAd7qmOrY6pLqq/NtxwAAGCn2C17kE6unl29t7qourA6d9y/oHp39Yzq+vMq\nEAAAmL/dsAfpwdWrq+Oa9hZ9rCkcXVYd3RSevrW6d/W06rubghQAALDLLHpAukH18ur86geq\nN1ZXrjDumOr7qudWr6nukEPvAABg11n0Q+xOr06ovr96XSuHo6pLq5dUj6tuVj1sW6oDAAB2\nlEUPSLesrqj+bpXj315dXd1uyyoCAAB2rEUPSBdUR1YnrnL8TZrWyQVbVhEAALBjLXpA+ptx\n+7zqqEOMPbZ6YbW3ettWFgUAAOxMi96k4SPV71ZPru5X/WV1ZlMXu8ubutidVN2lenh14+rX\nqo/Po1gAAGC+Fj0gVT2lqbX3M6onHWTcJ6qnV3+6HUUBAAA7z24ISHur365+p/qG6s5N5yQd\n09S97gvVh6qPbuJ7XrcpjB25yvG32sT3BgAA1mk3BKQle5uC0IeWPX+tps51m+n46lHVdVY5\n/nrjds8m1wEAAKzBogekW47pPU0BacmR1c9VT6y+vrqs+vum84/evAnve0717WsYf9oKNQIA\nANts0bvYPbF6V1Mzhlmvqn6pKTz9U/XVpiYOb6r+/XYWCAAA7ByLHpBW8pDqEU3B6ZbVKdXJ\n1bdV/1z9VnXDuVUHAADMzW4MSA9uOpTtcdXZM8//ffUfmq6H9OA51AUAAMzZbgxI168+W31u\nhXnvagpPX7+dBQEAADvDbgxIZ1U3OMC8o5s6yV24bdUAAAA7xm4MSK9quk7RA1eY98PjdjOv\niQQAABwmFr3N95ILmzrVnT+mS5taet9zzL9W9dzqKdXHqr+ZQ40AAMCcLXpAen/1iqZD6pam\nmzd97uvOjLu6qSX42U0XeN3sC8cCAACHgUUPSK8b00qWf/ZHVe9uumgsAACwCy16QDqYK5c9\n/uu5VAEAAOwYu7FJAwAAwIoEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYjph3Advs+tUdqxOrY6pLqnOqj1YXz7EuAABgB9gtAen06mere1fXXmH+\nFdVbq1+p/nYb6wIAAHaQ3RCQnln9WnVZ9dfVmdW54/HR1cnVXauHVA+tfrT6o7lUCgAAzNWi\nB6RbV79cvb16bPUvhxj7yuqF1ZuaDr0DAAB2kUVv0vDgpkPqfriDh6OqT1c/2HRu0sO2uC4A\nAGAHWvSAdMOm84s+s8rxH6uurk7asooAAIAda9ED0jnVkdWpqxx/96Z1cvaWVQQAAOxYix6Q\n3tTUyvul1Z0PMfae1Z9XF1Zv2OK6AACAHWjRmzR8sXpy9QdN3es+2r4udpc3dbE7qbpLdZum\nznaPq86bR7EAAMB8LXpAqvqT6oPV05paeX/PCmO+0BSifqP6+LZVBgAA7Ci7ISBVvb96/Lh/\nUnViU7e6S5vC0bmb/H7HV7843mM1NIUAAIAdYLcEpFlfHNOsR1c3rV6wSe9xZHXjcbsax23S\n+wIAABuwGwPSSr6rumubF5DOa98eq9U4rXrgJr03AACwTosekB4+pkO5T3WjpvOQql43JgAA\nYBdZ9IB09+pH1jB+aeznEpAAAGDXWfTrIL2u+lhTM4bnVTepTlhhekn1gZnHvz6PYgEAgPla\n9ID0/uqbmtp3P6V6Z3W36vxl0+XVVTOPL51HsQAAwHwtekCq6eKvv9AUjM6r3l79YdOeIgAA\ngH+1GwLSkjObmjH8RPV91T9W/3auFQEAADvKbgpIVVc3tfK+c/UP1cur11ZfN8+iAACAnWG3\nBaQln2tq//391T1aXStwAABgwS16m+9DeVX11uonq6/OuRYAAGDOdntAqqlr3S/OuwgAAGD+\ndushdgAAANcgIAEAAAwCEgAAwLCWgPSE6kWrWN5nqtPXXREAAMCcrCUg3ab6tkOMuW51YnWH\ndVcEAAAwJ6vpYvd34/bm1Qkzj5fbU926Orr68sZLAwAA2F6rCUhvrL61un11nequBxl7QfWS\n6s83XhoAAMD2Wk1AWrpG0BnVIzt4QAIAADhsreVCsS+uXrlVhQAAAMzbWgLS2WM6ubpLdVzT\neUcr+ciYAAAADhtrCUhVz6me1qG73z276ZA8AACAw8ZaAtI9qmdUH6r+svpSdQqIIegAACAA\nSURBVPUBxh6o0x0AAMCOtdaA9NmmjnaXbU05AAAA87OWC8UeU52ZcAQAACyotQSk91V37MCN\nGQAAAA5rawlI72gKSb9RHb0l1QAAAMzRWs5Bum91VvXvqx+oPlCdd4CxfzEmAACAw8ZaAtID\nmlp8Vx1fPeQgY/8pAQkAADjMrCUg/U71x9VVqxh7wfrKAQAAmJ+1BKQvjQkAAGAhrSUg3XJM\nh3Lt6nPVJ9dVEcDu9afVqfMuYhvcpLq0+sq8C9liN5t3AQCs3VoC0hOrZ61y7LOrM9ZcDcDu\n9qAHPvCBN73tbW877zq21Ete8pLucIc7dI973GPepWyp1772tfMuAYB1WEtAemf1KweY93XV\nPapbV79c/fUG6wLYle51r3v1Hd/xHfMuY0u98pWv7M53vnOPfexj513KlnrPe94z7xIAWIe1\nBKS3j+lgnlp9T/W8dVcEAAAwJ2u5UOxqPL9pb9J3bvJyAQAAttxmB6Sqf67usgXLBQAA2FKb\nHZBuUN2t+uomLxcAAGDLreUcpIeOaSV7qhtWD6puVL17g3UBAABsu7UEpG9rasJwMBdUP12d\nue6KAAAA5mQtAenF1esPMG9vdVH1qeqKjRYFAAAwD2sJSGePCQAAYCGtJSAtObn6gaYLw544\nnjunek/10ur8zSkNAABge601IJ1evaw6boV5j6l+vnpE9fcbrAsAAGDbraXN9/FNe4i+Vj2l\n+sbqpDF9U/W06trVq6tjNrdMAACArbeWPUgPabrO0bdU71s271+qD1bvrN5bPbh63WYUCAAA\nsF3WsgfpNk3nGi0PR7P+v+oz1R03UhQAAMA8rCUgXVVdd5XLvHp95QAAAMzPWgLSmU3nIT36\nIGMeUt08F4oFAAAOQ2s5B+mt1SebGjW8uHp703WR9lQ3rR5U/fvq49XbNrdMAACArbeWgHRF\n9fDqf1ZPHdNy/1g9cowFAAA4rKz1OkgfqU6tvqs6rbpJtbepecO7qjdXV25mgQAAANtlLQFp\nT1MYuqJ67ZiWHNUUjDRnAAAADlurbdJwj6brG33dAeb/VPW/qttuRlEAAADzsJqA9E1NDRm+\nubrPAcbcoLr3GHfi5pQGAACwvVYTkP6wuk71mOo1Bxjzn6sfrG5RvXBzSgMAANhehwpI39i0\n5+iF1SsOMfbPqj+pHtUUlAAAAA4rhwpIdxu3L13l8v6ounZThzsAAIDDyqEC0k3G7adWubxP\njttbrq8cAACA+TlUQFq64OvRq1zeseP24vWVAwAAMD+HCkifHrfftsrl3X/c/vO6qgEAAJij\nQwWkd1SXVT9XHXmIscdX/6n6avXXG64MAABgmx0qIH2l+v3qW6tXVTc6wLjbVW+tblO9oLpk\nswoEAADYLkesYswzq2+pHlE9qHp99YHqouqG1T2rhzR1r3trdcZWFAoAALDVVhOQLqkeWP1i\n9eTq345p1rnV86rnVFdtZoEAAADbZTUBqfadh/SL1b2r2zd1rDu3qQX4uxOMAACAw9xqA9KS\nr1VvGRMAAMBCOVSTBgAAgF1DQAIAABgEJAAAgGGt5yAd7q5f3bE6sTqmqUPfOdVHq4vnWBcA\nALAD7JaAdHr1s00d+K69wvwrmq7h9CvV325jXQAAwA6yGwLSM6tfa2pV/tfVmU3tyS+rjq5O\nru7adLHbh1Y/Wv3RXCoFAADmatED0q2rX67eXj22+pdDjH1l9cLqTU2H3gEAALvIojdpeHDT\nIXU/3MHDUdWnqx9sOjfpYVtcFwAAsAMtekC6YdP5RZ9Z5fiPVVdXJ21ZRQAAwI616AHpnOrI\n6tRVjr970zo5e8sqAgAAdqxFD0hvamrl/dLqzocYe8/qz6sLqzdscV0AAMAOtOhNGr5YPbn6\ng6budR9tXxe7y5u62J1U3aW6TVNnu8dV582jWAAAYL4WPSBV/Un1weppTa28v2eFMV9oClG/\nUX182yoDAAB2lN0QkKreXz1+3D+pOrGpW92lTeHo3E1+vxtXz286/2k1brTJ7w8AAKzDbglI\ns744piU3bDr/6IvVWZv0Hlc0HaZ3zCrHH7VJ7wsAAGzAbghIx1T/qTq9uqp6ffVfms5B+vnq\nWe1bD++uHlN9foPv+dXqqWsYf1r1iA2+JwAAsEG7ISD9YVPjhaorq3tUJ1f/s/ql6sPV+6pv\nqu4znr9HtXfbKwUAAOZq0dt836l6bPXmplB03aaudj9aPWk8f7fq3zVdA+nF1bc07dEBAAB2\nmUUPSPeo9lQ/3nSO0RXV71X/u3p09ZymvUo17TH61XH/m7e3TAAAYCdY9IB0clPw+fSy5983\nbpe39D573B67lUUBAAA706IHpHOa9iDdatnz/9LUSOHCZc/fZtx+dovrAgAAdqBFD0jvbupc\n95vV0TPP/3p1g6aQtOTI6peb9ji9d7sKBAAAdo5FD0ifaupi9+imvUknHmDcfat/rL63ekX1\nsW2pDgAA2FF2Q5vvp1RfqH6kuugAY25U3az6gzEeAADYhXZDQLqi6WKwzzrImLc1haSLt6Ui\nAABgR9oNAWk1ljdrAAAAdqFFPwcJAABg1QQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABiOmHcB2+jY6v7VqdWJ1THVJdU51Qerd1aXz6s4AABg/nZD\nQDqq+pXqx6vrHGTc+dWvV8+p9m5DXQAAwA6zGwLSy6tHVe+vXl2dWZ1bXVYdXZ1c3bV6TFNA\nunX1pLlUCgAAzNWiB6R7NoWj51ZP78B7hl5T/VL14urHqhdUH96OAgEAgJ1j0Zs03KspFD27\nQx82d2X1c+P+/bewJgAAYIda9IB0dHVVddEqx3+lurqpoQMAALDLLHpA+kTTYYQPXeX4RzWt\nk49uWUUAAMCOtegB6a+qz1UvrZ5cnXSAcbdoOrzuj6tPjtcBAAC7zKI3abi4emT12uqFY/pS\nUxe7y5sOwTupusEY//HqEU0d7gAAgF1m0QNS1fuqU6rHNx1qd+f2XSj20urs6s3VX1avrK6Y\nT5kAAMC87YaAVNOepP82pu1wk6awdbAL08663rjdszXlAAAAq7FbAlLVjZqCyGebOtWt5NrV\nD1YfGNN6fbXp2kpHrnL8rao7dOhW5AAAwBbaDQHp9tWfVKeNx2c3XRfpxSuMPbKpUcOz21hA\nurjp4rSrdVr1HzfwfgAAwCZY9C52e5oOdTut+nD1uqa9NL/fdLidQ9oAAIB/teh7kB5Q3bV6\nTlMb75r2Ev1m9ZPV16qfmk9pAADATrPoAemO4/bXZ567onpqdX71C00Xk33hNtcFAADsQIse\nkI5pOqTu4hXmPavp/KTn5+KwAABAi38O0j81nWf0nQeY/8Sm6yS9qvr27SoKAADYmRY9IL21\n+nxTF7t/Vx27bP6l1enVx8bYp21jbQAAwA6z6AHpkqZgtNS++y4rjDmvemD1juqXt6swAABg\n51n0c5Cq3tbUye7x1VkHGHNB9bCmi8Q+4SDjAACABbYbAlLVpzv03qG91X8fEwAAsAst+iF2\nAAAAqyYgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwHDEvAsAOIRrV8+prjfv\nQrbB8fMuAAB2OwEJ2OlOqH7mfve7X8cdd9y8a9lSb3jDG+ZdAgDsegIScFh4whOe0K1vfet5\nl7Gl3vjGN867BADY9ZyDBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAwxHzLmAbHVvdvzq1OrE6prqkOqf6YPXO6vJ5FQcAAMzfbghIR1W/\nUv14dZ2DjDu/+vXqOdXebagLAADYYXZDQHp59ajq/dWrqzOrc6vLqqOrk6u7Vo9pCki3rp40\nl0oBAIC5WvSAdM+mcPTc6ukdeM/Qa6pfql5c/Vj1gurD21EgAACwcyx6k4Z7NYWiZ3fow+au\nrH5u3L//FtYEAADsUIsekI6urqouWuX4r1RXNzV0AAAAdplFD0ifaDqM8KGrHP+opnXy0S2r\nCAAA2LEWPSD9VfW56qXVk6uTDjDuFk2H1/1x9cnxOgAAYJdZ9CYNF1ePrF5bvXBMX2rqYnd5\n0yF4J1U3GOM/Xj2iqcMdAACwyyx6QKp6X3VK9fimQ+3u3L4LxV5anV29ufrL6pXVFfMpEwAA\nmLfdEJBq2pP038a0HW5RvaXpIrWrccy43bM15QAAAKuxWwLSal27+uGmi8q+fwPL+WLTRWeP\nXuX421Y/26FbkQMAAFtIQNrfkU17mZ7dxgLS5dWfrmH8aU0BCQAAmKNF72IHAACwaou+B+mo\nVn8eUK3+kDgAAGABLXpA+s/Vs+ZdBAAAcHhY9IB0/rh9f9O1jw7lWtV3bl05AADATrboAen3\nqh+pvladXl11iPHHVJdsdVEAAMDOtOhNGi5rukDsPaqfn3MtAADADrfoAanqg9XTq0dVp8y5\nFgAAYAdb9EPslrxgTIdyWXWv6nNbWw4AALAT7ZaAtFp7q7+bdxEAAMB87IZD7AAAAFZFQAIA\nABgEJAAAgEFAAgAAGDRpgMPXcdWPVdeedyFb7Nh5FwAA7B4CEhy+vnXPnj2/cfvb337edWyp\nyy+/vLPOOmveZQAAu4SABIevPXv27OlFL3rRvOvYUp/97Gf7oR/6oXmXAQDsEs5BAgAAGAQk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAY\nBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA4Yh5FwBb4HbVj1R75l3I\nFrvVvAsAgMPVRRddVHV6deKcS9kOr6/ePe8iDhcCEovo31z3utd95p3udKd517GlvvCFL3TO\nOefMuwwAOCx9+ctf7uY3v/kDTzrppAfOu5at9P+3d+dBkpb1HcC/w967wy2HYDhEBY0xVswS\nhVIxQRE1S6J4RI0GtSoxGk1pgRqlHAoTDaRMFeYkHkElGsrSgIlBPIhHjCiHESWAXKIiLoKw\ns+zM7g67+eN5uma26dmdo3ve6Z7Pp+qtd7rfZ7p//b4z/fa3n/d93jvuuCP33nvvIRGQZkxA\nYhANHX744Tn//PObrqOnLrnkklx44YVNlwEAfWvDhg05/fTTmy6jp84777xcfvnlTZfRV5yD\nBAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAZxW5pOSrJ+qaLWAC/2nQBAAD0JwFpaTl7+fLl\nr1mzZk3TdfTU2NhY0yUAANCnBKSlZa+TTz45Z511VtN19NTZZ5+djRs3Nl0GAAB9yDlIAAAA\nlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAADV8qYLaMBQknVJ\nVicZS/Jgs+UAAACLxVLpQTo0yTlJvp1kc5LRJPfUnzcl+XqSM5Ps01SBAABA85ZCD9Jzknwq\nyd4pvUU3pYSjrUlWpYSn9UlOTPLWJL+dEqQAAIAlZtAD0n5JPpnk/iSvTPK5JBMd2q1O8uIk\n70/ymSTHxqF3AACw5Az6IXbPT7J/kpckuSydw1GSjCf5WJKXJzk8yakLUh0AALCoDCXZWX8+\nJ8lIc6X0xDtSXtfKGbZflmRbkncmed88nvfoJFdl5j10y1MOAVyZZPs8nndPPrh8+fLXrlmz\npodP0byxsbHs2LEj69ata7qUntq+fXvGx8ez9957N11KT+3YsSMPPvhg1q5dm2XLljVdTk+N\njo5m9erVWbFiRdOl9NTmzZuzYsWKrFq1qulSemrLli0ZGhrKoL/njo+PZ2JiIsPDw02X0lOt\n99zh4eEMDQ01XU5PjY6OLpn33FWrVmXlypl+TOxPY2NjmZiY+FCS1zVdyyI3kuTdyeAfYrcp\nyYokByfZOIP2j0zpVds0z+f9YUqv1UzX71BKjb0MR0ly9sTExCdHR0d7/DSNW5vkgNHR0R83\nXUiP7ZXk6NHR0VubLmQBPGbLli23ZvILnUF15Pj4+E/Hx8e3NV1Ijx2ybdu2sW3bts33vXax\n2yfJmtHR0Z81XUiPrUzyyNHR0R82XUiPDSU5ZvPmzbc0XcgCOGbLli23J9nRdCE99qitW7fe\nt3Xr1i1NF7IAvt90Af1mZ51GGq6jF56Q8touzp57kdYluTTlzeBxPa4LAABYPEZSc9Gg9yDd\nkOTvkvxxkmcm+WxKgr4n5VC6VUkOSfKkJBuSPCLJe5Pc3ESxAABA8wa5BykpXeJvSvKjTL7W\nTtPNSV7dUI0AAEBzRrJEepCS8kIvSPKBJE9MOezu4JShvceT3J3k+iQ3NlUgAACwOCyFgNSy\nMyUIXd90IQAAwOI06NdBAgAAmDEBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoB\nCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgWt50AdAD\nH0jyxqaLAABYJL6Z5GlNF9EvBCQG0Z1JbkryiqYLoSv2S/LFJC9NcmvDtdAdFyT5QcqXGfS/\n5yZ5c5JTmy6ErvlWyheN32q6ELri3UlGmy6inwhIDKKJJFuSXNN0IXTFI+r8hiTfa7IQuuaB\nJHfH/+igODbJ9tieg2Rnkptjmw6Ke5suoN84BwkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACg\nEpAAAAAqAQkAAKASkAAAACoBCQAAoFredAHQA9vqxGDYnnJVd9t0cPgfHSy25+CxTQeLbTkH\nO+s00nAd0C2rkxzWdBF01aObLoCuOjjJcNNF0DXLkxzRdBF01dFJhpougq7Zv07s3khqLtKD\nxCAaT3JX00XQVbc1XQBdtbHpAuiqiSR3Nl0EXXV70wXQVb9ouoB+4xwkAACASkACAACoBCQA\nAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQk\nAACASkACAAColjddAPTYgUmOTjKa5I4kWxuthvlaleSYOr8tyQPNlkMXLEtyQpItSa5puBZm\nb68kxyXZJ8mdSe5qthy65MlJ9kvytSQPNVwL82O/OUc76zTScB3QTb+W5MpM/n3vTPkAdn6S\n1Q3WxdysTnJekrHsuk0vTXJUc2UxT0cn+XrKtry64VqYvZemBKKp/5NfTnJkk0UxL+uSXJjJ\n7TncbDnMg/3m7I1kcj0JSAycx6T0GD2Q5B1JfjPJ6Um+kvK3/pHmSmOOLk7Zdpcl2ZDkuUn+\nsd73gyQrmyuNOXp1kk1JrkuyPQJSvzklpWfheylB6cSU99vxJDfFF1H96PgkNye5J+WICwGp\nv9lvzt5IBCQG2AdS/qZPb7t/Tcq3nVtTuprpD8elbM8rkwy1Lft0XXbKQhfFvByYst0uSPlf\nHI+A1G+uSbI5yaFt9/9pyrZ9/YJXxHxdn+RLSQ5LcnkEpH5mvzk3I6m5yCANDKKLkrwiyWfb\n7h9LckPKtyZrFroo5uyhJGcleVfqtzpTfL3OD1vQipivbSnfaL4pzgvsR0ekHMb82SR3ty37\ncMr/7IsWuijm7c+TPDvOIxsE9pvzZJAGBtHV6fxt9IEpJ57ekuT+Ba2I+fhByrljnRw1pQ39\nYzQP/wKD/vHkOu80qMamlMO0ntxhGYvbJ5sugK6x35wnAYlB98Qkhyd5bJI3pnQ1v7bRiuiW\n45KckeTaJP/dcC2wlDyqzqfrabgryeNTeurHFqQiYCbsN2dIQGLQvSfJafXnq5O8Ksm3miuH\nLjkiZSSeiZTDKdsPIQB6Z22dj0+zvBWK1kVAgsXCfnMWnINEv/p8khvbpmUd2r03ZYSlM+vy\nbyR55wLVyMydm4dvz6dN03Z9kqtSrtHxW7Uti8shefj2vLjRiuimiTqf7kvW1v3bFqAWYM/s\nN2dJDxL96ueZ2Uh0V9UpSf46ZWSec5NckeTbvSmNOdiUh5/s3enD1ctShmm/NckLUoaiZfHZ\nkYdvz/uaKISeuLfO959m+QEp/7+bF6YcYDfsN+fIMN8MmrWZfnSW16b8vb9l4cqhS16V8sH7\n8iR7N1wL3WWY7/5yfMr76Ps7LNsryS9ShoymfxnmezDYb87OSAzzzQC7Jsnt6fxmcEidO/Sj\nvzwvZfjgS1O+ARttthxY0q5N6RE8tcOyp6ccxvP5Ba0IaGe/OU96kBg056T8TV+ccpJwy5NS\nrhA+kTKqHf1h3yQbk3w/rl81qPQg9Z+/SHmffceU+w5Icl3KF1DHNFEUXaMHqb/Zb87NSGou\ncg4Sg+g9SU5I8vKUb1BuTHmTf0LKMN9nxvj//eSMJAelXFD0ymna/EfKuWX0h99P8oYpt1em\nDD/7zSn3nZ7kxwtZFLNybpJnpASl1yT5ScrFY9cm+aOU8x3oH7+c5ENTbh9X519OOUQrKdv6\nsoUsijmz35wnAYlBtD3Jc1K6lE9NcmTK4SBXpPQqXdtcaczB/Um+soc22xeiELrmoew6RPRX\nO7QxBO3iNpbkWSkfxJ6dckjzx1IO6el0AVkWt53Z9X/yOx3aPLRAtTB/9ptd4BA7AABgKRuJ\nQRoAAAB2JSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEA\nAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSAB\nAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUg\nAQAAVAISAABAJSABAABUAhLAYDgiyUlJDmy4jsXIugFgxgQkgMHwkiRXJnlK04UsQtYNADMm\nIAEMhs11PtpoFYuTdQPAjC1vugAAuqI9BKxNcnyS25P8MMlxSQ5K8rW231tXly2vbTfu5jn2\nT/LY+hy3Jtk2Tbt9kjwuybIOj/nIJMcmuS3JnR1+94gkj05yU5KfzqLO3b3emQakQ5I8fjfL\nr09y7x4eo2VFyms5KMl9Ka93Ypq23VivSW+2OcCStLNOIw3XAcDc/U7Ke/lR9fZx9fa5Sf6p\n/vy9Ke1XJ/nbJFszuR/YmeSLUx6jZV2Sj6Z8wG+125jkjLZ2w0kuSrK97TG/POUxf6Xe9+lp\nXse/1eVPmGWdu3u97etmOq9se4726QV7+P2WNyS5u+1378rD11c312vS3W0OsNSMZPJ9UUAC\nGADDSZ6YySMDjk55b/9SkuuSbEjy1CntL0n5wP2ulF6TY5L8YZJNSW5J6Y1oubQ+1l8leVqS\nk5P8T5IdKeGj5T9ru/el9HQcm+TMlABwS5I1td31SbakBISp9k4yluTaOdS5u9fbvm6mM5zk\nMW3TSbWmn6f0fu3JM2sdVyQ5IaU37Bn19s4kJ05p2+312s1tDrDUjERAAhhoj0p5b38oyZFt\ny56SyQ/m7f6kLmv1Yqyvtz/S1u7QlA/oX6i3T6jtPtXhMf+8LvuDevvP6u3T29q9ot7/ljnU\nubvXO1d7pQzusDPJaTP8nXfV9ie13b9fkvck+Y16uxfrtVvbHGApGknNRQZpABhs16acjzLV\nqXU+keRlbdPKuuzpdX5Knf9722PcndID9Ox6++Q673To3GV1/sw6/0Sdv6it3YtTek9ay2dT\nZ0un1ztXb08JOn+f0tszEz+q8zeknFvUcn9KeLqq3u7Fem2Z7zYHWNIM0gAw2H7c4b5H1/nb\ndvN7h7a17fQ4W6f8fFSd39ahXevD+i/V+e1Jvpnk+SnnxYynHF53SsrhYa3BGWZTZ0unOudi\nfZJzktyQ5K1ty85NCXNTnZFyeNy/JHlhSu/YaSmB6AtJPpNyaGFLL9Zry3y3OcCSpgcJYLA9\n2OG+FXV+Ssr5K52m09raTjcCW/tjdhqBbXudr5py3ydSQtFz6u0NKWHp43Oss6XT652t4ZSg\n81CS30s5B2mqTSk9PVOn1uveXmt6VpIPJjk8JWh9N2UAitb5Qr1ar8n8tznAkqYHCWDp+Xmd\nPyKl92Z37qvzA+fR7oA6nzpE9r8meX/KYXaXpfTIbMmuh5LNps5u+puUARrenBJs2p1fp935\nrzolZVCFVq/T25O8O71br9Npal0C9B09SABLz9V1fmqHZYemnPfS+gKtH33+cwAAApdJREFU\nNaLcUzu0vTAlTCTJNXV+fId26+v8uin3/SxlAITnJ9k3pWfj0kxes2i2dXbLS5O8Osnnklww\nh9/fJyVcTXVTyhDiE5kcxa5X63U6TaxLgL5lFDuAwdMa0ezjHZYNJ7knpSdh/ZT7V6SMlrYz\nkx/I903yi5RAM3VktBfVdv9Qb++T0ttxV3YdDns4yf+mHCJ2TFsdr6mP8Zd1/rx51Lm71ztT\nR6YMpnB3koPn+BhfSumtObrt/l9Pqe+j9XYv1mu3tjnAUjQSw3wDDLQ9BYZTUg5pG08ZQODj\nSe7I5IVGp/rdlA/im1OuyfON2u6m7DpS24aUAQbuTQkC/5zywX5Hktd3qGHf+vzjKRdI7dSD\nMdM6uxGQPlYf47v1cdqnF87gMY5P8kDKeUtXJLk4ZZCGrSmv8dgpbbu9Xru5zQGWmpHUXLQs\nk8HoK5k8XhqA/rYq5cP6VUm+1mH5rSkfkLcmOSzlIqHfTrkG0UVtbW/M5HV4Dkrpifhwktcl\nGZ3S7qaUi5EOpYy+Npzkqykf4tuHs0597n1TdkgXzbPOPb3emWhdK2gspeemffq/JN/Zw2P8\nJGWAh031dw5I6SX6aMpId3dNadvt9drNbQ6w1JyUKdew04MEAAAsZSNxoVgAAIBdCUgAAACV\ngAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAA\nlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJSAAA\nAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAtn/LziUne1lQhAAAADTmx9cNQkp0NFgIA\nALBoOMQOAACg+n/ML/z0fdEyJwAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “'recover' dimension histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebwsd13n/9clN7kJIWyBEBSQTURQRBCJgIgZB8LuoPhTZMYZdIRh/A3j\nAM6MyxBQh98gygDjhhsMIosKIosLgrKIC6gMCEKQfYkQwpIQQkhy7++P+p65fU/OPWuf0+ee\n83w+Hv04fbqquz5VXdVd765vfetAdSQAAAC61qILAAAA2C0Oztz/8+pNiyoEAABgQe5V3XPp\nnyPjdv6iqgEAAFig8xu5SBM7AACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nmJ+vre4zbjff5ml9e3Vk3K7a5mlt1Xd2tNYvLrgWNmen38Pt2JZW22aso9d0oi2TrdR7os0r\nsM0EJJifp1R/Om7fvuBaFuFeTTu0115wHSzGPN///b4tsTf4TIQT1MFFFwB7yKXHub8f3KF6\n47j/1dW7Z4a9pvr6cf/wThbF3Kz1Hq72/m/GTm9L1tFr2k/LZDvmdd7bBLCDBCSYn/0ckL5n\nlWGfq962U4WwLdZ6D1d7/zdjp7cl6+g17adlsh3zOu9tAthBAhLMz+dn7l9ynHFOrm5b3bC6\nvLpg2fNWcoPqK2fGv2IDNa13el9W3W7cv7T6m3H/jPH8a1X/UH1h2fO+tjqz+u6Zx76xOrv6\naPWP1Y2rO45hh6s3jPt3r04b9y+s3rNCXdfr6C+7jbqW7zB/eXWz6srqfU07O9vhJtUtmpbF\n+6uL1hh/u5f9Zqe33Hrm63jv4Vrv/3Wq64/HL67escJrX7+688z/b2l929JqNrrNHG/+6tj3\n59PV28f9G1W3rj5ZfXDZ6x0azzm1aZ7XOq9lPevw8eq4dtO8nlK9q7psjWmdMsa/fvWZpvdp\npWW82jJZ7oymZXH6eM33dvxzI+c1H+u1ntdd77yuZ9mt5zNxuY0sv1nXH/V8cTzni02fA/ec\nGeeN1dXj/krL/qTq60YNr1/2+pv5DNuubQR23NKJiecvuA440f14R7enc5YNu0H1i01fpkc6\n9mTxF1c3XeH1zqie17TTtDT+xdX/Wz2k1Ttp2Oj0HjUzznubvrx+vulLcenxz1c/uux5r1z2\n+rO3/znGOd4J0C+YefxvV5iHqv80M87nmr5Ml3xvU3CYneaV1cuqrzjO623Gg0d9y+fvL6pv\nXmH8nVr2m53eZubreO/hWu//T8/8f2Ern/f6+JlxLmraKVttW1rNZreZ1U7Sn31//mLMw7OW\nTePNHV3OD68+MTPsc9UjjlPvRtbh5XVU/ch4/aXHL6+edJxp3bxpm5tdr440BYI/ajpXZtZ6\nOi64e/XHHbssltbX5zUF7+W2Oh/HM1vv0o8o633dteZ1I8tuPZ+JSzaz/Gr64ej5y5736epx\nTYFp9rUOzTzv+zt22d+wKcws3ya28hk2720EdtL5HV0v/++d8xdXD+wJ31W9adxuPfP4tTv6\nJbT0pXrx+Lv02AVNv7YvOVD9Sdf8gl26vbBjv7RmbWZ63z0z7OPVb64y7SfMPO/lY/rLv0Sv\nqn52jHO8nY8HLXveSr2VvXFm+K/PPD67471U8+yO0EebfpXfqtmAttLtyjF/S3Zy2W92epuZ\nr+O9h2u9/7deVsu9u6Y3zAx/1njseNvSarayzay2gzz7/ryzevJxXv+Pm44ULF8eS9P7mmWv\nu9F1eHkdq72Hj102rbPG68+Oc8Wy/69uCs3rWSY17dAu37FffrtohfneynysZrbeT6zxuv9+\nlecun9eNLrv1fCbW5pffgabOS473nGct+3/W7LL/++qZy2qsrX+GzXMbgZ12fjPbztKd8xdX\nD+xpj+vodvb5phN2q27T9Kvf0rD/OPOc7+jYL49faGqucIOuuWO1fGdvM9N7+Mzjh5uaoTyi\nqanINzWdYDz7mtedee7Zy+q5/bJ6jrfzcXLTF+/xdlpu0rTjsTT8W8fj3zzz2JXV/cfj16p+\nbmbYS9qaO3fsF/nPNb0HX149d+bxzzW9L7Xzy34z09vMfK22A7nW+//amWHPWjbszGW1fEOb\nt5VtZrX5mx32mabl+h+betdbviP5zqaQ9tDq6cumOTvvm1mHl9dxadMRiX9e/ZeO3Wl/37J5\n+G8zw17Z9J7V1MR1Nki8d53L5KvGY0vDf388dr3qvKZwN7vDPHvkcCvzsZrZ1/3cGq/7/lWe\nu3xeN7Ps1tomtrL8Zj8vjlS/0bTt3njM73rX8080HSH6P+N5Sz9AbeYzZTu2EViE8zu6Pv7f\nO+cvrh7Y0x7U9Mv/E7rmibvP7+g2+Nszj//uzOPv7ZpNk/66438JbmZ6s19wR5qaOM06Z9nw\n2dfdbECqes7MsD9aNuwHZ4Z9pKPL4CUzj//Wsuec3NSUa2nH86w27zdmprP83JmTm9rVLw3/\nwfH4Ti/7zUxvM/O1lYD0PTPDPtr0C/iS75sZ9s62ZivbzHoD0pGmLsiX3GXZsE909Ly6Ovbo\n2JtnHt/MOry8jl9Z9rzlv9rfaGbY82YeX6mp5qOqhzWta0vLbb3b7Uc6thlXTUcJZmt5wMyw\nrczHarbyuqvN62aW3VrbxFaW30tnHv9g1zyX/P/MDF9tPT/S1HvfycvGmcdn2Dy2EViE8xvr\no04aYPu9ctxOamoffq+OfqnNflFcf+b+7C/pf9g1u559cXW3OU5vuRcs+/8vm77YbjL+v0tT\nk6Wt+q3q347792k6OrJ00vO/WDbe0jKYbaZ1RdMvrrM+3rSDcrC6R/V7m6ztn83cf/WyYVc2\nnVS/tEO0tCOy08t+M9PbzHxtxUubjhSe2fRL9zkdPffkITPj/e8tTmcr28xGPH/m/t82/cq+\n1Nzod5vOU1ny+o6ez3XDmcfnsQ4v/7X9D5qOdiy5UfWpcX/2SMx/azrx/rVNO6Qf6Njmq+tx\n35n7L+uanWD8dVMYvtn4/9yuua4t2ch8bMS8Xnfey662tvzuOjPeq7rmNvpb1Z3WWcd/b9rm\nZ83jM2we2wgslIAE2+/kpl8l/l1HmyytZPaX9bNn7n9ohXE/POfpzbr6ONP8UEd30rdyZGbW\nG5p2Br+sqYeo85p+Xb9e007Bkt8cfw/O1FD1r8fteG67ybpO6ujOSa28vL+0wmM7vew3Or3N\nztdWXNH0/j1u/P+dTQHpUHW/8djhjr7Hm7WVbWa9jjTtFM/6VEd3/t67wrAlB2f+bnUdPtI1\ne338p2X/z36//3LTDxE3a1ru/2bcatoRf2VTk8SVehlc7qSO7Txg+TwveX9H17XjdTaw0flY\nr3m+7jyXXW19+c2u58vXxeM9djx/t8JjW/0Mm8c2AgtnZYTt90tNzTBq+vL4w6adtauafp37\numXjH+jYZg8r7bCu1iXqRqe33OWtfLHE2TqWN8vYrMNNv+z/8Pj/IU0B6YFNgammJiNLOx+n\ndKwLmpojHc/Fm6zr1I7dAVjvkZSdXvYbnd5m52urfrVjA9Ljm46inD4ee231sS28/la3mfX6\nUtdcZlfP3L98lWFL5rEOf6lrzuNq7+UnmpptPbVp+Z8+M+xm1WOaQsAPNa1TqznUsevQ8QL1\n7JGJ5U3IZp+7kflYr3m+7jyXXW1t+a1nPV/rcgCzr//ZFR7f6mfYPLYRWDgBCbbXTTv6a2PV\nf65+Zub/X+yaXzhHmpoknDH+X+lXvLNXeGyz01vuOk1NKZZ/kZ05c3+e1xp6YUcD0nlNzbu+\nfWb47JGFLzR9AS/tZP569T/mWMuSy5ZNZz1NP3Z62W9mepuZr3n4++qvmro1vkXTta1mmxk9\nb4uvv5VtZqft1Dq83IVNR6oe3bTDf05TJyD3bdrpP6l6dlOHAR9f5XW+MG7XHv8f7xyhG8/c\nX+uaYbvdvJZdbW35HWnahpeOxmxlPV/ph5h5fIbBnrDSNSmA+bljx/5a+Kplw+/cymYvJniX\nFYav1F3yVqa33Dct+/+6HdvU54JVnnu8phfH85aOzu+ZTTsfS+dkHO6aJ7HPNmW5Y9vn7TP3\n77rC8Gc09cb0J02dGez0st/s9DY6Xxt1vPf/V2fuP6Cpd7Gaeht72Sams9xmt5lF2Kl1eLmT\nmpo8vrFpx/dh1a062iTqYFMAWMtbZu7fY4XhN+ho72c1nVNzotvKslu+TWxl+c2u5yttv99y\nnBrWY16fYXDCE5Bgey1vAjF7XZMHdOxFMK83c/91M/fv37HXh7hdx16jZh7TW+5HOvbz4fEd\n27TjNTP3lzenuM0qr3s8sx0+PKmjRwJe1zV/kX3pzP3v7NjwcKOmplrvbzqJevZ8m42a7aXp\nwR27w3LHpmu0/LNx+3A7v+w3O72Nztda1vv+v6jpKE9NvWMtnUj+O62/WdBqNrvNLMJOrcM1\nNc96ZdOO/Cc79mhkTUcnZs/PWX70ciWzHWqc1zXD5091dJ39fNN7fCLa7LJba5vYyvJbvp5/\n/cz/t29r6/m8PsNgT1jqXvH8BdcBe9EZTU0ilraz9zS1Vf+5pi/T2a6Jr2y6Xsc3Nu0wfWlm\n2Geamjf8QtM1Jt4/M2y2qcRmpzfbTesXms57eGv1tOoVM8OOdM3uuGv6El8a/vHq5zt6UdO1\nLjhZ0076kRVu37fCuNdv2nFfGudT1f9qOkfgAzOPv+g401qv6zT9Wrv0ep9uWv7P6dgLei4F\nlp1e9pud3kbnq9Z+D1d7/2f9yrL5OdLUe+E8bHabqfV3873SvM8uy8csG/ZDM8Nmf/nfzDq8\nVh0369jlOhsQZy8+/IGmIyBPaOqV7XUd+94t9VS22vQOdmz3zF9s2un/maZeF2frWL5MtjIf\nq9nK66723M0su1p9m9jK8rtdx67nlzR13f9rTecUfXBm2Ea6s6/5fIbNaxuBRTi/o+vj/71z\n/uLqgT1t9sJ7s7c/bvpCfcuyx88fz3t0x14oden29qaL7M0+NnuEYTPTm/2Cu6yps4QvrvAa\n/9ixvyouefYK475yDFtPQKp627Lnf6GjR5KWu0PHfukuv72sY3dWNus2TefPHG86r+r4F27d\niWW/2XVro/O11nu42vs/6+7LxvlgG2+SuZrNbjM7HZBq4+vwVgLAGU1NJo83rSNNPf/NdpW+\n1vSu3/QeH+/1vjDmf7kTLSBtZtnV2tvEZpdfTevZSuv531ePnPl/owGptv4ZJiBxIju/sT7q\npAG23zM7+sX15U1NNV7V1Fvb1dV3NF2A8DZNzTX+YDzvl5u6Yf3+6pZNv4i/vumE9huN+0tO\n6WivR5uZ3s1nXutaTScb37mpd6bbN/1i+cZR02UrzOMPN3253aepWcqFHT2v5KKZWlfrQvqZ\nHXvE6M+bzk9ZybuadjC/q6k78C9r2qH4YFNzlHldcPB9TSclP6zpnJmbNS3D9zXN3+uXjb/T\ny36z69ZG52ut93C193/WX3W0W/c6euHJednsNrPa/K0173/V1N1zXbM56Mdmnru8l76NrsNr\n1XFFx87f7LpyadP7fN74e+umHf8rmnbu39D0fs3u3K41vc82XVT0Xk3h83ZNO9AXNy2TFzb1\nALfcVuZjNVt53dWeu5llV2tvE5tdfjX1NPe3Tb3N3Wq81huq51bftmyeZ63ns3gznymnrvG6\nm91GYKGW/7II7D/rPcrD/O2nZX/njs7r1W3ufDXg+P5DjsjAZp2fI0jAPnBGm+sl7MJWvtgo\nm3dq06/TS36v6YgVsH73aTr35+ZN3fR/XdNRnpqOis520/1nO1kY7CUCErCX3bz68U087+VN\nHQqwdU9vCql3qc4aj11R/djCKoIT1wVNzfKWLlj7F00dPBxpun7cUlfcX6x+dsergz1EEztg\nPzXz2m32+rL/s449qfvKjv2VG9iY+zedX3e8Dh4ubuqWG9iY89PEDpix3o4UmL+9vuxf0xT8\nDlfvbepI4V0LrQhObH/Q1LHKdzVdm+jLmnplvLDpiNKLmrr/BrbAESQAAGA/O7+Ri661xogA\nAAD7hoAEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwHFx0AQDsOl9X3XjRRWyDd1YX\nLroIAHY3AQmA5V5/2mmnXe/gwb3zFXH55Zd31VVX/Vr1A4uuBYDdbe98+wEwLwd/4id+onPO\nOWfRdczN0572tP7wD//wpEXXAcDu5xwkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAY9tuFYq9b3b46qzq1ury6sHp39YUF1gUAAOwC+yUgPbD6keqe1UpXUr+y\nek3109Wbd7AuAABgF9kPAem/VE+trqheW72zumj8f6g6u7pzdb/qvOrfVr++kEoBAICF2usB\n6VbVT1Wvq76n+uQa476k+vnqD5qa3gEAAPvIXu+k4b5NTer+TauHo6oPVP+y6dyk+29zXQAA\nwC601wPSDZvOL/rwOsd/T3W4usm2VQQAAOxaez0gXVidXN1xnePfpWmZfHzbKgIAAHatvR6Q\n/qCpK+/frO6wxrh3r36rurR61TbXBQAA7EJ7vZOGT1SPrX61qfe6d3e0F7svNfVid5PqTtWt\nm3q2e0T1qUUUCwAALNZeD0hVz63eXj2+qSvv71hhnH9qClE/U12wY5UBAAC7yn4ISFV/W33v\nuH+T6qym3uq+2BSOLprz9K5bPaU6bZ3jn1J9eVOvewAAwILsl4A06xPjtuTs6pymDh0+NKdp\nHKpu3NRBxHqcWZ07nnfFnGoAAAA2aD8EpNOrn6we1HTE6GXVT49hz226gOyS14//t3qR2Is6\nesRqPe7RFJCObHG6AADAFuyHgPQb1cOrq5quifTfqps1Na377uo11Uebern7lqYAdc5CKgUA\nABZqr3fzfcfqO6unNx1JOr2pk4bvrR5V/Zum834e1RSKHt/U3fc9FlEsAACwWHs9IN2tuqz6\n0aZuvY9UL21qSneket6y8f9n03WTvmEHawQAAHaJvd7E7iZNHTJcuezxjzR1jLDc4abzh87Y\n5roAAIBdaK8fQfp4ddOmLr1nfXV1y+qkZY+fNsb/9LZXBgAA7Dp7PSC9uanr7Gc3dbt93eqJ\nTU3vPlf9+My4J1X/o6lr7j/f2TIBAIDdYK83sXtf9Zzq31U/MPP4M6v3VL9QPaLp+ke3r25e\nvap6+86WCQAA7AZ7PSBV/Yfq/dVDmy7C+rLqF5vON7ph9Z+r2zV14vCb1WMXUyYAALBo+yEg\nXdXUzffTVxj209VTq7OqzzZdSBYAANin9kNAWsvhpovGAgAA+9xe76QBAABg3QQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgOLroAgBPYtao7VSctupA58+MZAPuWgASweedWr1l0EQDA/AhI\nAJt36NChQ73kJS9ZdB1z9dCHPnTRJQDAwghIAFtw4MCBzjjjjEWXAQDMiXbmAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAcXHQBC3CgOr06tbq8umyx5QAAALvFfjmC\ndHb15Oot1eerS6uLxv1LqjdVT6yuu6gCAQCAxdsPR5DuW/1OdUbT0aL3NIWjK6pDTeHpbtU9\nq8dXD24KUgAAwD6z1wPS9asXVZ+tHlm9urpqhfFOrR5e/Vz1suqr0vQOAAD2nb3exO6B1Q2q\n76p+v5XDUdUXq+dXj6i+vLr/jlQHAADsKns9IN2iurL6y3WO/7rqcHXbbasIAADYtfZ6QLqk\nOrk6a53j37RpmVyybRUBAAC71l4PSH86/j6jOmWNcU+vfr46Uv3JdhYFAADsTnu9k4Z3Vb9Q\nPbb6luoV1TuberH7UlMvdjep7lQ9pLpR9dTqgkUUCwAALNZeD0hVP9TUtfcTq8esMt57qydU\nz9uJogAAgN1nPwSkI9WzqmdXX1PdoemcpFObeq/7p+od1bvnOM1D1fe2/uV7mzlOGwAA2KT9\nEJCWHGkKQu/YgWnduHp0ddI6x7/ONtYCAACs034JSOc2nXe0FI5ObmpO96+qW1dXVG+rnln9\n7hym99Hq7hsY/x7Vn89hugAAwBbs9V7sqp5Svba67/j/QPV71X9vatr2oeqz1b2q36l+fAE1\nAgAAu8BeD0i3q36s+qPqReOxB4zbS5uue3S7pgvK3rHpKNKTqlvudKEAAMDi7fWA9K1N8/io\n6mPjsXtXl1XfV108M+4/jMcOdvRoEwAAsI/s9YB0g+qq6uMzjx2s3l99foXx31FdXZ25/aUB\nAAC7zV4PSO9rCkT3nnns76qbtXIHFXdq6nnuYysMAwAA9ri9HpBe1RR2fqupJ7uaOmL4SFPn\nDQdmxr1L9cLq0urVO1gjAACwS+z1br6/UD2semVTT3bvrf66ekv1xOq7x2M3a7qA7JXVI6pP\nLaJYAABgsfZ6QKopEN2++uHq4dX3zgy71bhd0nT06L9Xf7/TBQIAALvDfghIVZ+ufmLczqi+\norpOUwcOn2q6FtKRhVUHAADsCvslIM26NEeJAACAFez1ThoAAADWTUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgOLroAYN94\nfPXYRRcxZ9dedAEAwHwJSMBO+Zo73OEOtz7vvPMWXcfcvPnNb+5tb3vbossAAOZIQAJ2zC1u\ncYse9KAHLbqMubn44osFJADYY5yDBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOA\nBAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACD\ngAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAA\ng4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAA\nAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADBs\nJCD9q+qX1vF6H64euOmKAAAAFmQjAenW1TlrjHPt6qzqqzZdEQAAwIIcXMc4fzn+3qy6wcz/\nyx2oblUdqj699dIAAAB21noC0quru1VfWZ1W3XmVcS+pnl/91tZLAwAA2FnrCUhPGX/Pr769\n1QMSAADACWs9AWnJc6qXbFchAAAAi7aRgPTxcTu7ulN1RtN5Ryt517gBAACcMDYSkKqeVj2+\ntXu/e3JTkzwAAIATxkYC0jdWT6zeUb2iurg6fJxxj9fTHQAAwK610YD0kaYe7a7YnnIAAAAW\nZyMXij21emfCEQAAsEdtJCD9TXX7jt8xAwAAwAltIwHpz5pC0s9Uh7alGgAAgAXayDlI964+\nWP1A9cjqbdWnjjPuS8cNAADghLGRgPStTV18V12vut8q4/5jAhIAAHCC2UhAenb1G9XV6xj3\nks2VAwAAsDgbCUgXjxsAAMCetJGAdItxW8tJ1Uer922qIgAAgAXZSEB6VPWkdU8EQ/MAACAA\nSURBVI775Or8DVcDAACwQBsJSG+ofvo4w25cfWN1q+qnqtdusS4AAIAdt5GA9LpxW83jqu+o\nnrHpigAAABZkIxeKXY9nNh1N+udzfl0AAIBtN++AVPWh6k7b8LoAAADbat4B6frV11efm/Pr\nAgAAbLuNnIN03rit5EB1w+rbqjOrN22xLgAAgB23kYB0TlMnDKu5pPrh6p2brmj7HahOr06t\nLq8uW2w5AADAbrGRgPSc6pXHGXak+nz1/urKrRa1Dc6u/l31gOoO1bVnhl1avb16efXLTSEP\nAADYhzYSkD4+biea+1a/U53RdLToPdVF1RXVoabwdLfqntXjqwdXb1lIpQAAwEJtJCAtObt6\nZNOFYc8aj11Y/Xn1m9Vn51PaXFy/elFTTY+sXl1dtcJ4p1YPr36ueln1VWl6BwAA+85GA9ID\nqxc2HY1Z7rurH68eWv3VFuualwdWN2hqWveXq4z3xer51T9Vf1zdv+moEwAAsI9spJvv6zUd\nIbqs+qHqa6ubjNvXNTVPO6kpWJw63zI37RZN50StFo5mva46XN122yoCAAB2rY0cQbpfU5O1\nb6j+ZtmwTzZ1dPCGpvN37lv9/jwK3KJLqpObmgJ+ch3j37QpNOqoAQAA9qGNHEG6ddO5RsvD\n0ay3Vh+ubr+VouboT8ffZ1SnrDHu6dXPN/XI9yfbWRQAALA7beQI0tUd2z328VyrqZnabvCu\n6heqx1bfUr2i6RpNF1VfaurF7ibVnaqHVDeqnlpdsIhiAQCAxdpIQHpn03lID6teepxx7lfd\nrN11odgfaura+4nVY1YZ773VE6rn7URRAADA7rORgPSa6n1NHTU8p6lDg49XB6ovq76t+oGm\noy+7qYnakepZ1bOrr2m6UOxZTR1JfLGp57p3VO+e4zQPVN/c2s36ltxxjtMGAAA2aSMB6cqm\nZmi/Vz1u3Jb7h+rbx7i7zZGmIPSOFYbdsfqm6i/mNK1bNXUXfmiDzzswp+kDAACbsNHrIL2r\nKUw8oLpHU69vR5o6b3hj9UetfCHW3e6Hqzs39dA3D+9vY12d36PpQrtH5jR9AABgEzYSkA40\n7cBfWb183Jac0hSMdkvnDEvuNG5ruU11w+qR4/+3jxsAALCPrDcgfWNTb3D3b+oBbrn/WD24\n+tdN5yntFg+rnrSB8Z8//j45AQkAAPad9QSkr2vqkOH06l7Vy1YY5/rVPcd4d2t9F2XdCW+v\nrmg68vVL1euPM96/bzpv6Anj/3l22AAAAJwg1hOQfq06rfruVg5HVT/a1LX385sutvrwuVS3\ndS9tCnjPaTrKdaOm840+tWy8B1U3aOqAAgAA2Keutcbwr63u2hR6XrzGuC+onlv9i+rmW65s\nft5T3af6waYg9A/Vv1xkQQAAwO60VkD6+vH3N9f5er9endTUK9tucqT6laZrIL2++t9N3XDf\napFFAQAAu8taAemm4+/71/l6Sx003GJz5Wy7C6vvbLpW0x2qv29qcuf6QwAAwJoBaemCr+u9\n4Onp4+8XNlfOjnl5U0B6bvWzaXIHAAC0dkD6wPh7zjpf7z7j74c2Vc3OuqSp97p7VW9quggu\nAACwj63Vi92fNXWT/Z+r3+/oEaWVXK/6r9XnqtfOo7gd8ubq3EUXAQAALN5aR5A+U/1y07WN\nfrs68zjj3bZ6TXXr6n9Vl8+rQAAAgJ2ynusg/ZfqG6qHVt9WvbJ6W/X56obV3av7NfVe95rq\n/O0oFAAAYLutJyBd3tQE7SnVY6v/Z9xmXVQ9o3padfU8CwQAANgp6wlIdfQ8pKdU96y+sqnH\nuouaugB/U4IRAABwgltvQFpyWdMFVv94G2oBAABYqLU6aQAAANg3BCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQA\nAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQk\nAACA4eCiCwBW9LvVVyy6iDm75aILAABYi4AEu9P9zjvvvNNvfvObL7qOuXnxi1+86BIAANYk\nIMEude9737tzzjln0WXMzatf/epFlwAAsCbnIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMBwcNEF\nAMB2u+qqq6rOrO664FLm7aLqw4suAmAvEZAA2PPe8573VD143PaSi6sbLboIgL1EQAJgzzt8\n+HDnnntuj3vc4xZdyty89a1v7Sd/8idPXXQdAHuNgATAvnDKKad0xhlnLLqMuTnttNMWXQLA\nnqSTBgAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFA\nAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBB\nQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAA\ngEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGA4uuoAd9K3VA6o7VmdV\np1aXVxdWb69+v/rrhVUHAAAs3H4ISF9R/XZ1t5nHvlRdUR2qvqF6cPVj1R9Wj6wu3uEaAQCA\nXWCvN7E7uXp1defqGdU9qus1BaPrjr83rM6tfr26X/WK9v5yAQAAVrDXg8B9qztU31/9p+ov\nqkuWjfOZ6k/HOI+rvqm6z86VCADMeH91ZA/e/sc8FxKwffZ6E7s7VFdXL1zn+L9SPbP6+up1\n21UUAHBcZz3qUY/qq7/6qxddx9y8+MUv7q1vfetZi64DWJ+9HpCubjpKdnJ11TrGP7k60PRL\nDwCwALe97W27613vuugy5ua1r33toksANmCvN7H7m6bA89h1jv+E8VdvdgAAsA/t9SNIb6z+\nvHp6dffqd6t3Vhc19WR3qLpJdafqEdV51R+P5wAAAPvMXg9Ih6uHVL9aPXzcVhv3udUPpYkd\nAADsS3s9IFV9unpY9ZVNR4ju0NELxX6x+qfqHdWrqo/McbpfNqax3nEBAIAF2w8Bacl7x20n\n3Kb6x00878C8CwEAANZvvwSkG1bfWl2n+qvq3ccZ7+Smrr5/b9w2633VLcbrrcddqt9O0z4A\nAFio/RCQHtR0HaTrzDz2wurR1aXLxj2p+r7qg20tINXGmuudvcVpAQAAc7DXA9LpTUeETq5+\nvunIzjnV91S3r86tPruw6gAAgF1lrwekf950dOYRTUeNlry4+t/Vy8c4X9r50gAAgN1mr18o\n9tZN5/Usby730qajSPeqnrPTRQEAALvTXg9IVzT1DHfKCsNeUT2h6ZyjH9/JogAAgN1prwek\nvx9/f+A4w5/RdI7ST1ZP3JGKAACAXWuvn4P0+uot1c9UX9t0pOijy8Z5zPj7tOrbdq40AABg\nt9nrR5CqvrP6P01N6VbqTvtw9YPVjzZdKwkAANin9kNA+nB11+qbqwtWGe+p1VdXP1H92faX\nBQAA7DZ7vYndksPVm9Yx3vuqn9rmWgAAgF1qPxxBAgAAWBcBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYNgvF4oFgD3lyiuvrOl7/AcXXMq82TcBFsqHEACcgD7wgQ90\n4MCBQ2efffYvL7qWebrwwgsXXQKwzwlIAHACOnLkSIcOHeoFL3jBokuZq3PPPXfRJQD7nHOQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAACGg4suAObg9OqURRcBAMCJT0DiRHdO9ebq\nwKILAQDgxCcgcaI789ChQwee+cxnLrqOuXrMYx6z6BIAAPYlAYkT3oEDB7rd7W636DIAANgD\ndNIAAAAwCEgAAACDgAQAADA4BwkAYBsdPny46ozq1gsuZd4+W3160UXAvAlIAADb6N3vfnfV\nd4zbXvLJ6iaLLgLmTUACANhGV199dfe+97179KMfvehS5ubv/u7vevrTn376ouuA7SAgAQBs\ns2tf+9rd9KY3XXQZc/OhD31o0SXAttFJAwAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwHF10AO+ru\n1X0WXcSc3X7RBQAAsHcISPvLY84888x/fctb3nLRdczNxz/+8T7zmc8sugwAAPYIAWmfudvd\n7taP/MiPLLqMuXne857Xi1/84kWXAQDAHuEcJAAAgEFAAgAAGAQkAACAQUACAAAYdNIAAMCG\nfP7zn686pfrlBZcyb1dWT6k+uehCWBwBCQCADfnYxz7WSSeddPK97nWvH1x0LfP0xje+scOH\nD7+6evWia2FxBCQAADbs5JNP7klPetKiy5ir+9///l1xxRWLLoMFcw4SAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwHBw0QUAAMBu\ncOWVV1Y9s3rKgkuZt1+sfm3RRZwoBCQAAKgOHz7ceeedd9ub3/zmiy5lbl7/+td3wQUX3CsB\nad0EJAAAGO5973t3zjnnLLqMufnIRz7SBRdcsOgyTijOQQIAABgEJAAAgEFAAgAAGAQkAACA\nQUACAAAYBCQAAIBhP3bzfaA6vTq1ury6bLHlAAAAu8V+OYJ0dvXk6i3V56tLq4vG/UuqN1VP\nrK67qAIBAIDF2w9HkO5b/U51RtPRovc0haMrqkNN4elu1T2rx1cPbgpSAADAPrPXA9L1qxdV\nn60eWb26umqF8U6tHl79XPWy6qvS9A4AAPadvd7E7oHVDarvqn6/lcNR1Rer51ePqL68uv+O\nVAcAAOwqB6oj4/6Tq/MXV8q2+K9N83XKOsc/qfpS9WPV/7eF6d6q+qvWf4TuYFMTwFOqK7cw\n3bX86sGDB7//tNNO28ZJ7KwrrriiK6+8sutc5zqLLmWuLr300k477bQOHtw7B3kvu+yyrnWt\na2X92/2sfycG69+Jw/p34tiL69/ll1/eVVdd9WvVDyy6ll3u/OpJtfeb2F1SnVydVX1yHePf\ntOmo2iVbnO6Hmo5arXf5HmiqcTvDUdVPXHXVVS+69NJLt3kyO+pgdYtLL730/YsuZM5uffnl\nl3+ounrRhczRDQ8fPtyll1766UUXMkfWvxOH9e/EYf07MVj/TizvXHQBJ5oj43b+guvYDndo\nmrcXtPZRpNOrl1eHq9ttc10AAMDucX4jF+31I0jvqn6hemz1LdUrmhL0RU1N6Q5VN6nuVD2k\nulH11OqCRRQLAAAs3l4+glRT87X/UH2ko/O60u2C6vsWVCMAALA457dPjiDVNKPPqp5dfU1T\ns7uzmrr2/mL1T9U7qncvqkAAAGB3+P/bu9MoS8rygON/YIBhZmDYFJRtBiWiEjUqRDZB4xFZ\nBJFFUQMCHk2C+gEOLtEkTcAoYXHJqhIVBDWGaNSgiCjo4EJYjGgcEQYmUUcYRdZhZpil8+F5\n6nR1dd3bdXumb907/f+dc8/tW1X3vU+/VX27nnqXmgkJUmGUSIR+3HYgkiRJkgbTpn4fJEmS\nJElqzARJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRk\ngiRJkiRJyQRJkiRJkpIJkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJ\nkqQ0q+0ApA10GvCptoOQJEmbjDcCl7cdhNpjgqRh9wCwEji07UA0qb/K5/NajUJNLALeDdzU\ndiDq6hDg/fj9Nwz8/hsei4hzC81gJkgadqPAeuC2tgPRpIp/OO6rwbceuBv31aDbFb//hoXf\nf8NjPXFuoRnMMUiSJEmSlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmS\nJEmSJCUTJEmSJElKJkiSJEmSlGa1HYC0gZ7Ihwaf+2l4+Hc1HNxPw8P9NDz8uxIAo/kYaTkO\naSo2Bxa0HYQa2SEfGnwLsIfBMPD7b3j4/Tc8FuD330w1QuZFtiBp2K0HlrYdhBp5sO0A1NjS\ntgNQI37/DQ+//4bH0rYDUPvMkCVJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJkpIJ\nkiRJkiQlEyRJkiRJSiZIkiRJkpRMkCRJkiQpmSBJkiRJUjJBkiRJkqRkgiRJkiRJyQRJkiRJ\nkpIJkiRJkiSlWW0HIG1E84GnASuBe4FV7YajLrYADgIeB25rORaNtzOwN7AaWAw80W446mJ7\n4HnAL4AlLceizrYm/jdtDdwDPNxuOOpiJ2Ah8CiwlPge1Aw1mo+RluOQpmpP4GrGjuVR4kvt\nUmBOi3Gp3kLgJmI/3dpyLBqzM/DvwDrG/o4eBN7WZlDq6KVEYjQKXNxyLKo3G/hb4qJd+f/T\nl4AF7YWlGs8HbmD8fnocuIjYj5oZRhjb/yZIGmrbEVe51wKXAC8HjgduJI7rK1qLTHVOAx4B\nfgiswQRpUGwGLCKSo4uBFwOvzGWjwOnthaaKrYl9tB64BROkQXYVsX++DBwLvAL4aC67C9iq\nvdBU8nSixehh4N3ExYcTgW8T++qT7YWmPhvBBEmbiD+h/vjdBvglcRI+t88xqd5OxL76CHGS\ntwoTpEHxSmLfXFJZPpf4O/oV0S1S7TsBWAGcCbwIE6RBtS+xb24gLkCUfSHXHdHvoFTr74j9\ncWJl+TbAMqJHytb9DkqtGCHzIidp0LD7GfAe4OOV5SuB24lxdk/ud1Cq9QRxFfXt2K970Byf\nzx+rLF8BfAZ4KnBgXyNSJ/cCLwD+pe1A1NU64B3Ae8mr0SU35fNT+xqROrkceD3wlcrylcBP\niZa+bfodlNrlJA0adjfmo85exAner/sVjLp6lIn/gDQYngc8BtxZs+7W0jY31axXf93edgBq\n5C5i/EqdBaVt1L5bqe/NsBPxvXc38FBfI1LrTJC0qXoD8BzgQzibnTSZ3el8IWFZPu/Rp1ik\nTdm+xJi+24HvthyLJtoP2A3YB3gr0T3yzFYjUitMkLQpeinRVeh2ovudpO7mAPd1WLcynx3L\nJ22YPYkZ7NYSXbqqXe/UvguA4/LnW4FTgf9qLxy1xTFIGgZfJ8YalR+dBoyfAVwL3EHMaPd4\nPwIUALswcT9d1WpEamotnS+YFcu9H5I0dfsDNxP3rvoj4vtRg+f9wGuAc4nzjO/hhdYZyRYk\nDYPfMvkMMpsT95s4h7gn0qmMXflWf6xnYivE79oIRD17ANihw7od89l9KU3Na4mpopcAxxA3\nINVgujkfAB8kLrieD1xHTKuvGcRpvrUp+DhxHL+PiVOqajA5zffg+CqR4M6vWXc28bd1Ql8j\nUhNO8z34TiX+tq4Ftm05FtWbQ+cZBc8k/sbO7l84atEITvOtTcjfAG8imsTfg/26pV5dT1xY\nOLJm3SuJLnjf6mtE0vA7CvgEMe7oGGImTw2e24jp8+sS2F3y2S7GM5AtSBpmBxNX57zT9fCx\nBWlw7Aw8QnQB2r20/Azi/4P33BlMtiANrvnAcuB/8B46g+484u/oKsZPRvMc4DfEBaJ9WohL\n/TdC5kWOQdKwO5e48n0A8IMO25wPXNO3iNTJHwNnlV5vRUx5W95vJwK/7GdQAmKc3xnETWHv\nIvra7wg8G/gRMbZPg+GDjN20d14+vw44JH9eTtyQWe06HXgScVPsGzpscw3x/0ntugA4iPg7\nOoqYQGMe8Czi/OJcvGfVjGOCpGG3FPj2JNus60Mcmtw6xt+T6js129g9sj1XA4uBNwPPIK6c\nfpQY3+e9xAbHGsb2xyomfv+t7m846uAhJv/ftKYfgWhSa4hZb48huhnvRUxKcx3RquTNmWco\nu9hJkiRJmslGcJIGSZIkSRrPBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmSJCmZ\nIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQJEmS\nJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmSlEyQ\nJEmSJCmZIEmSJElSMkGSJEmSpGSCJEmSJEnJBEmSJEmSkgmSJEmSJCUTJEmSJElKJkiSJEmS\nlEyQJEmSJCmZIEmSJElSMkGSJEmSpGSCJEkTHQ7stJHLfC8wCrxiI5fb1L75+f/c0ufPBBu7\njvdkeo5FSVIXJkiSNNENwAvaDmIDvA74x8qy5cC7gS/2P5wZo66O6/ZFUycz/MeiJA2dWW0H\nIEkD6tG2A9gAxwB7V5b9DvhAC7HMJHV1XLcvmnosn4f5WJSkoWOCJEn16k5Kdwb2ILpR3QM8\n0uG9mwHPBLYF7iJOnLuZrNx5wAuBe4H/BXYA9gGeAH4CrM3ttiVaGw4EVhLdsx4EfgTMAQ4A\nluXv9oz8rP+riWdP4qT+TuDXpeVziW5kszKW5ZP8Xk0Vv8+jwJL8vepsrHrqtdymsZbr+NfU\n74vlRN0vAX5RU/5uWf7PaZ4g7UIcb538GHhgkjIKWxL7/0nEcXsPneut6X7bDvg9YAvqj5ui\n3or9tm9+/qLKdtN1/EnSBKP5GGk5DkkaFKPAgtLrPYHrgfWMfWeuBy4H5lfe+2xgcWm7NcCH\ngL9g4hikpuXul+suAi4kTkTX5rL7gCNyuxeWyike1+e68viY38+fv9Dh9/+PXP+sfD0b+Adg\ndU3ZC2re39Rc4IrS7zJKnPSeXtluY9dTr+U2jbVcx532xTPz5690qJOrcv1zgVcx8Vis84aa\nzyo/jpnk/YWziHoqv3cZE/dH0/02j6jLNZUyv1X5nYp6Ox/4eP78k9L66Tr+JKlshLHvFxMk\nSarYj/Et7HcQJ9tvIxKg5xIn4KPAlaXttiRajNYB5wBPAw4mxpEsYWKC1LTc4gRyGfA14sR+\nC+Aw4sT0MeApuWx7YBVwS/48t1JGMYHAj4HHS+sL2xItHreXln2eOMl9L3GC/zTgLURLy91E\nC8BUfCljuphoaXkZ8H0iSXlVabuNXU+9lts01nIdd9sX3yXqc5fKZ8wm6rSo+3lMPBbrzAOe\nXnkcTuzH31Z+504Oy9ivAw4iWhBfnK9HieO40HS/fS23+wDRgvQM4Fwisbob2Ca3W5jbfRP4\nIXAs8KJSOdN1/ElS2QgmSJLUyDzgPcCf1axbTCQZxYQ3R1M/i9k2jF2ZLxKkXsotTrxXEt3B\nys7KdeeUlq0CflDZrpog/Xm+PrGy3etz+dn5+gWMnQxXvS3XVVsOmtg/3/vJyvJdiRPob+Tr\n6aqnXsptGmvdLHZ1++J0Ju4zgONz+dtrYurF5kRSPgoc1/A9xSyLh1eWbw9cAPxhvm5aFwfl\ndlfXfNb7ct0b8/Xu+XodsFdl2+k6/iSpaoTMixyDJEndPUac0G1GjLd4CrBVrltBJD/ziKvZ\nB+by6yplrAS+Dpw6xXILtxItAmXFOI39e/u1+Gx+/gmMP4k9iWgJ+Gy+PjKf1wKvrZRRxHso\nE0+YJ1N0d/vPyvL7iJaW1fl6uuqpl3KbxtrU54EPA6cBl5SWn0y0lHymx/Kq3kUkOv9EtPY0\nUYyHOosYs/Zgvn6ISJ4KTeviZflc143zy0SCfhjwqdLy24kxSGXTdfxJUkcmSJI0uZOASxm7\n0r0yn2fn+qKlYbd8/lVNGXWTITQtt1A3qP++fK5215rMvUTLxtH5eauI7nVHEF2diskZihnY\n3tmlrF17/Oxyub+sWVdNOKarnpqW20usTawgEtA3Ey0ktxEJ2THE2KRqcteL/YHzgJ8ysYXq\nfOJ3Ljud6B73GeDVRIviccDNRGvQF4numIWmdbEgn++p2a5IgvaoLK8rc7qOP0nqyPsgSVJ3\n+wOfI67sv4S4aj2XaF24vrLtlvm8pqacdRtQbmFVzbL1+TyVC16fJZKil+frY4nkoDquCiJx\n2qbDo2k3rrKi3E4zpBWmq56msl8ni7UXl+Xzafl8dH72pzagzHlEorMOOIVI+MoeIRLF8qOY\neW4NsR9fkrHtRiRadxCTdhTjhZrWRbFd3cx2xd/H1pXlK7qUs7GPP0nqyARJkro7hfiuPAe4\nkfEnhtVxLsV0zNUZ0Oq27aXcwg41y7bP54c6vKebfyVOpk/I1ycRY2/K3aKK1oydicSj7lGX\nEE6mmPp8p0m2m6566qXcprH24hYi+Tg54zgJuJ+Y2GCq/p6YoOEdWXbV/yVWbQAABIBJREFU\nRUTXu/Ljtso2NxLjsvYmxlT9G5GAvCvXN62LbtvtmM9Nph6fruNPkjoyQZKk7oqT7WpXoYXA\nH1SW3ZXP+9WUc2DldS/lFp5fs6z4rMUd3tPN/cRg/qOJpO4IYszKY6Vtbs3nI5loV2KsyVRa\nr4qZ2l5Us+5jxMk+TF899VJu01h7dRnR5e8oonvdlUy9leo1RGvUV4GPTOH92xHJVdmdxBTi\naxmbxa5pXRSJ1wE12xXjwH7YIK7pOv4kqStnsZOkzor7F72ltGwHYtD/T3Ldwlxe3ONmMeOv\nnBeD78uz2PVSbjE72jrGz7o2G/hOrjuktPwhYlrxsroZ1gDOyOXF9NZHVdbPA35DXKkvTwSx\nJTG5wyj1J8GTmU9MBHA/42cuO6ES53TVUy/lNo21ro7r9kX581YSY3JGqU+sm9grP+c+4MlT\nLOObRGvNwsry4n5OV+TrpnWxHdGKtIzx04zPIyaBeIKYrhvGxoBVp1Yvtp+O40+SqkZwmm9J\nauSpxNiN1cRNPD9NnPj9JTEV9ijwPcbGknwsl91PtMYsIk48L8rlR06h3OLE+2piAoJFxA04\nf57LP1eJuZji+SZixjTonCDNZ6yr0nLqr8YfQXS9W0UM2r8SWMrYzT2n6njiRPkxomvZ97LM\nOxlr4Zmueup1vzaJta6O6/ZFWXFj2Fu6V1VXn84y7iD2TfXx6gZlHAA8TCRs12Vc3yDqZzlx\nD6NCk7qAGNO2muhKdwUxvmoZMR7sT0vbdUuQYPqOP0kqGyHzoi0YS4y+TfQ9liSNeZQ4sd2K\nGLi+AvhronvUHcQkB3OJq+J3ANcQLQKz8/Ej4MwsZw+iC9Qveix3GfBW4kT0FKJr0d5EEvZh\n4n4+o6WYFzE2zmMx8C3iZprPzzK+X9p2NZEkjRLJxCImWkKclK4mEos5xAn92fmeqfoZY1OM\nP4loKfgE8CbGxnNNVz31ul+bxFpXx3X7omwOkcBcwFh3sl4V9wpaSbTcVB+Lgf+epIxfERM8\nPJLv2ZGotyuIme6WlbZtUhcQCdPnianUFxCtQd8hkqPyNOFbEwnazfT3+JOkssMp3QvOFiRJ\nGmxFy8Rlk204ww1jPV1LtNzMazsQSZrhRsi8yEkaJElqx5lE97FLGT8xhiSpRc78IknaGA6j\nfnrtOo8SkwLMVB8iuuIdSnQVu7DdcCRJZSZIkjT4HifGid7ZdiBdXEjMeNbEz5j6jG3dDEM9\nQdxi43Fi3NGF1N/YVpLUIscgSZIkSZrJRnAMkiRJkiSNZ4IkSZIkSckESZIkSZKSCZIkSZIk\nJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKSCZIk\nSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKZkgSZIkSVIyQZIkSZKkZIIkSZIkSckESZIkSZKS\nCZIkSZIkJRMkSZIkSUomSJIkSZKUTJAkSZIkKc0q/Xww8M62ApEkSZKklhxc/LAZMNpiIJIk\nSZI0MOxiJ0mSJEnp/wF/ogs2L/T96QAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “'adaptive_capacity' dimension histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebgld10n/ncn3enQSSchQkggyCSsBghhR0DZV2UZNhFDcAARGX6DIioI\nDI0yPx1QGcmgAQIiSIBBQHZklV0SEQzLSEI2tpCVJN1JL+n0nT++n+utPn3v7XPuPefWXV6v\n56nnnlvLqc+pU3VOvU9VfWtdkqkAAACQA/ouAAAAYLlY33n8pSRf7KsQAACAntw/yf2m/5mq\nbktf1QAAAPRoSyoXOcUOAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAA\nAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAA\nQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkGB2d07ywOpu\n2WMdT0oyVd2OHutYSR6fmWW2u+daWDqT2GbnW5dsm/taactkMfWutNcKjEBAgtn9UZLPVvf4\nnmsB9s82y2pw/7SQv6nnOmBNW993AbBMbZ3jMbA8LfU2+8kkd63He5ZgfivBWlomk3itJyT5\nQj3+uST/PqbnBUYkIMHsBCRYWZZ6m706yTeWYD4ryVpaJpN4rb865ucDFkhAgtlt6zy+Zp7x\nbpHk2CTXJzkv7Utz0M2T3K4eX5nk7Hq8KcltkxyU5DtJrh2hvlGn3ZDkNkmOTLI9yTnZ+zVO\notabJfnZtFN5z09y2RDTDLM8u25cdU2/pp1DzGOx9lfjcUluVY+nkny+/nbdJa32pC3Ls7L3\nst+a5Gv1eHPae3dAkv+b5Lohatyc5PgkhyT5aZJzM9z1WAelLc8jarofZvb1v/sar0nyrwPD\nb5LkTvV4KsnnOsNmW8cOTFsmmwfGnTbMejHsNjuXUdelmya5Yz3ek/Y+T5trO7pJ2vtyaZIL\nB55vY01zcJJvZv/XtSzlZ8+w68V8y2TQKOvoJD5D5zPM8w77WodZdndO8jNJntrpd68kR9f4\n35vleRe6jR9R9eyoaXakfT/crzPOF5LcUI9H3V4X+10zzm0EFmX6IsMtPdcBy8nLMrNt3GeW\n4b+WtrM61emuT/L+zOw4TntmZ5yvVL/fT9uhme6/PckrZplP90LgrSNOm7Sdvr9O+0Lu1ro7\nybuTHDPGWqc9Jm2HeWqg+0qSX5hjmlGWZ9K+mP+2xpke/4ok/1+Sxw68znEZtsbjs/fy/q2B\n5/m5tJ3v6eHPqv7dZX9u2s7A69OW93T/bUn+cJ4a753kE9l7uUxP97dpgXU2t0zyjoF5TaXt\n+P1j2jURXa/qjPPPszzffI0bPCt7rxNHpu0czTbuKOvF/rbZuSx0XZrvIv3B7eiAJK8bmMeX\nM7P9PTnJJZ1hVyd52hz1LtVnTzL6ejFMwwULWUfH8bk0m8V8vu7vtY6y7D48ME63+18Dz7vQ\nbfzwJG8fmO7KJC9IC0zd59rYmW7Y7XWx3zXj3EZgobZkZh37jwdb+qsHlp2nJPlidccPDPsf\n2fsL4MfZ+wv1h2m/7k57amfYt5O8cGD6bve8gXl1v4Qv2c+0/3Vg2k2Z+SKb/mK+ov5O9zsn\nyaFjqjX7GX96R+5JA9OMujzXJfnUPPN4Z+fxuALSqDX+l86wqzvD1qX9Ojs97H2dabrL/sdJ\n/m6e1/iiWWp8WvbdaRrsLsvMkZ1pR9X8uuPtHPj/hrTgO20xAan7Or+V5C/nGHfUZT7fNjuX\nxaxL8+0gD25Hr5zj+T+RdqRg9yzDdmff92opP3sWsl7sLzQsdB1d7OfSXBbz+Trfax112X0g\n+64Du6v7887zLnT5rUtrvGSuaV438H/XMNvrOL5rxrWNwGJsSWc7mH6wpb96YMX4hcxsM9cn\neVT1PyDJX3SG/Z/ONN0v0p+m/VL5v5I8LMmLs/cX53kD8+tOe/V+pj1/YNoXdIZtSztykSS3\nTvvlcHrYb4+p1pOy95fYX6SdLnGLJG8deB3Tp5ctZHk+sdN/Kslf1XxunH13IMcRkBZSY5L8\nfWfY+6vfczv9fpx2Ws20J3eG7Uk7redpNc7Pp12w3X0/D+tMe/u0nbTp4R+sfocneWTajnN3\nZ6Tbgul/7wz7cNppPUlyo+y9w3huZ5rFBKTBndJrkvxb2nr2lhpnoct8VItZl+bbQR7cjq5M\n284en313JL+dFtIel+TPBub5us5zLvVnz0LWi/mWyWLW0cW8jvks5vN1vte6kGV3dKf/VJI7\nDDznYpZf97NlKsnfpH0u37Re77Dr+Vzb6zi+a8axjcBibcnMuvUfD7b0Vw+sGP8nM9vMGQPD\nNiS5ODM7MEdV/+4XwVSSNw1MN/jL2U06wxYz7S+nHWl4Ufa9+PftnWneM6b5/U2n/zcHptuQ\ndk759PDnVP+FLM/3dqY5N/veruDMzvBxBKSF1Ji0U1F+1Jn2+UmuysyX/sMHnmtw2b9sYPh9\nBoZ339M3dvr/IHufIpO0X2C70z66M+xvO/1nO33vmUmeUPOfXtbjCkhTaa2BbRgYZ6HLfFSL\nWZeGDUhTaU2QT7vbwLBL0nacp32+M+zLnf5L/dmzkPVivmWymHV0Ma9jPuP6bB58rQtZdvsL\nSItZfu/r9L8w+15//m+d4QvZXsfxXTOObQQWa0tq3dJIA4zmFzuPd6b9ctf147QvuvVJ7pvk\nH2Z5jsFfvD6W9ovjtJskuXyO+Y8y7YerOzDtHPP7Z+aLsftlc8Qc8xp1fg/p9P/owHTXp11Q\nPr0zMP0lvJDleY/O8I9n3yZ2353knhmfhb7nVyb59bTrDdYlObUzzV+mnToyn3cM/P/PaTsK\nN6v/75Z2Cliyd9h6f/ZtYODMtF+Yj63/H5yZ96j7i/t/T7vA+tNpOx4XZOZX4kn5/9PWj65x\nbGfDWKp16e2dx/+a9iv79OlG7027TmXa5zJzrd6Rnf5L/dkz7vViMevooMV8hs5nXM87iW1q\nMcvv7p3xPpJ9Q9AZSU4cso7ZttdxfNeMYxuBsRGQYHjrM7NzmrSd31+fZ/zbzNJvKsl3B/r9\nZJb5zGbUaTek/RryW5k5pW0268YwvwMz88WcJN+f5fl2zTLtQpbn0Z1+F80y3mzzXqjFvuef\nTNvpekGn37fSTt+Zzw2Z/bVd1Kln+ijBgdn7wuxzM7vzM/Medcd/Q5LfqGEb066f+i817Idp\nOz5/lX2PCo7L1wf+H8d2NqylWJem0naKuy7PzM7f4PvV3QFf3/m71J8941wvFruOdi3mM3Q+\n43zecW9Ti11+3fV8cF2cq99cBrfXZDzfNYvdRmCsrFgwvIMG/j8n7bSWuVwxS79d2TcoDHsa\n2KjTnpZ2KkfSvoA+nrbDtzvtF767jHF+B2fvL79hm5TuGmZ5rsvep3cM1peMt+nXcbzng/fk\nmb5weT7bM/vNJ7uvd3o5bMzey362ZZLs/atv9/ScS9JOz/mTtNNeDukMOzbtuqnfSDtF8LT9\n1D1trh2h2Wq6aqDfOJb5MJZqXdqVfbeHGzqPt88zbFofnz3jXC8Wu452LeYzdD7jfN5xb1OL\nWX7DrOfD3Dpg+vkHt9dkPN81i91GYKwEJBjedWkf5NM7K29J8j/7K2dex2TmF8sk+YMkr+n8\n/9fZ/5fWKK7N3stmmNMeFro8t6U1zZzM/mvl0bP0W6jFvuf3TvKSgX4nJvnjtPdkLoemnZoy\nuGPQbdRh+r4311W3qf6f6/qLm3YeD96T6uK0IxK/mbZjd5+0hiEenrZzd2DaKYIfzEzrXNM2\nZV83m6XfbGYLgUu1nU1ladelxejrs2fU9WIu41hHV5pxLbtkcctvKu3zefpozGLW89m216X+\nroElMXhBKjC/7ikRd5xzrP7dMXv/4viRgeEnTWCeZ3ce332W4a9Na4noU5lppGEhy7N708S7\nzTL8F2fptxgLfc83pZ1Xf2D9/5LM3HDyRZn7nlDTfn7g/8Oy96lT53Qen9V5fN9ZnuvGmWlZ\nKmnXKww6MO26hi+k7eA8Ie2GsNOnvqxP29FL9g5u3WvLpt0ri7NU29lSr0uL0ddnzyjrxXzG\nsY6uNItZdoNHYRez/Lrr+WyfzQ+Yo4Zh9PFdAxMnIMFouveteVL23mG9SVqrZeenXYzbvSZn\nqQ2eRtG9N8qjs/eNNA8f0zy7LRQ9Jnt/Wd8x7f4kD6lu+tqOhSzPz3TGeVT2vg/G7bLvfZYW\na6Hv+WvSLlhOWkMNf5qZG04ekNbS1ebM7fez92f072bvU2U+2Xn8ts7jR2bfHftXdabdltYE\nedJOw/lw2g7bpdn7CFXSfoXuXocxHYy6TR7fOK3Vumm3zeJv4LhU29lSr0uLsZSfPQtdL+az\n0HV0pVnoshs8xezWA/8vZvkNrud37fx/hyxuPe/juwaWxHRTiVt6rgNWgiPSdu6nt5vLk/zv\ntHPNL+j0f1dnmv3dPPHY7N2kaXcnbaHTbk47WjHd/7tp57v/RdoXcrd54+vTGg241yJrPTTt\nl8rpYVemXYj8xux9M8vujv1Cludt0r6Up4f9NO00jr+qeZ7fGTbbKSGjWkiNj+j0vzbtV+Ok\n/aL8r51hp3em6S7769KuI/mXJK9O8qHsvdz/caDG9dm76dsdaTtUr0lr/a477XMHpu3ekPaC\nmuZFaa1vfaYz7MeZaZHqyKqxW+8b0tavywemG3wP9reOJQtb5guxmHVp2Ga+Z3uN3e1k8P14\nfmdY95f/pf7sWch6Md/8FrOOLuZ1zGdSn80LWXZJCzbdYa/PzE2hF7P8bpe91/Nr0m7L8Oa0\na4ou7AwbpTn7ZHLfNQvZRmCxtmRm3fqPB1v6qwdWlBOy94f3YPf+7P2l10dASva+eV+3+0TV\nd9ZA/y2LnF/SfvX81hzznUo7/eKwgWlGXZ5JO6//hlnGPTvtZoLdfoP37FiIUWq8cfa+/9Hv\nDTzXPbL3DXUfW/27y/7a6t+9MWR3h+AW2dcRab9cz1XjdWk7FoM2p532ONd0U2ktvN1jYLrf\nzEyDE93uc2mn1XT7da93HSYgJQtbLxZioevSUgekZGk/exayXuxvfgtdR1daQFroNnXqLON9\nuDN8ocsvaevZbOv5t5Kc3Pl/1ICUTOa7RkCiD1tS65ZGGmB030nbUXlK2r0mbp72xXRh2mkN\ngzeuuyxtpzGZvQWhnZ3hycx1Koud9i8z8+V3i7TTPT6SdsPJG5I8Me0mhrdOO+XjY2mt0S10\nfkm7/8dd0s61f1jaDsYN1f/9A9NOG3V5Ju1oxdeTPCvJf0r75f9zaaet3WRgPgdl3/t2jGqU\nGk9Oa5b23LRl/tqB5/qXtFPtHlb//1rasu86IO3i7ZPSWru6Q9r78YW01z643JP2S/Avp7Ua\n9bi0X41vlHYk6qtp90y6ZJbptlYtj6y/x6ft4O1M24n7fNp7N7gT84a0O9z/elqTwlekHR38\nu7SL0LvvwcbM7Hjtb52etpD1YiEWui7N9zr29xq/mtbcc7LvBfo/6kz7o4FhS/nZs5D1Yn/z\nW+g6upjXMZ9JfTYvdJv6nbQd/gembTMX13jTFrr8ktbS3L+mtTZ3XD3X55O8NclDB15z1zDb\n6yS+axa6jcDYdBM9AP0Y9sgKwDj9tzgiA4kjSMAaszkLa/nr4sx+A1GAleKBadf+3DLt+sG7\npB3lSdpR0W4z3f+0lIXBciUgAWvBLZO8bAHTfSDJm8ZcC8BSOifttLzpG9Z+Ja2Bh6m0Fiin\nm+LekeTPl7w6WKacYgfQP6fYAZPyqLTr6+Zq4OGKtGa5YS3bEqfYASwrwzZeADCqj6U1mvOU\ntHsT3TytVcaL044ovSut+W+gOIIEAACsZVtSueiA/YwIAACwZghIAAAARUACAAAoAhIAAEAR\nkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQB\nCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVA\nAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQ\nAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQk\nAACAIiABAACU9X0XADCE+yQ5tO8ilsBUki8l2dF3IQCwVglIwHJ3RJKvbNq0KQceeGDftUzU\ntm3bMjU19dQk7+67FgBYqwQkYLlbnySnnnpqjjvuuL5rmainPOUpufzyy30uA0CPXIMEAABQ\nBCQAAIAiIAEAABQBCQAAoAhIAAAARWtJAMvErl27kuQxSY7tuZRJm0ry/iTn9l0IAAwSkACW\niW3btuWYY475lc2bN/9K37VM0o9+9KNce+21N07ykr5rAYBBAhLAMvLMZz4zD3nIQ/ouY6Je\n/OIX58wzz1zXdx0AMBvXIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQk\nAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJ\nAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAA\nAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQA\nAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkA\nAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIA\nACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAA\nAIqABAAAUAQkAACAIiABAAAUAQkAAKCs77uAJfSgJI9OcsckRyU5OMn2JBcnOTvJB5Oc2Vt1\nAABA79ZCQLpVkvckuWen364kO5NsTHKPJI9J8tIkH09ycpIrlrhGAABgGVjtp9htSPLRJCcl\neW2S+yY5PC0YHVZ/j0zy4CRvSfKIJB/K6l8uAADALFb7EaSHJzkhySlJ3j7HOD9N8tnqvpHk\ndUkemOQzS1AfAACwjKz2IyUnJLkhyTuHHP9NSaaS3HViFQEAAMvWag9IN6S9xg1Djr8hybq0\nkAQAAKwxqz0gfS0t8DxvyPFfVH+1ZgcAAGvQar8G6QtJvpTkz5LcO8l7k3w7yWVpLdltTHKz\nJCcmeVqSRyb5RE0DAACsMas9IO1J8tgkpyd5cnXzjfvWJM+PU+wAAGBNWu0BKUmuTPKEJLdN\nO0J0QmZuFLsjyU+SfDPJR5L8YIzzvVPaEaphHZTkK2OcP8CytHv37iQ5Osndey5lKVyQ9j0E\nwAqxFgLStHOrWwq3TnJ22vVPozgoyfXjLwdg+bjggguS5BnVrXYfSPL4vosAYHhrJSAdkXY0\n55JOv/smeXqS45PsTLsH0ulJvj+G+Z2XdiPaYVvPu1eSj2f0QAWw4uzZsydPfOITc8opp/Rd\nykS97W1vy3vf+95RziQAYBlYCwHpl9Lug/T7SU6rfi9N8qqB8R6T5IVp1yl9bAzz3TbCuFvH\nMD+AFeOggw7K5s2b+y5jog466KC+SwBgAVZ7M99HJnl32vnf36p+J6WFo39P8rgkt0g7Je65\naUeS3pF2xAkAAFhjVvsRpF9OckiSX0jy9er3uCS7kzw67eLZaW9I8qMkH0ryqLSjTgAAwBqy\n2o8g3TwtDH290+/ItMYaLphl/E8kuSHJf5p4ZQAAwLKz2gPSZWlHyY7v9DsvyVwnvt84yYFJ\nrp5wXQAAwDK02gPSR9LudfQ3aUeOkuRdSTZl32ZXNyX567SbxH5qqQoEAACWj9V+DdJPkvzX\nJG9KO3L0niRnJjk1yRlpDTick+TYtJvJHp3kf1Y/AABgjVntASlJ3pIWjl6V5NlJfqMz7Nc7\nj3+U1pLdG5asMgAAYFlZCwEpST6X1pLdzZPcPcmtkhya1oDD5Um+mdaQw56+CgQAAPq3VgLS\ntB9XBwAAsI/V3kgDAADA0AQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACK\ngAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAi\nIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAI\nSAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgC\nEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqA\nBAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIg\nAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhI\nAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAIS\nAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAE\nAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiAB\nAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgA\nAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIA\nAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQFnfdwFL6EFJHp3kjkmOSnJwku1J\nLk5ydpIPJjmzt+oAAIDerYWAdKsk70lyz06/XUl2JtmY5B5JHpPkpUk+nuTkJFcscY0AAMAy\nsNpPsduQ5KNJTkry2iT3TXJ4WjA6rP4emeTBSd6S5BFJPpTVv1wAAIBZrPYjSA9PckKSU5K8\nfY5xfprks9V9I8nrkjwwyWeWoD4AAGAZWe1HSk5IckOSdw45/puSTCW568QqAgAAlq3VHpBu\nSHuNG4Ycf0OSdWkhCQAAWGNWe0D6Wlrged6Q47+o/mrNDgAA1qDVfg3SF5J8KcmfJbl3kvcm\n+XaSy9JastuY5GZJTkzytCSPTPKJmgYAAFhjVntA2pPksUlOT/Lk6uYb961Jnh+n2AEAwJq0\n2gNSklyZ5AlJbpt2hOiEzNwodkeSnyT5ZpKPJPnBGOd785rHsOMCAAA9WwsBadq51c1mfcZ7\nPdatk3xvAdOtG2MNAADAiNZSQJrPaWk3k73HmJ7vvCS3THLQkOPfLcl74tQ+AADo1SgB6ZQk\n903y3HnGOSDJhUl+K+2Utb4dVt3+bEpr4vvY+v+a6hbjhyOMe/Qi5wUAAIzBKAHp+CT32c84\nm9Ku77l9lkdAemGSV4ww/vQ1SK9MsmXs1QAAAMvaMAHpn+vvsUlu3Pl/0Lokx6U1nX3l4ksb\ni6vr744k705y1RzjPTTJTZO8s/6f6zUCAACr2DAB6aNJ7pnWCtyN0q7Vmcs1Sd6e5IzFlzYW\nr00La3+e1tz37yV58yzjnZ72un576UoDAACWm2FabvujJI9JcmqSs9Oarp6rOyrtWqVdkyh2\ngf42yc8l+VhaEPpsWtgDAADYyyhNW78xydMmVciEXZbk15I8Ou00wLOT/GFawwwAAABJRmuk\n4cfVHZ3kxCSbM/d9e75T3XLzsSR3TPKqJH+c5KlJntVrRQAAwLIx6n2QXp3kd7P/I0/LuRW4\na5P8Ttp1Um9K8uUkP0lySZ9FAQAA/RslIN0rrZGDbyb5UJIrkuyZY9yV0ArcWWk3hn1RWlPg\nAhIAAKxxowakH6S1aLdzMuUsud1J/jSttbtRrscCAABWoVEC0sFJvp3VE466VuNrAgAARjTK\nUZOvJblD5m6YAQAAYEUbJSD9U1pIek2SjROpBgAAoEejnGL3i0kuTPLsJCcn+UaSy+cY933V\nAQAArBijBKQHpTXxnSSHJ3nEPON+LwISAACwwowSkE5N8jdJbhhi3GsWVg4AAEB/RglIV1QH\nAACwKo0SkH62uv05MMkPk5y3oIoAAAB6MkpAemaSVww57iuTbBm5GgAAgB6NEpA+n+R/zDHs\npknuleS4JK9K8ulF1gUAALDkRglIn6luPi9I8sQkr11wRQAAAD0Z5Uaxw/jLtKNJDxvz8wIA\nAEzcuANSklyU5MQJPC8AAMBEjTsgHZHkrkmuHvPzAgAATNwo1yA9srrZrEtyZJKHJvmZJF9c\nZF0AAABLbpSAdJ+0Rhjmc02S30ny7QVXBAAA0JNRAtIbk3x4jmFTSbYlOT/J9YstCgAAoA+j\nBKQfVwcAALAqjRKQph2d5OS0G8MeVf0uTvKlJH+X5KrxlAYAALC0Rg1Iv5TknUk2zzLsqUle\nluRxSb66yLoAAACW3CjNfB+edoTo2iTPT3LnJDer7i5JfjfJgUn+PsnB4y0TAISn36YAACAA\nSURBVABg8kY5gvSItPsc3SPJ1waGXZrk7CSfT3JWkocn+eA4CgQAAFgqoxxBOj7tWqPBcNT1\nL0m+n+QOiykKAACgD6MEpBuSbBryOfcsrBwAAID+jBKQvp12HdIT5hnnEUmOjRvFAgAAK9Ao\n1yB9Msl5aQ01vDHJZ9Lui7Quyc2TPDTJs5Ock+RT4y0TAABg8kYJSNcneWySf0jyguoG/d8k\nj69xAQAAVpRR74P0nSR3TPLoJPdNckySqbTGG76Q5B+T7B5ngQAAAEtllIC0Li0MXZ/kA9VN\nOygtGGmcAQAAWLGGbaThXmn3N7rpHMN/O8nnktx6HEUBAAD0YZiAdJe0BhnunuT+c4xzRJL7\n1XhHjac0AACApTVMQHpzkhsleWqS988xzh8meXqSWyZ5/XhKAwAAWFr7C0h3Tjty9Pok797P\nuO9I8tYk/zktKAEAAKwo+wtId62/fzfk870lyYFpLdwBAACsKPsLSMfU3/OHfL7z6u/PLqwc\nAACA/uyvme/pG75uHPL5Dqm/1y2sHABYHc4555wkeWTaLTJWu39Jcs++iwAYh/0FpAvq732S\nvHeI53tg/b1ooQUBwGqwffv23P72t8+zn/3svkuZqK9//es544wzbt53HQDjsr+A9E9Jdib5\ngyQfzMwRpdkcnuQlSa5O8ulxFAcAK9nhhx+eu9/97n2XMVFXXXVV3yUAjNX+rkH6aZI3pB02\nf0+Sn5ljvNsk+WSS45P87yTbx1UgAADAUtnfEaQkeXGSeyR5XJKHJvlwkm8k2ZbkyCT3TvKI\ntNbrPplkyyQKBQAAmLRhAtL2JA9O8kdJnpfkV6rruizJa5O8OskN4ywQAABgqQwTkJKZ65D+\nKMn9ktw2rcW6y9KaAP9iBCMAAGCFGzYgTbs2ySeqAwAAWFX210gDAADAmiEgAQAAFAEJAACg\nCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAMr6vgsAFmxTkqdl9f/QcWjfBQAAa4eABCvXvdetW/em2972tn3XMVG7du3K\nhRde2HcZAMAaISDBynXAunXrctppp/Vdx0T94Ac/yDOe8Yy+ywAA1ojVfmoOAADA0AQkAACA\nIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACg\nCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACK\ngAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAi\nIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKCs\n77sAAGDl2r59e5IcmuQPei5lKfw0yZuSTPVdCDA5AhIAsGDnn39+1q9ff9jxxx//p33XMkk7\nd+7MRRddlCTvS3J5z+UAEyQgAQCLcvjhh+e0007ru4yJuvDCC/PMZz4zSdb1XQswWa5BAgAA\nKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAA\nioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAMr6vgtYQg9K8ugk\nd0xyVJKDk2xPcnGSs5N8MMmZvVUHAAD0bi0EpFsleU+Se3b67UqyM8nGJPdI8pgkL03y8SQn\nJ7liiWsEAACWgdV+it2GJB9NclKS1ya5b5LD04LRYfX3yCQPTvKWJI9I8qGs/uUCAADMYrUf\nQXp4khOSnJLk7XOM89Mkn63uG0lel+SBST6zBPUBAADLyGo/UnJCkhuSvHPI8d+UZCrJXSdW\nEQAAsGyt9oB0Q9pr3DDk+BuSrEsLSQAAwBqz2gPS19ICz/OGHP9F9VdrdgAAsAat9muQvpDk\nS0n+LMm9k7w3ybeTXJbWkt3GJDdLcmKSpyV5ZJJP1DQAAMAas9oD0p4kj01yepInVzffuG9N\n8vw4xQ4AANak1R6QkuTKJE9Ictu0I0QnZOZGsTuS/CTJN5N8JMkPxjjfTWlHqIaxeYzzBQAA\nFmgtBKRp51a3FG6d5LtJDlyi+QEAAGOwVgLSkUkelOTQJF9N8u9zjLchranvf6huoc5LcrcM\n33reiWk3qgUAAHq0FgLSL6fdB+nQTr93JvnNJFsHxj0wyTOSXJjFBaQkOXuEcYc9FQ8AAJig\n1R6QDkk7IrQhyevTjuzcJ8mvJrlDkgcnuaq36gAAgGVltQekhyU5Oq0J73d2+r87yduSfKDG\n2bX0pQEAAMvNar9R7PFpTXYPni73vrSjSPdP8salLgoAAFieVntA2plkXZKDZhn2oSQvSrvm\n6GVLWRQAALA8rfaA9K36++w5hr827RqlP07ye0tSEQAAsGyt9muQPpfkrCSvSXLntCNFPxwY\n57n199VJHrp0pQEAAMvNaj+ClCRPSvJvaafSHT3L8D1JnpPkD9PulQQAAKxRayEgfT/J3ZP8\nQpJz5hnvT5L8XJKXJ/mnyZcFAAAsN6v9FLtpe5J8cYjxzkvyqgnXAgAALFNr4QgSAADAUAQk\nAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJ\nAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAACU9X0XAACw3F177bXTD/8+ya4eS1kKe5I8\nJ8lFfRcCfRCQAAD246qrrkqSPP3pT//Fgw8+uOdqJuv000/P1NTUbSIgsUYJSAAAQ3rCE56Q\nww8/vO8yJurNb35zpqam+i4DeuMaJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAAChasWM1elyS\nN2f1/wBg+wVg7Pbs2ZMk70+yu+dSJm1Pkmcn+Ye+C2F5sYPFanT8Mccc8zPPec5z+q5jor78\n5S/n05/+dN9lALAKnXLKKZuPO+64vsuYqDe+8Y25+OKLj++7DpYfAYlV6dBDD80DHvCAvsuY\nqEsuuURAAmAiTjzxxNztbnfru4yJOuOMM/ougWVqtZ+CBAAAMDQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACK\ngAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAi\nIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAI\nSAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgC\nEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqA\nBAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIg\nAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhI\nAAAAZX3fBQAAwFLbsWNHktwnyXN6LmUpfCbJ9/ouYqUQkAAAWHMuvfTSHHbYYU8+5JBDntx3\nLZN09dVX57rrrntLkmf1XctKISABALAmnXzyyXnSk57UdxkT9epXvzof//jHXVYzAgsLAACg\nCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAMr6vgtgSf3nJL/adxFL4HZ9FwAAwMokIK0tjz322GOffNJJJ/Vdx0SdddZZ\nfZcAAMAKJSCtMXe6053ywhe+sO8yJurlL395Lr300r7LAABgBXINEgAAQBGQAAAAioAEAABQ\nBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoa/FGseuSHJLk4CTbk1zbbzkAAMBysVaOIB2d\n5JVJzkqyLcnWJJfV42uSfDHJ7yU5rK8CAQCA/q2FI0gPT/L3STanHS36blo42plkY1p4umeS\n+yX53SSPSQtSAADAGrPaA9IRSd6V5KokJyf5aJLds4x3cJInJ/mLJO9Pcvs49Q4AANac1X6K\n3S8luXGSpyT5YGYPR0myI8nbkzwtyS2SPGpJqgMAAJaVdUmm6vErk2zpr5SJeEna6zpoyPEP\nTLIryUuT/Oki5ntckq9m+CN069NOATwoyfWLmO/+nL5+/fpn3ehGN5rgLPq3ffv27NmzJ4cc\nckjfpUzU9ddfnx07dmTz5s19lzJRe/bsybXXXptNmzblwAMP7Lucidq6dWsOPvjgbNiwoe9S\nJmrbtm3ZsGFDNm7c2HcpE3Xddddl3bp1We2fuTt27Mju3btz6KGH9l3KRE1/5h566KFZt25d\n3+VM1NatW9fMZ+7GjRtz0EHD7iauTNu3b8/u3bvfnOTZfdeyzG1J8opk9Z9id02SDUmOSnLp\nEOMfk3ZU7ZpFzveitKNWwy7fdWk1TjIcJcnLd+/e/a6tW7dOeDa925TkyK1bt/6w70Im7IAk\nx23duvW8vgtZAre57rrrzsvMDzqr1a127Nhx8Y4dO3b1XciE3WzXrl3bd+3atdjP2uXusCQ3\n2rp16yV9FzJhByU5ZuvWrRf1XciErUty623btn2v70KWwK2vu+66C5Ls6buQCTt2586dV+7c\nufO6vgtZAt/uu4CVZqq6LT3XMQknpL22d2T/R5EOSfKBtA+D2024LgAAYPnYkspFq/0I0neS\n/FWS5yV5QJIPpSXoy9JOpduY5GZJTkzy2CQ3SfInSc7po1gAAKB/q/kIUtIOif+3JD/IzGud\nrTsnyTN6qhEAAOjPlqyRI0hJe6GvS3JqkjulnXZ3VFrT3juS/CTJN5P8e18FAgAAy8NaCEjT\nptKC0Df7LgQAAFieVvt9kAAAAIYmIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqA\nBAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFDW910ATMCp\nSZ7fdxEAAMvEPyf5+b6LWCkEJFaj7yf5bpJf67sQxuKIJJ9K8itJzuu5FsbjdUnOTfsxg5Xv\nkUlekORRfRfC2JyZ9kPjmX0Xwli8IsnWvotYSQQkVqPdSa5L8rW+C2EsblJ/v5PkW30Wwthc\nneQnsY2uFrdPcn28n6vJVJJz4j1dLa7ou4CVxjVIAAAARUACAAAoAhIAAEARkAAAAIqABAAA\nUAQkAACAIiABAAAUAQkAAKAISADA/2vv3qMkqeoDjn/HneWxPJZlF3ZBYIElQAgiSgwSEgQi\nhICaoygmJoYEHzFGjYlH9CQnZBIPxKO8FOILkUeIBsW4CiqIJnAkPrLsakDegV0WsshzAQPs\nMst0/vjdOl1TUzNT3dPTNd39/ZzTp2du3an5zb013ffXdeuWJCkZrjsAaRY8nx7qD6PEXd3t\n0/7h/2h/sT/7j33aX+zLNjTSY6TmOKRO2QbYve4g1FH71h2AOmpXYPu6g1DHDAN71R2EOmof\nYKjuINQxi9JDUxsh5UWeQVI/2gRsqDsIddR9dQegjnqk7gDUUVuA9XUHoY5aW3cA6qiNdQfQ\na7wGSZIkSZISEyRJkiRJSkyQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmSJElKTJAkSZIkKTFB\nkiRJkqTEBEmSJEmSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIkSZISEyRJkiRJSobrDkCa\nZQuBFcBzwFpgU73hqAP2To9bgcdrjUTtWAAcAMwD7gGeqjccdcBOwKHAA8C9NceimfN9s79s\nR/TnENGfT9cbTu9opMdIzXFInbQXcBXN47sBbAbOJQZo6j1DwHuJN+0G8Jp6w1GLXgScBTxD\n83/yeeBzwDY1xqWZOZZIjBrA2TXHopnxfbO/7Ap8ARil2Z9jwFeA5TXGNZeN0GwrEyT1nR2B\nO4AtwDnA8cDrgRuIY/3y2iJTu3YDriVe6H+KCVIvOpPot28AJwDHABensstqjEvt2ZpIiMaA\nVZgg9TrfN/vLVsAtRN99Cvgd4ETiA6kGcBcwv7bo5q4RTJDUx95F+TG9LfAgMcjerssxaWYu\nIKYGvBL4MCZIvWYJMU1nFROvfV1JDLIP6nZQmpGTibOBbyP+L02Qepvvm/3lZKI/LyzZ9rW0\n7ZiuRtQbRkh5kYs0qB/dCfwNcFGh/DlgDXHt3a7dDkozci1xjcOP6g5EbTmROOPweSIZyvsc\nMX3yDd0OSjOyFjiMOAuo3uf7Zn9ZA5wCfLxk2+r0vLB74fQeF2lQP7ohPcosJz71fKhbwagj\nvll3AJqRQ9Pz6pJtNxfqqDesqTsAddQN+L7ZT9amR9EQceZoC/CTrkbUY0yQNEj+EDgEOB9X\n5ZG6aY/0vKFk26PEm/We3QtHUkW+b/a+PYiVQ18MvBV4FfAB4P46g5rrTJA0KI4lpvKsIaYR\nSOqebAWssgFWI5V7fYM0t/i+2R/eCJyXvt4A/BHwxfrC6Q0mSOpV1zFxmcpfAV4oqXsa8Bni\nRf4k4NnZDU1t+AjwpkLZnwA/rCEWdd6W9DzZe84wseS3pLnB983+cTWwHlhGrCB6BfBm4j3X\n191JmCCpVz1GXPQ9lRcBHyNOJV9FfGry3CzHpfY8Dfy8UOYLd//Ibui7CHiksG0BcR+kJ7oa\nkaQyvm/2n3tp3sD5U8AZwN8D78OVJ6fkMt/qVxcRx/aZxIWJ6g8u8917Tif67HUl216etl3Q\n1YjUSS7z3T983+wP84lrjuaVbFtB8550Gm8El/lWnzsLeDvwQWLudKPecKSB9t30fGLJttem\n5+u6FIukcr5v9o9PEvevenXJtqXp2Vka0/AMkvrNkcS9Vi6pOxDNCs8g9aYfAJuBo3NlhxLT\nK+/CKd+9zDNIvc/3zf5yDPE/eSvjVwjdBbgpbTuthrjmuhGaeZEJkvrOSuKYvo24sWjZ46Ta\nolM7bqTZd+uJ/r0zVzZSW2Sqan/iOrMxYBWRMG0BNhLT7NRbzqP5//cz4n9yQ67M6Tu9xffN\n/vMPRJ9uJhbb+C/iflYN4KuUT78bdCOkvMhP7NSP1hED6qmUrXanuWszzeke96VH3mh3w1Eb\n7gYOBt4NvIK4vuEfgU9Tfn8kzW2jNJdt38TE19zN3Q1HM7QO3zf7zRlEIvRWYF/iVgpfBK4B\nvl5jXD3DM0iSJEmSBtkILtIgSZIkSeOZIEmSJElSYoIkSZIkSYkJkiRJkiQlJkiSJEmSlJgg\nSZIkSVJigiRJkiRJiQmSJEmSJCUmSJIkSZKUmCBJkiRJUmKCJEmSJEmJCZIkSZIkJSZIkiRJ\nkpSYIEmSJElSYoIkSZIkSYkJkiRJkiQlJkiSJEmSlJggSZIkSVJigiRJkiRJiQmSJEmSJCUm\nSJIkSZKUmCBJkiRJUmKCJEmSJEmJCZIkSZIkJSZIkiRJkpSYIEmSJElSYoIkSZIkSYkJkiRJ\nkiQlJkiSJEmSlJggSZIkSVJigiRJkiRJiQmSJEmSJCUmSJIGxVHAYV34PZ8HGsB+Xfhdc8UW\n4Ed1BzHgunV8S1LfG647AEnqkm8BtwC/Xncg0izw+JakDvEMkqRB8X/AL+oOQpolHt+S1CGe\nQZI0KKYaQO4LLAOeAu4EXihsPwjYBbgxfb8PsCtwP/DzSfbZSM/L077XAw9NUnd+qrck7e+B\nDsUwBBwI7AisBR6ZpB5M3waZRcD+RFveQfPv7ISpYtg7Pe4GNhR+bjnRHvcR7XwwsJhoqyHg\ngBT3OibvA4BfItp4ujZYDOxFfMh4P/BYYftLUp2biOmHmSHgVcBG4L9TWb5fdwQOIfrqfwv7\nnK5/qiZIhwPbTrLtF8DqCvvITNcOmVaOw+n6oFPtJUlTaqTHSM1xSNJs+ilwaaHsaOB2mq+D\nDeBx4H2FepelbfsC3wdGiYFvA1gJbJ+rm12D9DLgusK+i3UB/gJ4uFBvHfC6GcQAcGLaT36/\nVwO7tdkGAGel35vVuyf9naPM7BqkKjGsIJKAVYyf/bAVkag9BeyZyq5K+zic5uC4AYwBVwLb\nFH7/a4jkKv/7nyD6Jm858M20n6zeWCrbJVfvmrRtp8LPD6fy7+bK/jWVvZRInBrAG3Pbj6Za\n/5Qd32X+p7Cv/OPmCj8P1dsBqh+HVfugU+0lSUUjNF83TJAkDYR9gd1z378M2EwMCo8jBtdH\nAN8mXhP/NFf34lS2GjiVGGBvBZyTyv8uVzdLkH4IfJIYpB9ODAobwBm5um9IZTcQZxb2JwaU\ndxNJx4FtxvBr6efvAU4mLt7/AJFQraaZYLTSBn9McxB9JPFJ/58DdzGzBKmVGN6Tyt6TK/vr\nVPa2XFk2iL4P+D3iDN1i4LOp/Jxc3SOJdrkL+G1gD2KQvSrVfWeu7n8Am4B3EH1zYIrlWeD6\nXL1WEqTLcmUjxGILy9pom+LxPZm9iAVE8o9/Sfs7s8LPQ/V2qHocttIHnWovSSoawQRJ0oC7\nGngGWFoo3xZ4kJgylMmSno8V6i5K5f9eUvfSQt3dUvn3cmXHE2dliivevTnV/XCbMWSf7u9T\nqPtPqfyo9H0rbbCKOBPz4kLdv0y/v90EqZUYhojB+ZNEey5PP/utws9mCdLZhfJhYordRppT\nzL+T6r6kUHcRccZqba5slEhmi04hBv7z0vetJEhZv15cst9W2qZdv0UcEz+m+rT7qu1Q9Ths\npQ/qbi9J/WuElBd5DZKkQTQfeDVx3cIxJdsfAF5JfNq+PldeHIhvJAZki0v28c+F7x8iPmFf\nkiv7TnosBF4B7EB8qp4N8HYt2e90MQwDxwK3MX5gCfB+4L3E4LSVNniY+HT+NiZe67ESOLfk\n56totR8awGnArcB5wALgeeJMRplvF77fQpzZez2RlN5LDNLvSfvM20hMZTyBSMTuJwbZv0qc\n5bguV/fLU/6V1fxb4ft2j9FWLAYuJ5KQtzD+eqmpVGmHVo7DVvogU0d7SRoQJkiSBtFuxBS1\nFcCXpqiXLa6QKS4OADGonFdS/kBJ2Wih7s7AZ4ipdvOIwf4ozalHZSuNThfD7sTf9uAkvz/T\nShsMpf0XkyOY2WCznX5YC5xOnIWAmPpXFheU90G2oMVSImHdmpiKVyYbkO+Zvn4ncX3Ttel3\nfo9Iwr6R9jUTxf5q9xhtxcXE8XIqkSxmltJcDCSzGviD9HWVdmjlOGylDzJ1tJekAeEy35IG\n0fz0/H1i+s1kj1WFnxtr4XdUqXsp8CbibMgyYqC4PfHJe7v7zf626c4GtNIGWd1RJsou1G9H\nu/2QHyhPlhxBXCdTlLXfcO73Pz/Jz2d/79bp+XriWp/3EwtDnEIMxh8AXjtFHFU8U/i+3bap\n6s+A3yXiv7ywbYxIJPOPJ3Lbq7RDq8dh1T7IdLu9JA0QzyBJGkSPp+dllA+iu2EnYuWuW4AP\nFrYtmVi9smwgWzbtL6+VNsiWj15Ysm0xcYapHe30w0JisYU1xKD5YmJZ77Ilrhcx8WxBdl3Q\nk0zfVjsX4sy+/kR6bEMsPnABcAUxfeupKWIvrjQ4ldk8Rn+ZWKhiHZEoFT1KLJIwlenaoepx\n2E4fTBYP1Ps/LalPeAZJ0iB6kljueD9iNbai45i4GEGnLSQSi7KpRSfPYL8biYHvIUy8381x\nxNSoo2itDR4GnibuQVNMho6YQazt9EN2tu0dxFSvPRm/Kl3ey0vKDibOkNxNtNVaoq2KZygg\nrgvbRJwlGUoxbpfbvolYAe4C4p482SIDm9Nzvi5EYlLVbB2jWxNne7YipsxNldCVqdoOVY/D\nVvpgKnPhf1pSH3EVO0mD6EPEa9+XGX9d0BHAc8QKXJls5azianMQA7OftVF3mBj4rSMGq5nf\nJ+5p0yCWNG4nhjNS3Y/myhYQK5WNEssoQ2ttkK0M9+5c2fbE6nUv0P4qdq3EcAITV6f7dCo7\nviTWWxh/X56TmLiK3N8ycZl0iOtyGsAX0ve/ycQlwiEShmwJ9xWp7KNMvD/PvFRvjPJV7Mr6\ntZW2qep8Ji4334pW2qHqcVi1D6D77SVpcIzgMt+SBtx8mvdHuQO4hFiRawuRtKzI1Z2NBAma\n9zC6hZg2dhNxfc3exNSjZ4GLiCl3rex3G+JajAaxMtg1xHUkY4y/h1ArbXAgcbZhjEiGvpr2\neQ4xJevHJXFVUTWGhcQ1LmuJQTa58g3EVLodU1mWIJ2fYrySGLxvJq5dyZ9Z2ppYOrxBtNln\niWtsxoi2y093/FKqdzcxCP8KzRuvfiJX7yAi+X2cSA7OINrsbOAxypeFL+vXVvqniv3S3/VC\n+luuKHlUUbUdqh6HrfRBN9tL0mAZIeVF82gmRjdSfl8DSepHY8RA73biTMjuxHSfS4B3Ecty\nZw4gzvJcycRrXX6DWKL4623UvZ5YZGAhca3FfxJTxzYQSdMS4sX6amKZ46r73UIMdu8nkoZt\ngR8Qg9KVbbbBY8S0qKFU9zngQuDjxA1A16c4W1U1hlOJMw6nEzcUzWxOf/uBaV9riDM3B6fn\nNcTUth2I1dbezvjlpF8g2upeYln1PYjk9ELiRrhP5+p+DfgJ0Q87E9PUbwb+ikhkM48SbbUg\nxbUjsSDHucTy2GtpLkE+1fHSSv9UsTPwUqKvdkhxFR+XVthP1Xaoehy2kTPB1QAAATNJREFU\n0gfdbC9Jg+VoctdfegZJktRPsjNIe0xXUZKkZISUF7lIgyRJkiQlLvMtSeqUpbS2qt0qpr6P\nkSRJXWeCJEnqlMOIa2+qegtxkX+n3U5cV7t5uoqSJJXxGiRJkiRJg2wEr0GSJEmSpPFMkCRJ\nkiQpMUGSJEmSpMQESZIkSZISEyRJkiRJSkyQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmSJElK\nTJAkSZIkKTFBkiRJkqTEBEmSJEmSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIkSZISEyRJ\nkiRJSkyQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmSJElKTJAkSZIkKTFBkiRJkqRkOPf1kcCH\n6gpEkiRJkmpyZPbFENCoMRBJkiRJmjOcYidJkiRJyf8Dyn7WzRd+oPQAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title “'enhanced_exposure' dimension histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
}
],
"source": [
"# Histogram visualisation of dimension z-scores\n",
"for( current_dimension in dimensions ){\n",
" dimension_scores_filtered <- dimension_scores[,current_dimension] \n",
" dimension_scores_filtered[dimension_scores_filtered == \"NaN\"] <- 0\n",
" \n",
" title <- paste(\"'\", current_dimension, \"' dimension histogram\", sep = \"\")\n",
" x_label <- paste(\"'\", current_dimension, \"' z-score\", sep = \"\")\n",
" y_label <- paste(\"Count\", sep = \"\")\n",
" hist(dimension_scores_filtered, breaks=\"FD\", col=\"grey\", labels=FALSE, main=title, xlab=x_label, ylab=y_label)\n",
" box(\"figure\", lwd = 4)\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "23966ae2-de19-447d-8cbd-c11cba8bd9f6",
"metadata": {},
"source": [
"## Calculate vulnerability score"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "a5e64f50-a1d1-47f0-b91c-7da96a9b380e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 6\n",
"\n",
"\t | CCA | CPRO | CMUN | CDIS | CSEC | social_vulnerability |
\n",
"\t | <int> | <int> | <int> | <int> | <int> | <dbl[,1]> |
\n",
"\n",
"\n",
"\t1 | 17 | 26 | 1 | 1 | 1 | -0.1413894 |
\n",
"\t2 | 17 | 26 | 10 | 1 | 1 | -0.4444888 |
\n",
"\t3 | 17 | 26 | 100 | 1 | 1 | -0.6491854 |
\n",
"\t4 | 17 | 26 | 101 | 1 | 1 | -0.9789365 |
\n",
"\t5 | 17 | 26 | 102 | 1 | 1 | 0.4454417 |
\n",
"\t6 | 17 | 26 | 102 | 1 | 2 | 0.2948932 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 6\n",
"\\begin{tabular}{r|llllll}\n",
" & CCA & CPRO & CMUN & CDIS & CSEC & social\\_vulnerability\\\\\n",
" & & & & & & \\\\\n",
"\\hline\n",
"\t1 & 17 & 26 & 1 & 1 & 1 & -0.1413894\\\\\n",
"\t2 & 17 & 26 & 10 & 1 & 1 & -0.4444888\\\\\n",
"\t3 & 17 & 26 & 100 & 1 & 1 & -0.6491854\\\\\n",
"\t4 & 17 & 26 & 101 & 1 & 1 & -0.9789365\\\\\n",
"\t5 & 17 & 26 & 102 & 1 & 1 & 0.4454417\\\\\n",
"\t6 & 17 & 26 & 102 & 1 & 2 & 0.2948932\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 6\n",
"\n",
"| | CCA <int> | CPRO <int> | CMUN <int> | CDIS <int> | CSEC <int> | social_vulnerability <dbl[,1]> |\n",
"|---|---|---|---|---|---|---|\n",
"| 1 | 17 | 26 | 1 | 1 | 1 | -0.1413894 |\n",
"| 2 | 17 | 26 | 10 | 1 | 1 | -0.4444888 |\n",
"| 3 | 17 | 26 | 100 | 1 | 1 | -0.6491854 |\n",
"| 4 | 17 | 26 | 101 | 1 | 1 | -0.9789365 |\n",
"| 5 | 17 | 26 | 102 | 1 | 1 | 0.4454417 |\n",
"| 6 | 17 | 26 | 102 | 1 | 2 | 0.2948932 |\n",
"\n"
],
"text/plain": [
" CCA CPRO CMUN CDIS CSEC social_vulnerability\n",
"1 17 26 1 1 1 -0.1413894 \n",
"2 17 26 10 1 1 -0.4444888 \n",
"3 17 26 100 1 1 -0.6491854 \n",
"4 17 26 101 1 1 -0.9789365 \n",
"5 17 26 102 1 1 0.4454417 \n",
"6 17 26 102 1 2 0.2948932 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Initialise the vulnerability score dataset with the GUID\n",
"vulnerability_scores <- domain_scores %>% select(all_of(GUID))\n",
"\n",
"#sum the domains to create a total overall score of vulnerability\n",
"index_start = GUID_length+1\n",
"index_end = ncol(domain_scores)\n",
"vulnerability_scores$social_vulnerability <- rowSums(domain_scores[index_start:index_end], na.rm = TRUE)\n",
"\n",
"# generate z-scores with the scale function in order to standardise the vulnerability data\n",
"vulnerability_scores <- vulnerability_scores %>% mutate_if(is.double, scale)\n",
"\n",
"# Print the first part of the vulnerability scores, which are now collated into one table\n",
"head(vulnerability_scores)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "0a6ad33d-3988-4166-b078-9734c25f180d",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZhlV13v/3eHzsQMKokyCBgQiCLcgEhAjQoCcmUQB67ihFzlQX/q/SFB\nUK7NpIheR7w/xQkQMEEUAa+CiFcQFGWUSQYJhBBAhgCZh07374+96qnTlerqqu6qOjW8Xs+z\nnzq199rnfM/Qp/en1tpr76kOBgAAQMfNuwAAAICtYu/M7TdWb5hXIQAAAHNy3+o+C78cHMu+\neVUDAAAwR/saucgQOwAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAA\nGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIA\nABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUAC\nAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBh77wLANiB7lndYNw+\nr/roHGvZKMfyHFfa92i3bRUb9boAsIkOjmXfnOsAOBo3qs4ay9ePdTefWXdW9cVHuI+bLWn/\nRcdY07tb/G792WO8r63qWJ7jSvse7bb1ttznajU26nUBYGPta3wH60ECtrvbV/933L6oKdwc\nV72mxV7yZ1RPWeE+frR61rh9bXXL9S+TTXCr6rTqU9V7j/G+lvtcbUfr+ZoA7AoCErDdXbLM\n7c9Ur64ePH5/aCsHpIfO3H5N9Z/rVh3LeUR18rj98XXc79er76zOrR551NVNlvtcbbSjfV1W\nsp6vCcCuICAB293hDmRf2GJA+uqmHoHzltn/lOpeM7+/aF2rYznv34D9btji+70e5hGQjvZ1\nOZz1fk0AdgUBCdjuLp25ffHM7Zc3HdjeaPz+0Ka/pi/1kBZn9Ly8+stqT/WNM23e2TTMatY9\nmg5Aqz5cnb/Kes+sThi33zZT862bhkN9qvrQKu7nxOqOTc/vU9V/rOHxvrRp2NVHl6n7S6rb\nVsdXn2z5ULmS21anjpoOt+/RTkaw3H43qs6o7tNi78stms4dqum8nq+auY+3tnzguVt103H7\n00tqv/i6zddsNe/val+XU6vbNH1OL6w+0TQ0dMGRXpM3VPuXud/bNf3B4JrqglHrkexp+hze\nbOxz4Vh/hxaHql7Qoc95oz6Ty93v9aqvbPr38sEO/b6o+rKm1/KT1UcO/zSB3cYkDcB2d03T\n99irlqx/fovfca87zL5/NdNmofdo78y6g9UDl9nvHTPbf37JtpVOtv/ozLYHVF9RvXHJ472t\nuvNh6v2y8bwuX7LPx6r/vkz7C5Y83mObDo6X1v3t1duX3OfBpoPGH1zmfmef489UX9sUJGf3\nfXN1lyPse6yTNNxjmZpnl9tUl838/rhl6tnbFIAX2vz0WH+4z9VKZmt8fGt7f480ScMPN/Uy\nLX2On2w6z24hXB3pNbnpzH2eVP3PpiF9S9u9u+Xf+wXf3vT5mN3nH5pe8xfNrPulJftt1Gdy\n6b+tezaFooV1l1T/z2h746Y/osze798ueW2A3WVfi98HAhKw7b2q6a/iz1iy/v4tfsft77on\n2t+gumKmzbeN9RsZkN43s+0xHXqwuPQg8PpL9v3ypr/QL7S5sumv7Qc6/Hf57OP95JLnu1D3\nDyx57Mua/tI+u+7HVniOv7lM+4Xl402zCq729VnrtjOa3tvZ1+DAWLe/ukmHBuW/77q+eWb7\nNU29LXX4z9VKlta4lvd3pef+80v2P1BdvWTdPzV9dlfzmtTUA/ovh6lvdvndZZ7n/VsMNUuX\nf286l2/h919Ysu9GfSZn7/dx1WeXqe1AU8/aKw5T+7nLPFdgd9iXgATsAsd1aKD4oSXbv2Nm\n26dbHHa8kQFpdtsF1Qeq/1Y9vPrHJY/7/Uv2/buZbX/T4vDBu7TYA7C/6Zyr5R7vg00Hoy9u\nCjUPbxq29KmZNs8dz39P9Rsz6z/TocOyZ+/36qa/xn9l0xCtJy95Hr94lK/PWrb97sy2c5Zs\n+/qZbfubhmzNmn2ef9Wxma3xwlZ+f39ghX1nn99JLfaCXVv91xbfizt1aM/do2b2W+k1qfrj\nme2XjH1v3DTU7TlLav2eFWr9TFOPzQ2aXuuloXClfx8b9Zm8sKk369uqpy2p511Nf1z46aaJ\nMWZ7mZb7fAC7w74EJGCX+F8tfs+9bMm22Z6F58ys36yAdHXTeR8Lbtx0oLpcTXdZUtMdl9zv\nT8xs+63DPN7B6puW7HfzpiFyC8uXz2z7iiX7nn6Y+/1ci+e6LHjlzPYPLtm22QGpDu1d+NEl\n286b2fZdy+y7Fkf7/i7dd/b53W5m/ReaAtOsuzUNObt/0xDMBSu9Jrfu0B6g5YYe/vXM9n+d\nWX/XmfUHm3pCZ33Hku0r/fvYqM/kJS32lNV1e4z+35lt37xk27cG7Eb7Gt8DJmkAdroXtngw\n9K1NB/JXNJ28/eAl7TbbK5smeFhwcdP5Kg8Yv89e4PYbZm5f0zQr3+1n1h1/mLazXt/itX0W\nXFT96rj9ReM+b9v01/obLml7uPMz/rLpNZ31yqaejpoOam/YdU+Q30x/UP3KuP2Ipl6Jmnrb\nFkLM55sOpNfLWt7flXyi6Zyz6zeFrH+t/nTc15ubwvo71ljbtzT9G1iwXKj88+pB4/YZ47Ev\nHrdnvXzJ76/o0AlSVrJRn8lXNIXJBa9rOqdpwey/99c3HRTtGb8vHRIK7DICErDTvb3pApl3\naTrAvH/TwdN9Wzwn6bzqTXOo7X3LrPvkzO3Z7+hbzdw+vmmI3eGcdpj1bz/M+ns2DV06c4X7\nrMUDyKU+ssy62RnY9jSd1zPPgPT8pqF+xzf1GNy86UD8ITNtzq2uWsfHXMv7u5Irq2eOpaZQ\ntzCM8uqmc4/OqZ7X6uufDdcXdd1ZGuvQ2eKOa/oMvrdpxrkFlzUNT521v2nSkMNNNDJroz6T\nS2cK/MzM7Us6dIa+/U1haiFsOTaCXc6XALAbvKjFg8uHNgWkhy7ZvlaHOzBbi+Wmm15u+uVa\nnL64poPif17hfg82HdAeWLJ+uWmb79T0F/yFGdAuaJrI4NLxmMvNjLfUcs/jmiW/z/v/m083\nve+PGLU8rPqjFifmqHrBOj/mWt7fI/nFpgk5frZDpy0/oWn67rOahsl9c9PkBEcyO0zv6sO0\nWfoenjjzmEfa9/JV1FAb95lc+vjXrrBt6XZgl5v3f1gAm+FFTTOR7WlxyNC3Ldk+6+CS35fO\nNlbTZASb6XMztw+0eE2btVgamGo6UX3hQPRj1d1bPMA+pdUdjC73WiydMfALy7TZbH/QFJBq\nCsgvbZqevKbrSP3TPIpagxeN5TZNPaD3bOoRXTgP567V01v+fKKlZntUbtbygXrpZAULPUWz\nwe9GTUP1lgaMU1dRQ8s8Zq3PZxLgqB135CYA2975TdM11zQ86NubZlyrekvTtWVmXduhfz2/\nzZLtX97iVNCb5V0zt0/q0CFSx2K2N+KfO7T34W6rvI/lhkHNnqfy+eo/11jXsThc797ftjj0\n71uawvLCHwrXu/dooxzX9BxeXP2PpvfvZ2a2H25I2tLXZHbShRO77nlFNU2HveATTWGlDr0o\n8d7qa5bsd1qHThaxVuvxmQQ4agISsFvM9hI97TDrZ82ef/H9HToJwi+0PkPs1uLvm4LGgict\n2f60phDyzq47a9hKZodI3XLm9gnVU5a0vUnLu+9YFpzSdFHTBX+7hnqO1uzQta84TJsDTcPq\nauqh+Llx+2D1JxtU13r43qYgf3H11GW2z4bn2ckyVnpN/rFDJ5B4eodO2nCHDp2d7nlL9p39\nA8KTOvTfw5M7tn8f6/GZBDhqAhKwW7ykxQOvhb9CX9vys3fVNDPbgv/SNGPYLzYd7D+ietvM\n9s34Lr286SB2wWOq1zYFo3OaQtEtms7fWMtMbG+cuX1m9dtNF+98Q1PPwGtmtp9dPXbcnj2Y\n/nj16uoPm06sf2uLw7MOVr++hnqO1vkzt89oup7R73bdCSv+qMVhXQsTHby+5Sea2Cre2vSZ\nvVFTqHtp0/v9hKb368UzbWc/zyu9Jtc2DcVbeC0e0DRhwq82vUZvbTF8fKB61sx9XbTkMb+z\naZKT32r63DyqqcfpaB3tZxJg3bgOErBbvKxDr3fy6hXa3qRpxq6DS5YrmwLSi2fWPWPJvkd7\nLZ+azpNZ2P7SJdv2VL/UdHC7tK6Fa+Q8YMk+R3q8m3fohTIXlsuaZnh78DLbahpmtfD7Tzb1\ncC1td6DpAHapjbgO0q1bvJjq7HKPZR7/b5a0+eFl2hytY3l/V9r3EU29Q8u97wuv9XM6NKyv\n5jX5zqaeycPd7z916AyKC27e1HO1tP21Tdfk+ueZdWu5TtjCfR/NZ3Kl+33UzLZPdl2fmdn+\nqGW2AzvfvlwHCdiF/r+mE9IX/O8V2n6hulfTX6fv23SuxfubDnDf23Re0sJ5Fkv/Wv7mFk+C\n/+gatjUe43Xj9nuWbDvYNJzpBdV/a+oBuX5TD85bm4aJLZ0M4UiPd1HTyf6Pq+4987jPbXGY\n4WOaDkyPH49T9W8tnpPyb02v7aOaAtrNmoZvPb/lZ9s72tdnpW0XNE248FNN54hd0vQ+fbjr\nelmLF/+9vOsGlWNxLO/vSvv+eVMvzXc3TVpwSlMY+lxTUPnzpuc7azWvyUurv2v6PN2nqRfy\nyqb3/q87/PDIi8Z9/1jThCHHN02t/YKm4YA/MtN26dTjG/WZXOl+/7PF1325Kc3f2GKP2Wae\nLwdsUXqQANhN/rLF//ueN99SdqQ96ZEBtp99je8t5yABsJs8uMVrYG3W+VE70e81Db+7oEPP\nT6pp2N7CNO8HmiZ1ANg2DLEDYKe7W9N5Yqc0Tbix4AVNwwNZu8tbHP52dtN5Su9omgBi9pyu\nP+nQySIAtgVD7ADYyc7quif1z87Sxtqd1HUnPVm6/EXLX2QZYCval0kaANglPtF0MH/jphPw\n/7Fpso39K+3Eiq6sHt407fb3VLdtmtr90up91cubJpUA2HYEJAB2uvdX3zHvInaof8swRWCH\nMUkDAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMe+ddwCa6QXVWdXp1i+qk6orqE9U7q9dXV8+rOAAAYP52Q0A6oXpm\n9ePVySu0+3z1rOrZ1cFNqAsAANhidkNAOqd6ePW26qXVe6pPV1dVJ1anVnerHtkUkG5XPXYu\nlQIAAHN3cCz75lzHRrhX03P7X9WeI7TdW/3RaP9VG1wXAACwdexr5KKdPknDvZue6FM78rC5\n/dUTx+2zNrAmAABgi9rpAenE6trq0lW2/1x1oGlCBwAAYJfZ6QHpg01D5x64yvYPb3pN3rdh\nFQEAAFvaTj4H6frVBdVF1eOqUw7T7tZNw+surf6jqecJAADYHfa1mIt2dECqOqP6WIvP8zPV\nv1f/1tRT9LmZbe+v7jSfMgEAgDnZ18gEu2Ga77dWd6y+r2mo3V1avFDsldXHq1dXr6xeUl0z\nnzIBAIB52w0Bqery6vfHshluX723tQ3Vu7YptO3fkIoAAIAj2i0BqerLmnqMLppZd1L10KaL\nw36iqRfpouvuumYfru7f6gPS6dVvtPMnzQAAgC1vp5+DdMfqbS0+z9dVt2wKTOfNrD/YFI7u\nO4cazxyPf8IcHhsAAHa7fe2ic5D+tPqa6vXVFU1h5JymcHTj6ueaJnG4S9NMdy9p6lG6ah7F\nAgAA87WTe5C+sem5PWJm3W2ri6vLmma4m/XNo/1/3YziZuhBAgCA+dnXyEU7/ZyXOzdN6/3n\nM+s+0jRr3cebZrib9ffV5zPVNwAA7Eo7PSDdqLpkmfWXNV0UdjmXpycHAAB2pZ0ekD5S3br6\n0pl1e5uGtN2xuumS9rccbS/cjOIAAICtZacHpL9r6i16RfWd1bc3Dbf74urt1QuaZrOrukP1\nourA2A8AANhldvosdp+rzq5+t/qzse5g9ejqo9XfNvUWXd3isLpfTA8SAADsSjs9IFU9t6m3\n6CFNU3e/vHrX2PYt1ROq06r/bOpR+sM51AgAAGwBuyEgVb15LEu9biwAAAA7/hwkAACAVROQ\nAAAAht0yxA6Yvy+tTp93ERvg09W/zbsIAGB9CEjAZnn63r17f+Tkk0+edx3rZv/+/V1xxRVf\n6LrXVAMAtikBCdgs17vf/e7X2WefPe861s2b3vSmnvzkJ/seBYAdxDlIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAw7J13AQDb1ZVXXll1fPXEOZey3g5Uv199ft6FAMBm\nE5AAjtL555/fcccdd8Ld7373Z827lvX09re/vQMHDry7+pt51wIAm01AAjgGJ5xwQr/yK78y\n7zLW1YMe9KCuuuqqPfOuAwDmwTlIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAw\nCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAA\nMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQA\nADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AE\nAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAw955F7CJblCdVZ1e3aI6qbqi+kT1zur1\n1dXzKg4AAJi/3RCQTqieWf14dfIK7T5fPat6dnVwE+oCAAC2mN0QkM6pHl69rXpp9Z7q09VV\n1YnVqdXdqkc2BaTbVY+dS6UAAMBc7fSAdK+mcPRr1c90+J6hl1VPr55b/Vj1nOrdm1EgAACw\ndez0SRru3RSKntqRh83tr544bp+1gTUBAABb1E4PSCdW11aXrrL956oDTRM6AAAAu8xOD0gf\nbBpG+MBVtn9402vyvg2rCAAA2LJ2ekB6VfWx6oXV46pTDtPu1k3D6/64+tDYDwAA2GV2+iQN\nl1cPq15e/c5YPts0i93VTUPwTqluOtp/oHpo0wx3AADALrPTA1LVW6s7Vt/XNNTuLi1eKPbK\n6uPVq6tXVi+prplPmQAAwLzthoBUU0/S749lM9y+em9TD9Va7NmAWgDW5Oqrr676P/OuYwP8\nYvVz8y4CgK1ttwSkqus1zWi34IbVg5vCzFXVO6p/aJrF7lh9uPrW6oRVtj+9+o2OPBU5wIY7\nePBgj370o7vzne8871LWzbnnnttb3vKWL5t3HQBsfbshIN2uen5T79GfjHXfWr24+qIlbd/Z\nNJPdecf4mAer16+h/eXH+HgA6+q0007rjDPOmHcZ6+a1r33tvEsAYJvY6bPYHV+9trpXi71H\nX1b9RXX96tebzk36keqc6qubzkXaDcERAABYYqcHgQc39SB9T9MEDFWPbLoQ7LdUfz/T9o+q\nt1S/2tTD9NebVyYAALAV7PQepDs09Rz9+cy621bnd2g4WvDcpuFxp294ZQAAwJaz0wPSlU2T\nM9xoZt2nOvx1jq5tCkj7N7guAABgC9rpAen/jp9Pn1n3sqZepLss0/7xTa/Jmze2LAAAYCva\n6ecgvbv6veonqruO2/9a/Wz18uoZ1QeqW1WPqh5SvaZ6wzyKBQAA5munB6Sqx1UfawpFL1qy\n7XlLfj+n+u+bUBMAALAF7YaAdKCpp+i3qwdV96y+vOlCsfurz1Tvqv6qev+cagQAALaA3RCQ\nFnyhqYfonHkXAgAAbE07fZIGAACAVROQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgWEtA+oHqd1dxfx+tHnzUFQEAAMzJWgLS7auvO0Kb61e3qL7yqCsCAACY\nk72raPOm8fNW1c1mfl9qT3W76sTqomMvDQAAYHOtJiD9dXXP6g7VydXdVmh7cfUn1YuPvTQA\nAIDNtZqA9LTxc1/1sFYOSAAAANvWagLSgudWL9moQgAAAOZtLQHp42M5tbprdaOm846W896x\nAAAAbBtrCUhVz64e35Fnv3tq05A8AACAbWMtAelrqydU76peWX22OnCYtoeb6W6eblCdVZ3e\nNBX5SdUV1Seqd1avr66eV3EAAMD8rTUgXdA0o91VG1POhjihemb1402z8B3O56tnNfWSHdyE\nugAAgC1mLQHppOo9ba9wVHVO9fDqbdVLm57Dp5uex4lN51TdrXpkU0C6XfXYuVQKAADM1VoC\n0lubemH2tH16WO7VFI5+rfqZDl/3y6qnN83U92PVc6p3b0aBAADA1nGkyRZm/UNTSPqVpp6X\n7eDeTaHoqR051O2vnjhun7WBNQEAAFvUWnqQvqH6SPWY6lHVO6rPHKbtX4xl3k6srq0uXWX7\nzzVNPHGDDasIAADYstYSkL6paYrvqptUD1ih7X+0NQLSB5ue4wOrv15F+4c39aq9byOLAgAA\ntqa1BKTfrv64qUfmSC4+unLW3auqj1UvrH6++vPqP5dpd+vqe6unVB8a+wEAALvMWgLSZ8ey\nnVxePax6efU7Y/ls0yx2VzcNwTuluulo/4HqoW2/mfoAAIB1sJaAdJuxHMn1mnptPnRUFa2/\nt1Z3rL6vaajdXVq8UOyV1cerVzdd/PYl1TXzKRMAAJi3tQSkR1e/sMq2T632rbmajXN59ftj\n2Qy3b7re0klr3G/PBtTC9vTv1Z3mXQQAwG6zloD0+uqZh9n2JdXXNl1k9RnVa4+xrs32pKZe\nph9ep/v7cFNv1fGrbH969Rttn+tLsfFu/ehHP7o73/nO865j3fzyL//yvEsAADiitQSkvx/L\nSn6qekT160dd0Xx8RfXV63h/B6vXraH95ev42OwQp512Wmeccca8y1g3J564XS6fBgDsZmsJ\nSKvxm9Vjq/u3NWaC+8mxHMmXNE3Y8B/j998aCwAAsIsctwH3eX511w2436Nxs6beoVs2XSz2\ncMv+pgvELvx+9TyKBQAA5mu9e5BuWt29etk63+/R+u3qttUPVRdVP9508vtSf1DdrbrHZhUG\nAABsPWsJSA8cy3L2VDev7ld9UfWGY6xrvVzUNPHCC6vfq95R/VL1i+klAgAAllhLQPq6pkkY\nVnJx9T+aprjeSl7bNAnDvurnqu+ufrStE+QAAIAtYC0B6bnVXx1m28Gmc3fOa+teaPWK6onV\nnzZdD+n1Tb1KPzvPogAAgK1jLQHp42PZ7t7RYm/Y06oHV5+ca0UAAMCWcDSTNJxaParpwrC3\nGOs+Ub2x6Vyfz69PaRvq2urXqr+ofrd6QPXWuVYEAADM3VoD0oObhqjdaJltj6x+vnpo9S/H\nWNdm+UjTxBPf0DTNNwAAsIut5TpIN2nqIbqs+ommSQ9OGcvXVI+vrle9tDppfcvccK/PhA0A\nALDrraUH6QFN1zm6R9cdjvap6p1NQePN1bdWr1iPAgEAADbLWnqQbt90rtFK5xPrD0MAAB/5\nSURBVOq8pfpodadjKQoAAGAe1hKQrq2uv8r7dD4PAACw7awlIL2n6Tyk71ihzQOqW7X1LhQL\nAABwRGs5B+k11YeaJmp4bvX3TddF2lN9WXW/6jHVB6q/W98yAQAANt5aAtI11UOqv2y6yOpP\nLdPm36uHjbYAAADbylqvg/Te6vTq26ozqy+tDjZN3vCP1aur/etZIAAAwGZZS0Da0xSGrqle\nPpYFJzQFI5MzAAAA29ZqJ2n42qbrG33JYbb/dPW66ivWoygAAIB5WE1A+pqmCRnOqO57mDY3\nre4z2t1ifUoDAADYXKsJSH9YnVw9snrZYdo8ufr+6tbV76xPaQAAAJvrSAHpq5t6jn6nOvcI\nbV9UPa96eFNQAgAA2FaOFJDuPn6+cJX390fV9ZpmuAMAANhWjhSQvnT8PG+V9/eh8fM2R1cO\nAADA/BwpIC1c8PXEVd7fDcbPy4+uHAAAgPk5UkD68Pj5dau8v7PGz/OPqhoAAIA5OlJA+ofq\nquqJ1fFHaHuT6knVF6rXHnNlAAAAm+xIAelz1e9V96z+rPqiw7Q7rXpNdfvqOdUV61UgAADA\nZtm7ijY/W92jemh1v+qvqndUl1Y3r+5VPaBp9rrXVPs2olAAAICNtpqAdEX1zdXTqsdV3zOW\nWZ+ufr16dnXtehYIAACwWVYTkGrxPKSnVfep7tA0Y92nm6YAf0OCEQAAsM2tNiAtuKz627EA\nAADsKEeapAEAAGDXEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAACG\nvfMuAAA22sUXX1z11dUT51zKerugevG8iwDYSQQkAHa8888/vxvf+MZnnHrqqWfMu5b1ctll\nl3XhhRdemoAEsK4EJAB2hTPPPLOzzz573mWsmze96U09+clP3jPvOgB2GucgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISALCVnFcd3IHL\nL6/niwRsnL3zLgAAYMYtHv3oR3fnO9953nWsm3PPPbe3vOUtt5h3HcDqCEgAwJZy2mmndcYZ\nZ8y7jHXz2te+dt4lAGtgiB0AAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwLB33gVsohtUZ1WnV7eoTqquqD5RvbN6fXX1vIoDAADmbzcEpBOqZ1Y/Xp28\nQrvPV8+qnl0d3IS6AACALWY3BKRzqodXb6teWr2n+nR1VXVidWp1t+qRTQHpdtVj51IpAAAw\nVzs9IN2rKRz9WvUzHb5n6GXV06vnVj9WPad692YUCAAAbB07fZKGezeFoqd25GFz+6snjttn\nbWBNAADAFrXTA9KJ1bXVpats/7nqQNOEDgAAwC6z0wPSB5uGET5wle0f3vSavG/DKgIAALas\nnR6QXlV9rHph9bjqlMO0u3XT8Lo/rj409gMAAHaZnT5Jw+XVw6qXV78zls82zWJ3ddMQvFOq\nm472H6ge2jTDHQAAsMvs9IBU9dbqjtX3NQ21u0uLF4q9svp49erqldVLqmvmUyYAADBvuyEg\n1dST9Ptj2Qy3a7re0koXpgWAo3bhhRdWXb+6aM6lrLfrz7sAYHfbLQGp6ouqG1YXNM1Ut5zr\nVd9fvWMsR+v86kHV8atsf3r1G8fweADsMpdeemknnHDCnmc+85k3m3ct6+kJT3jCvEsAdrnd\nEJDuUD2vOnP8/vGm6yI9d5m2xzdN1PDUji0gHahet4b2lx/DYwGwSx133HGdccYZ8y4DYEfZ\n6bPY7Wk6r+jM6t3VK5ouGPt7TcPt9syvNAAAYKvZ6T1I31TdrXp20zTeNfUS/Wr1k9Vl1U/P\npzQAAGCr2ekB6U7j57Nm1l1T/VT1+ep/Nl1M9nc2uS4AAGAL2ukB6aSmIXXLnePzC03nJ/1m\nLg4LAAC0889B+o+m84zuf5jtj266TtKfVV+/WUUBAABb004PSK+pLmyaxe6Hqhss2X5l9eDq\n/aPt4zexNgAAYIvZ6QHpiqZgtDB9912XafOZ6purf6iesVmFAQAAW89OPwep6u+aZrL7vuoj\nh2lzcdOFXb+/+oEV2gEAADvYbghIVR/uyL1DB6sXjAUAANiFdvoQOwAAgFUTkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGDYO+8C\nAAB2sosvvrjqq6snzrmU9fbR6k/nXQSsNwEJAGADnX/++d34xjc+49RTTz1j3rWsl8suu6wL\nL7zw0gQkdiABCQBgg5155pmdffbZ8y5j3bzpTW/qyU9+8p551wEbwTlIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAI\nSAAAAIOABAAAMAhIAAAAg4AEAAAw7J13AbAObtTO+yzvmXcBAAC70U47qGT3ObN647yLAABg\nZxCQ2O5uduKJJ/abv/mb865jXT32sY+ddwkAALuSgMS2t2fPnu54xzvOuwwAAHYAkzQAAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDHvnXQAAANvL/v37azqO/K45l7LeDlT/p7py3oUwPwISAABrct5557Vnz54TTz311JfMu5b1\n9MlPfrKDBw8+sHr1vGthfgQkAADW5ODBg5144om96EUvmncp6+pBD3pQV1111fXmXQfz5Rwk\nAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgE\nJAAAgEFAAgAAGAQkAACAQUACAAAYBCQAAIBBQAIAABgEJAAAgEFAAgAAGAQkAACAYe+8C2BT\n3aq697yLWGf/Zd4FAAA7w4EDB6ruW91gzqWst3+uPjbvIrYLAWl32bd3794fOfnkk+ddx7q5\n6qqr5l0CALBDXHPNNZ188slP2rt35xwiX3HFFe3fv/8Pq8fMu5btYue8+6zG9e53v/t19tln\nz7uOdfP85z+/c889d95lAAA7xFOe8pS+7uu+bt5lrJtnP/vZvepVr7revOvYTnZjQNrT1G16\nUnVFddl8ywEAALaK3TJJw6nVU6s3V5dWl1SfHrcvrt5QPaG68bwKBAAA5m839CB9a/XS6kZN\nvUXvbwpHV1UnNoWne1b3qR5ffXtTkAIAAHaZnR6QblqdU32+elT119X+ZdqdVH1X9WvVy6qv\nzNA7AADYdXb6ELsHVzervrt6RcuHo6orqz+pvre6ZfWgTakOAADYUvZUB8ftp1b75lfKhnhS\n0/M6YZXtr1ddXf1c9axjeNzbVf/S6nvo9jYNATyhuuYYHvdI/mAnTvN9zTXXdMMb3nDepayr\nSy65pJNPPrmdNM3oZZdd1nHHHZfP39bn87c9+PxtHz5/28dO/PyZ5nvV9lW/UDt/iN3F1fHV\nLapPraL9lzb1ql18jI97flOv1Wpf3z1NNW5kOKp6yv79+8+55JJLNvhhNtXe6jaXXHLJefMu\nZJ3d/oorrji/unbehayjmx84cKBLLrnkonkXso58/rYPn7/tw+dve/D5217eM+8CtpuDY9k3\n5zo2wl2antuLOnIv0g2ql1cHqjtucF0AAMDWsa+Ri3Z6D9J7q/9dPa76xuqVTQn6001D6U6s\nTqnuWj2k+uLql6oPzKNYAABg/nZyD1JNw9d+srqgxee63PKB6gfnVCMAADA/+9olPUg1PdHf\nqn67+qqmYXe3aJra+8rqk9W7qvfNq0AAAGBr2A0BacHBpiD0rnkXAgAAbE07/TpIAAAAqyYg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMe+ddAByjH6yeN+8iAIAd44eq58+7COZHQGK7\n+2x1RfX18y6EI/qF8fOpc62C1fjH6knVG+ZdCCu6b/VL+f7bDnz/bR//2HRswS4mILHdHawO\nVG+ddyEc0cJ/ON6rre9A9R95r7a6U/P9t134/ts+DjQdW7CLOQcJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGDYO+8C4BhdPRa2Pu/T/9/evYfLUdYH\nHP9ykXCJQCAIck0QCioiFaFclCJaEQhYJKBSCw1pbW0KTwsPqIX2OQparYDUS5GLikBoS6mA\nFggU5GKkIiE8UhSRWyxpROROQhJyOf3j95tn5+yZPWfPOWFnN+f7eZ595szMO7Pv7uzumd+8\n7/ub3uH3qjd4nHqHx6l3+L0SAP356Ku5HtJorAtMqbsSasukfKj7TcEeBr3A37/e4e9f75iC\nv3/jVR8ZF9mCpF63GlhQdyXUlufrroDatqDuCqgt/v71Dn//eseCuiug+hkhS5IkSVIyQJIk\nSZKkZIAkSZIkSckASZIkSZKSAZIkSZIkJQMkSZIkSUoGSJIkSZKUDJAkSZIkKRkgSZIkSVIy\nQJIkSZKkZIAkSZIkSckASZIkSZKSAZIkSZIkJQMkSZIkSUrr110BaQ3aDHgTsBR4AlhWb3U0\nhPWAA4BXgPtqrosGmgzsDCwHHgJerbc6GsLmwF7Ak8BjNddFrU0g/jdNAB4HXqy3OhrClsBU\n4GVgAfE7qHGqPx99NddDGq0dgWtofJb7iR+184GNa6yXqk0F5hLHaV7NdVHDZOA/gFU0vkfP\nAyfXWSm1dAgRGPUD59ZcF1XbEPhH4qJd+f/T9cCU+qqlCu8AbmfgcXoF+BJxHDU+9NE4/gZI\n6mmbEle5VwLnAe8HjgbuID7Xl9dWM1U5EXgJuB9YgQFSt1gH+CERHJ0LHAQcmcv6gRn1VU1N\nJhDHaDVwLwZI3Ww2cXy+BxwFfAC4KJc9AmxQX9VUsgvRYvQi8Gni4sN04E7iWH27vqqpw/ow\nQNJa4i+o/vxuBCwkTsI36XCdVG1L4lh9hTjJW4YBUrc4kjg25zUt34T4Hv0f0S1S9TsGWALM\nBPbDAKlb7U4cm9uJCxBl3811h3a6Uqr0VeJ4TG9avhGwiOiRMqHTlVIt+si4yCQN6nW/AM4E\nLmlavhSYT4yze0OnK6VKrxJXUU/Bft3d5uicXty0fAlwFbAtsH9Ha6RWngD2Br5Zd0U0pFXA\nGcBZ5NXokrk53bajNVIr3wH+CPh+0/KlwM+Jlr6NOl0p1cskDep1d+Sjyk7ECd6vO1UZDell\nBv8DUnfYC1gMPFyxbl6pzNyK9eqs+XVXQG15hBi/UmVKqYzqN4/q3gxbEr97jwIvdLRGqp0B\nktZWHwP2BC7AbHbScLan9YWERTndoUN1kdZmuxNj+uYDP6q5LhpsD2A7YFfgr4jukTNrrZFq\nYYCktdEhRFeh+UT3O0lD2xh4qsW6pTl1LJ80NjsSGexWEl26mrveqX7nAB/Mv+cBJwA/qa86\nqotjkNQLbibGGpUfrQaMnwTMAR4gMtq90okKCoCtGXycZtdaI7VrJa0vmBXLvR+SNHr7APcQ\n9656L/H7qO7zD8CHgdOJ84y78ULruGQLknrBMwyfQWZd4n4TpxH3RDqBxpVvdcZqBrdCPFdH\nRTRizwKTWqzbIqceS2l0PkKkin4MmEbcgFTd6Z58AHyZuOB6NnALkVZf44hpvrU2uIT4HH+O\nwSlV1Z1M8909biQC3M0q1p1KfLeO6WiN1A7TfHe/E4jv1hzg9TXXRdU2pnVGwZnEd+zUzlVH\nNerDNN9ai3we+FOiSfxM7NctjdStxIWFwyrWHUl0wftBR2sk9b7DgW8R446mEZk81X3uI9Ln\nVwWwW+fULsbjkC1I6mUHElfnvNN177EFqXtMBl4iugBtX1p+EvH/wXvudCdbkLrXZsDTwM/w\nHjrd7jPE92g2A5PR7An8lrhAtGsN9VLn9ZFxkWOQ1OtOJ6587wv8uEWZs4EbOlYjtfLHwKzS\n/AZEytvycZsOLOxkpQTEOL+TiJvCPkL0td8CeCvwU2Jsn7rDl2nctHdiTo8H3pV/P03ckFn1\nmgFsRdwU+/YWZW4g/j+pXucABxDfo8OJBBoTgbcQ5xen4z2rxh0DJPW6BcCdw5RZ1YF6aHir\nGHhPqrsqytg9sj7XAA8BHwd2I66cXkSM7/NeYt1jBY3jsYzBv3/LO1sdtfACw/9vWtGJimhY\nK4ist9OIbsY7EUlpbiFalbw58zhlFztJkiRJ41kfJmmQJEmSpIEMkCRJkiQpGSBJkiRJUjJA\nkiRJkqRkgCRJkiRJyQBJkiRJkpIBkiRJkiQlAyRJkiRJSgZIkiRJkpQMkCRJkiQpGSBJkiRJ\nUjJAkiRJkqRkgCRJkiRJyQBJkiRJkpIBkiRJkiQlAyRJkiRJSgZIkiRJkpQMkCRJkiQpGSBJ\nkiRJUjJAkiRJkqRkgCRJkiRJyQBJkiRJkpIBkiRJkiQlAyRJkiRJSgZIkiRJkpQMkCRJkiQp\nGSBJkiRJUjJAkiRJkqRkgCRJkiRJyQBJkiRJkpIBkiRJkiQlAyRJGh82Bg4Gdqu5Hu0aSX2L\nsr/TYtvm9ZIkDak/H30110OSxpMdiZP2LYE30P4J/OZZdo8RPt/uxG/9pSPcri4jqW9R9hst\ntm1eP1blYydJWjv0kXGRLUiSVI/jgNuBvYENgduAa9vY7pTc7v2vXdV6ztPAp2n9/lWtPx74\n51E+X/nYSZLWMuvXXQFJGqcW5/Rl4H+BOcDhwH7Aj1tssw4wA1gOfOe1rmAPeQ74wgjXTwN2\nHuXzlY+dJGktY4AkSfVoPsm+iAiQZtI6QDoEmAJcBTwLvJ5oxVgIPNpUdiqwE3A/8GLFvjYG\n9gWeAH6V828GluW+lreowyZEl7X1c9unh9nv7sBWwA+byk0GdiC6MzwOvNTi+QqbEmOKVgAP\nAisrnnMR8MuKbcvrf028Z/sDS4mucs/n69gNeAx4smIf2wG75v7bDZC2Jt7TVv6HOI7teB3R\ntW8rIuB7nIHvQdmkrOvLxOt5tUW5TYlunesxtmM53GdCknqOY5AkqfP+kPjtnZLz6xGBzkvE\nCWeVq3Kb38/5d+b8BRVlz8l178r55nE5U3P+88As4mR6aS57NutXtiHwdSJw6i89bi29hvLz\nnA1ckn8/WFq/Y26zurSP1USL2GYV+/kGcAbwSqn8b4APtChb9VrL69/JwPoXr+HN+ff3qTY7\n17+dwceulY9VPFf5MW2Y7QuzgKeatl1EtCaWbQJcTgRORbmnK8pNJN7vFU37/AEjO5btfiYk\nqRf00fgdM0CSpBpMJBItlFvyP0P8Hjef0EIkZ1gK/KK0bCwBUtF68zNi/NPUXP4WIgB5OetY\nuJo4oT6LCCbeBPw5EdA9SrQ2QCPwuo1ovTqK6DZYeIBo0TgZeCsRcHwxt7myVK6o74NZx2nA\nnrndMqIVZ5umsu0ESOsR7+Uy4N78uwhIf5SvcWsG2jBf5/ycrzp2VSYCuzQ9DiaO4zPAG4fZ\nHiIY7gduAQ4gugUelPP9wIGlstfnsnOJFrL3Af9NBKDlgPemLPcFogVpN+B0IrB6FNgoyw13\nLNv9TEhSL+jDAEmSus4OxEnq3Ip1s4jf6r8pLRtLgLR9zi8muk2VXZDrDsr5vWmceDc7mYFB\nXbHfVUQXv7KJwJnAX1bs5yGilahIHlTUdyWN4K1wJgPfi9FksVvG4K6MM7LcaU3Lj87lp1TU\neyTWJZI79AMfbHObs7L8wU3LNyeO8e/l/D5Z7ttN5bYh3sP/yvkDstw1Fc/1uVz3Jzk/1LEc\nyWdCknpBHxkXOQZJkrrHk0SyhiOIk/pya9FMoivT5Wv4OecBv21atjCnRRrrw3K6EvhIU9kN\ncvpuBp6czyfGrZQtJk7C1yHGyLyxtP0SouViIgPHI91HjGspu5kIDvatekFjcDXwT8CJwHml\n5ccRLSVXjXH/nyICnQuJ1p52FOOhZgE/JcZLAbxABE+FQ3P6n03bP0W0kBVjyt6X0+9WPNf3\ngL8lWq0uKy2vOpaj+UxIUk8wQJKk7nIRESCdRIy9AdgL+F1iHEy7g/rbtahiWTH4f72cFtne\nPjnEfrZpml9YWQqOBc6n0TpRjHvaMNc3336iOflEed/NzzlWS4B/AT5OtJDcRwRt04ixSc+M\nYd/7EF0of87gFqqzifelbAbRPe4q4EPAdKLV6R6iNehaIslDoThGVe97OeHGlJw+XlGuCIJ2\naFpetc/RfCYkqSd4HyRJ6i43EiekJ9C4iDUzpxe/Bs+3uo0yr8vpoUTAUPVo7jK2pGI/+wD/\nSrTGvIdoadiEaDW6tcVzV2XTW5HT1+IiX9Et78ScHkHU77Ix7HMiEeisAj5KBIVlLxEtPeVH\nkXluBfHevifrth0RaD0AXEdjvFBxjFpltisU5aoy2xXv64Sm5VXHcjSfCUnqCQZIktRdVgHf\nJBIFHEEEEccT3e3uGsF+Jg5fpG1Fy8lkYuxO1WNF9aYDfJT4v3MacAcDT+Ynt9hmsyGWVaUv\nH6t7ieDjOKKuxxJJK24awz6/RiRoOCP33exLRNe78uO+pjJ3EGO3dia6X/47EYB8Ktc/l9Mt\nGdpQ5bbIaTutlGvqMyFJXccASZK6z6U0Whv+gDhxrWo9KlpXqtKCD3X/nZGal9PDKtZtQ4xr\naac1Z1JOm7t3TSW6EFZ5R8WyPXL6UBvPORqXEgHq4UT3uisZvmWmlQ8TrVE3Al8ZxfabEsFV\n2cNECvGVNLLYFRn29mOwi4kgDRqBV9X4rX1yen8b9VpTnwlJ6joGSJLUfRYSLRbTiK52y4j7\n1jR7ggik9iMSHxT2B967ButzPdFicCyNk2iIblZfI8bEVAUyzYrAqHwSP4lIPPFQab5sJyJ1\ndGECcGqpXqO1jMHZ+wpX5vqvE6mqLxvlc+xEjCn7DaPP6HYtkW2vOZPfnkQAUowhu45I3DCL\ngRnnjgH+jEawch2R6GEWA9OMTyTGE61gYLr1VtbUZ0KSupJpviWp+0yj8ft8xRDlLs8yc4gT\n3AuJwfbnMTBVd6s031Unw3+d66aXlh1KpOFeRpy0XwksoHEj0cJQ+92WGG+znEg4cQXR5evv\niaCnH7ibaHEpbtw6O1/PXUSQ+HAu/7fSfkeT5rtItz2XyF7XrLgx7L0V69p1Re7jAeL9aH58\nqI197Et0JVxK3PtoNhF8LCduArtbqezRxNiixUSAfXc+/8MMDDyPyu2fJT4/lxGB1mrgE6Vy\nQx1LaP8zIUm9oI/8v2sLkiR1p5uIzGl30ugeVWUGMTblBSI982Ki29VtuW0xwP6VnH8455fn\nfFU3tYW5rpz++2YiaDmXaI2YBNxApHL+u1K5ofa7iOhKdwnRbbCf6Cr2WaKl5atEMLCKONG/\nkwhk9iUCma1yv58gxmUVitf2yxavtXk9ROKLK4jWlEcq6lqMOfpWxbp2/Sqf9zki2Gh+bNrG\nPn4CvI1Ij/48MebnKSIY3oXGa4QIUt5Oozvmk8R4r71opAeHSOf9NmKs22SiO+HVRIvPhaVy\nQx1LaP8zIUk9xxYkSZIGmkMEa2sy2YUkqXv1YQuSJEmVZhLdx84nWuQkSeOIGWYkSQoXEN3M\n3k2MPfpivdWRJNXBFiRJksK6xHilc4BDiOQDkqRxxhYkSZLCKXVXQJJUP1uQJEmSJCkZIEmS\nJElSMkCSJEmSpGSAJEmSJEnJAEmSJEmSkgGSJEmSJCUDJEmSJElKBkiSJEmSlAyQJEmSJCkZ\nIEmSJElSMkCSJEmSpGSAJEmSJEnJAEmSJEmSkgGSJEmSJCUDJEmSJElKBkiSJEmSlAyQJEmS\nJCkZIEmSJElSMkCSJEmSpGSAJEmSJEnJAEmSJEmSkgGSJEmSJCUDJEmSJElK65f+PhD4ZF0V\nkSRJkqSaHFj8sQ7QX2NFJEmSJKlr2MVOkiRJktL/A1igV5klocPjAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title “'Vulnerability' histogram”"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
}
],
"source": [
"# Histogram visualisation of Vulnerability z-scores\n",
"title <- paste(\"'Vulnerability' histogram\", sep = \"\")\n",
"x_label <- paste(\"'Vulnerability' z-score\", sep = \"\")\n",
"y_label <- paste(\"Count\", sep = \"\")\n",
"hist(vulnerability_scores$social_vulnerability, breaks=\"FD\", col=\"grey\", labels=FALSE, main=title, xlab=x_label, ylab=y_label)\n",
"box(\"figure\", lwd = 4)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "26307191-f418-4f79-a734-637fe8e70cc8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 38\n",
"\n",
"\t | CCA | CPRO | CMUN | CDIS | CSEC | early_childhood_boy | early_childhood_girl | age_middle_to_oldest_old_male | age_middle_to_oldest_old_female | disability | ⋯ | social_network | housing_characteristics | physical_environment | sensitivity | prepare | respond | recover | adaptive_capacity | enhanced_exposure | social_vulnerability |
\n",
"\t | <int> | <int> | <int> | <int> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> |
\n",
"\n",
"\n",
"\t1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.48180824 | -0.10021618 | 1.2753218 | ⋯ | 0.36130070 | -0.9481277 | -0.8560700 | 1.1377171 | -0.3378133 | 0.18457796 | 0.1073270 | -0.15329655 | -1.00827077 | -0.1413894 |
\n",
"\t2 | 17 | 26 | 10 | 1 | 1 | -0.36188692 | -0.3284478 | 1.32081073 | 0.44848018 | -1.3865567 | ⋯ | 0.30303248 | 0.0000000 | -0.2328068 | -0.9881374 | -0.4065854 | -0.33477437 | 0.8522391 | -0.26183757 | 0.04893220 | -0.4444888 |
\n",
"\t3 | 17 | 26 | 100 | 1 | 1 | 0.01083739 | -1.4002199 | 0.23798535 | -0.52201032 | -1.3865567 | ⋯ | 0.45418041 | 0.0000000 | -0.3822322 | -1.5969460 | -0.4065854 | -0.22140412 | 1.0122262 | -0.17316713 | -0.05159845 | -0.6491854 |
\n",
"\t4 | 17 | 26 | 101 | 1 | 1 | -1.36078806 | -1.4002199 | -0.22155305 | 0.07955613 | -1.3865567 | ⋯ | 0.78526637 | 0.0000000 | -1.5116073 | -1.8689267 | -0.4065854 | 0.02693072 | 1.3626742 | 0.02106336 | -0.81142134 | -0.9789365 |
\n",
"\t5 | 17 | 26 | 102 | 1 | 1 | 0.10257030 | -0.4581527 | 0.05129390 | 0.59299501 | 0.3880289 | ⋯ | 0.41782180 | 1.2637707 | -0.3792937 | 0.4071804 | -0.3116725 | 0.44354790 | 0.7414772 | -0.09187444 | 0.80062025 | 0.4454417 |
\n",
"\t6 | 17 | 26 | 102 | 1 | 2 | 0.64987009 | 0.6302157 | -0.04065368 | 0.64469364 | 0.3880289 | ⋯ | 0.06300444 | 0.7211874 | -0.3696338 | 0.7600790 | -0.3203095 | 0.33117214 | 0.3141994 | -0.30936550 | 0.44207919 | 0.2948932 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 38\n",
"\\begin{tabular}{r|lllllllllllllllllllll}\n",
" & CCA & CPRO & CMUN & CDIS & CSEC & early\\_childhood\\_boy & early\\_childhood\\_girl & age\\_middle\\_to\\_oldest\\_old\\_male & age\\_middle\\_to\\_oldest\\_old\\_female & disability & ⋯ & social\\_network & housing\\_characteristics & physical\\_environment & sensitivity & prepare & respond & recover & adaptive\\_capacity & enhanced\\_exposure & social\\_vulnerability\\\\\n",
" & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & 17 & 26 & 1 & 1 & 1 & -0.19258164 & -0.1467916 & 0.48180824 & -0.10021618 & 1.2753218 & ⋯ & 0.36130070 & -0.9481277 & -0.8560700 & 1.1377171 & -0.3378133 & 0.18457796 & 0.1073270 & -0.15329655 & -1.00827077 & -0.1413894\\\\\n",
"\t2 & 17 & 26 & 10 & 1 & 1 & -0.36188692 & -0.3284478 & 1.32081073 & 0.44848018 & -1.3865567 & ⋯ & 0.30303248 & 0.0000000 & -0.2328068 & -0.9881374 & -0.4065854 & -0.33477437 & 0.8522391 & -0.26183757 & 0.04893220 & -0.4444888\\\\\n",
"\t3 & 17 & 26 & 100 & 1 & 1 & 0.01083739 & -1.4002199 & 0.23798535 & -0.52201032 & -1.3865567 & ⋯ & 0.45418041 & 0.0000000 & -0.3822322 & -1.5969460 & -0.4065854 & -0.22140412 & 1.0122262 & -0.17316713 & -0.05159845 & -0.6491854\\\\\n",
"\t4 & 17 & 26 & 101 & 1 & 1 & -1.36078806 & -1.4002199 & -0.22155305 & 0.07955613 & -1.3865567 & ⋯ & 0.78526637 & 0.0000000 & -1.5116073 & -1.8689267 & -0.4065854 & 0.02693072 & 1.3626742 & 0.02106336 & -0.81142134 & -0.9789365\\\\\n",
"\t5 & 17 & 26 & 102 & 1 & 1 & 0.10257030 & -0.4581527 & 0.05129390 & 0.59299501 & 0.3880289 & ⋯ & 0.41782180 & 1.2637707 & -0.3792937 & 0.4071804 & -0.3116725 & 0.44354790 & 0.7414772 & -0.09187444 & 0.80062025 & 0.4454417\\\\\n",
"\t6 & 17 & 26 & 102 & 1 & 2 & 0.64987009 & 0.6302157 & -0.04065368 & 0.64469364 & 0.3880289 & ⋯ & 0.06300444 & 0.7211874 & -0.3696338 & 0.7600790 & -0.3203095 & 0.33117214 & 0.3141994 & -0.30936550 & 0.44207919 & 0.2948932\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 38\n",
"\n",
"| | CCA <int> | CPRO <int> | CMUN <int> | CDIS <int> | CSEC <int> | early_childhood_boy <dbl> | early_childhood_girl <dbl> | age_middle_to_oldest_old_male <dbl> | age_middle_to_oldest_old_female <dbl> | disability <dbl> | ⋯ ⋯ | social_network <dbl> | housing_characteristics <dbl> | physical_environment <dbl> | sensitivity <dbl[,1]> | prepare <dbl[,1]> | respond <dbl[,1]> | recover <dbl[,1]> | adaptive_capacity <dbl[,1]> | enhanced_exposure <dbl[,1]> | social_vulnerability <dbl[,1]> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.48180824 | -0.10021618 | 1.2753218 | ⋯ | 0.36130070 | -0.9481277 | -0.8560700 | 1.1377171 | -0.3378133 | 0.18457796 | 0.1073270 | -0.15329655 | -1.00827077 | -0.1413894 |\n",
"| 2 | 17 | 26 | 10 | 1 | 1 | -0.36188692 | -0.3284478 | 1.32081073 | 0.44848018 | -1.3865567 | ⋯ | 0.30303248 | 0.0000000 | -0.2328068 | -0.9881374 | -0.4065854 | -0.33477437 | 0.8522391 | -0.26183757 | 0.04893220 | -0.4444888 |\n",
"| 3 | 17 | 26 | 100 | 1 | 1 | 0.01083739 | -1.4002199 | 0.23798535 | -0.52201032 | -1.3865567 | ⋯ | 0.45418041 | 0.0000000 | -0.3822322 | -1.5969460 | -0.4065854 | -0.22140412 | 1.0122262 | -0.17316713 | -0.05159845 | -0.6491854 |\n",
"| 4 | 17 | 26 | 101 | 1 | 1 | -1.36078806 | -1.4002199 | -0.22155305 | 0.07955613 | -1.3865567 | ⋯ | 0.78526637 | 0.0000000 | -1.5116073 | -1.8689267 | -0.4065854 | 0.02693072 | 1.3626742 | 0.02106336 | -0.81142134 | -0.9789365 |\n",
"| 5 | 17 | 26 | 102 | 1 | 1 | 0.10257030 | -0.4581527 | 0.05129390 | 0.59299501 | 0.3880289 | ⋯ | 0.41782180 | 1.2637707 | -0.3792937 | 0.4071804 | -0.3116725 | 0.44354790 | 0.7414772 | -0.09187444 | 0.80062025 | 0.4454417 |\n",
"| 6 | 17 | 26 | 102 | 1 | 2 | 0.64987009 | 0.6302157 | -0.04065368 | 0.64469364 | 0.3880289 | ⋯ | 0.06300444 | 0.7211874 | -0.3696338 | 0.7600790 | -0.3203095 | 0.33117214 | 0.3141994 | -0.30936550 | 0.44207919 | 0.2948932 |\n",
"\n"
],
"text/plain": [
" CCA CPRO CMUN CDIS CSEC early_childhood_boy early_childhood_girl\n",
"1 17 26 1 1 1 -0.19258164 -0.1467916 \n",
"2 17 26 10 1 1 -0.36188692 -0.3284478 \n",
"3 17 26 100 1 1 0.01083739 -1.4002199 \n",
"4 17 26 101 1 1 -1.36078806 -1.4002199 \n",
"5 17 26 102 1 1 0.10257030 -0.4581527 \n",
"6 17 26 102 1 2 0.64987009 0.6302157 \n",
" age_middle_to_oldest_old_male age_middle_to_oldest_old_female disability ⋯\n",
"1 0.48180824 -0.10021618 1.2753218 ⋯\n",
"2 1.32081073 0.44848018 -1.3865567 ⋯\n",
"3 0.23798535 -0.52201032 -1.3865567 ⋯\n",
"4 -0.22155305 0.07955613 -1.3865567 ⋯\n",
"5 0.05129390 0.59299501 0.3880289 ⋯\n",
"6 -0.04065368 0.64469364 0.3880289 ⋯\n",
" social_network housing_characteristics physical_environment sensitivity\n",
"1 0.36130070 -0.9481277 -0.8560700 1.1377171 \n",
"2 0.30303248 0.0000000 -0.2328068 -0.9881374 \n",
"3 0.45418041 0.0000000 -0.3822322 -1.5969460 \n",
"4 0.78526637 0.0000000 -1.5116073 -1.8689267 \n",
"5 0.41782180 1.2637707 -0.3792937 0.4071804 \n",
"6 0.06300444 0.7211874 -0.3696338 0.7600790 \n",
" prepare respond recover adaptive_capacity enhanced_exposure\n",
"1 -0.3378133 0.18457796 0.1073270 -0.15329655 -1.00827077 \n",
"2 -0.4065854 -0.33477437 0.8522391 -0.26183757 0.04893220 \n",
"3 -0.4065854 -0.22140412 1.0122262 -0.17316713 -0.05159845 \n",
"4 -0.4065854 0.02693072 1.3626742 0.02106336 -0.81142134 \n",
"5 -0.3116725 0.44354790 0.7414772 -0.09187444 0.80062025 \n",
"6 -0.3203095 0.33117214 0.3141994 -0.30936550 0.44207919 \n",
" social_vulnerability\n",
"1 -0.1413894 \n",
"2 -0.4444888 \n",
"3 -0.6491854 \n",
"4 -0.9789365 \n",
"5 0.4454417 \n",
"6 0.2948932 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Merge all the indicators, domains, dimensions, and total vulnerability into one dataset\n",
"output_dataset <- merge(indicator_data_weighted, domain_scores, by=GUID)\n",
"output_dataset <- merge(output_dataset, dimension_scores, by=GUID)\n",
"output_dataset <- merge(output_dataset, vulnerability_scores, by=GUID)\n",
"\n",
"head(output_dataset)"
]
},
{
"cell_type": "markdown",
"id": "228968f5-50a5-442a-9344-f4857f11086e",
"metadata": {},
"source": [
"## Correlations"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "752d49bc",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A matrix: 33 × 33 of type dbl\n",
"\n",
"\t | early_childhood_boy | early_childhood_girl | age_middle_to_oldest_old_male | age_middle_to_oldest_old_female | disability | one_parent_households | dependants | unemployment | attending_university | no_higher_education | ⋯ | social_network | housing_characteristics | physical_environment | sensitivity | prepare | respond | recover | adaptive_capacity | enhanced_exposure | social_vulnerability |
\n",
"\n",
"\n",
"\tearly_childhood_boy | 1.00000000 | 0.759540053 | -0.44979947 | -0.372631631 | 0.23018526 | 0.33038590 | 0.67057589 | 0.35614054 | 0.23694332 | -0.36085632 | ⋯ | -0.548326585 | 0.1050579664 | 0.35289264 | 0.41094687 | 0.34499285 | 0.020408818 | -0.42216457 | 0.12155807 | 0.29297386 | 0.330183124 |
\n",
"\tearly_childhood_girl | 0.75954005 | 1.000000000 | -0.46707295 | -0.365530974 | 0.26364051 | 0.33986362 | 0.69435577 | 0.36004951 | 0.29591717 | -0.39610178 | ⋯ | -0.596400846 | 0.0911557556 | 0.38809959 | 0.43829722 | 0.35423522 | 0.003914884 | -0.47404722 | 0.10950479 | 0.30735942 | 0.339651432 |
\n",
"\tage_middle_to_oldest_old_male | -0.44979947 | -0.467072951 | 1.00000000 | 0.554816775 | -0.29036166 | -0.45598571 | -0.62497380 | -0.34357715 | -0.42706479 | 0.43854968 | ⋯ | 0.560920526 | -0.0976966424 | -0.36515398 | -0.11579601 | -0.32214094 | 0.065933061 | 0.44983077 | -0.09107455 | -0.29644999 | -0.216741127 |
\n",
"\tage_middle_to_oldest_old_female | -0.37263163 | -0.365530974 | 0.55481678 | 1.000000000 | -0.06347671 | -0.45546676 | -0.45061486 | -0.01977655 | -0.24756632 | 0.18899810 | ⋯ | 0.579507014 | 0.0464677389 | -0.01493317 | 0.12447682 | -0.16591374 | 0.204713854 | 0.38051051 | 0.08636588 | 0.01859601 | 0.094105996 |
\n",
"\tdisability | 0.23018526 | 0.263640512 | -0.29036166 | -0.063476710 | 1.00000000 | -0.04926880 | 0.44524799 | 0.66041158 | 0.24108336 | -0.35998489 | ⋯ | -0.104345540 | 0.1140625145 | 0.31311428 | 0.91574394 | 0.24743845 | 0.269148367 | -0.12279689 | 0.21968497 | 0.27264011 | 0.541205238 |
\n",
"\tone_parent_households | 0.33038590 | 0.339863620 | -0.45598571 | -0.455466763 | -0.04926880 | 1.00000000 | 0.44098288 | 0.08855721 | 0.41209063 | -0.20215971 | ⋯ | -0.633596005 | 0.2369424946 | 0.42875198 | -0.09694488 | 0.50291888 | -0.072330693 | -0.24962760 | 0.25320804 | 0.42248985 | 0.283327135 |
\n",
"\tdependants | 0.67057589 | 0.694355771 | -0.62497380 | -0.450614861 | 0.44524799 | 0.44098288 | 1.00000000 | 0.56720146 | 0.55171806 | -0.66446988 | ⋯ | -0.756633822 | 0.0829294936 | 0.51345917 | 0.45794746 | 0.38170650 | -0.050928458 | -0.66309316 | 0.06572621 | 0.38370731 | 0.357862941 |
\n",
"\tunemployment | 0.35614054 | 0.360049506 | -0.34357715 | -0.019776546 | 0.66041158 | 0.08855721 | 0.56720146 | 1.00000000 | 0.33617823 | -0.41956319 | ⋯ | -0.201583893 | 0.2543291753 | 0.52983989 | 0.66236418 | 0.51846520 | 0.465082702 | -0.08601945 | 0.46813351 | 0.49867787 | 0.682300003 |
\n",
"\tattending_university | 0.23694332 | 0.295917170 | -0.42706479 | -0.247566321 | 0.24108336 | 0.41209063 | 0.55171806 | 0.33617823 | 1.00000000 | -0.80231522 | ⋯ | -0.444542590 | -0.0998329821 | 0.45902384 | 0.18194667 | 0.08596680 | -0.311683928 | -0.61881770 | -0.11091324 | 0.23712302 | 0.110056131 |
\n",
"\tno_higher_education | -0.36085632 | -0.396101779 | 0.43854968 | 0.188998102 | -0.35998489 | -0.20215971 | -0.66446988 | -0.41956319 | -0.80231522 | 1.00000000 | ⋯ | 0.359087857 | 0.1816427966 | -0.46586422 | -0.34713213 | 0.08891632 | 0.439654954 | 0.80803001 | 0.26081266 | -0.19176042 | -0.069422773 |
\n",
"\tforeign_nationals | 0.42604982 | 0.453075887 | -0.33707442 | -0.086558180 | 0.47484750 | 0.13940285 | 0.55855872 | 0.70132633 | 0.16908401 | -0.17722844 | ⋯ | -0.344220134 | 0.3930076266 | 0.47504867 | 0.52088805 | 0.76986598 | 0.706907540 | -0.06089854 | 0.67454294 | 0.54754029 | 0.761204213 |
\n",
"\trented | 0.19893150 | 0.200527443 | -0.26872461 | -0.138932327 | 0.01728583 | 0.58359421 | 0.19886232 | 0.19663693 | 0.25030330 | -0.15646775 | ⋯ | -0.249652474 | 0.2445553823 | 0.54975446 | 0.01348079 | 0.68961198 | 0.128269631 | -0.06156210 | 0.63113802 | 0.50565219 | 0.549539325 |
\n",
"\tprimary_school_age | -0.65679028 | -0.690484814 | 0.55898237 | 0.504557789 | -0.28672716 | -0.40852694 | -0.84126926 | -0.35945994 | -0.38544019 | 0.50117885 | ⋯ | 0.839691152 | -0.0764614131 | -0.39566986 | -0.31645101 | -0.31384459 | 0.191164019 | 0.70772433 | 0.04573707 | -0.30332716 | -0.217873743 |
\n",
"\tone_person_households | -0.22156559 | -0.267393210 | 0.35142193 | 0.443686124 | 0.13659002 | -0.64327666 | -0.37761112 | 0.04895747 | -0.34213141 | 0.06656413 | ⋯ | 0.799861106 | -0.0008684821 | -0.25593992 | 0.18857068 | -0.31411959 | 0.180859976 | 0.40075833 | 0.02717408 | -0.16662814 | 0.003512541 |
\n",
"\tyear_built | 0.10505797 | 0.091155756 | -0.09769664 | 0.046467739 | 0.11406251 | 0.23694249 | 0.08292949 | 0.25432918 | -0.09983298 | 0.18164280 | ⋯ | -0.049408896 | 1.0000000000 | 0.26356151 | 0.13299007 | 0.49313913 | 0.486775885 | 0.27094304 | 0.51053624 | 0.77979729 | 0.650035629 |
\n",
"\ttree_cover_density | 0.38502113 | 0.414558106 | -0.31956017 | -0.025669031 | 0.29130747 | 0.29541420 | 0.53298471 | 0.42060960 | 0.34500674 | -0.38288149 | ⋯ | -0.428694837 | 0.1803864548 | 0.87274526 | 0.35824276 | 0.36450898 | 0.087039689 | -0.34561834 | 0.19752132 | 0.67620326 | 0.520913738 |
\n",
"\timpervious | 0.20875349 | 0.239541111 | -0.30448896 | 0.001689509 | 0.24169082 | 0.44708573 | 0.33428776 | 0.49015701 | 0.44640218 | -0.41631699 | ⋯ | -0.247471063 | 0.2761895237 | 0.83655012 | 0.24602585 | 0.55573889 | 0.131326510 | -0.20208813 | 0.48739139 | 0.71103367 | 0.645888772 |
\n",
"\tage | 0.51441045 | 0.508826242 | 0.35018899 | 0.448288787 | 0.07684377 | -0.13240437 | 0.15883005 | 0.19368368 | -0.07782264 | -0.07103765 | ⋯ | -0.002360354 | 0.0795870159 | 0.19811287 | 0.47094367 | 0.11592014 | 0.161919237 | -0.03615852 | 0.12425339 | 0.17701967 | 0.300376066 |
\n",
"\thealth | 0.23018526 | 0.263640512 | -0.29036166 | -0.063476710 | 1.00000000 | -0.04926880 | 0.44524799 | 0.66041158 | 0.24108336 | -0.35998489 | ⋯ | -0.104345540 | 0.1140625145 | 0.31311428 | 0.91574394 | 0.24743845 | 0.269148367 | -0.12279689 | 0.21968497 | 0.27264011 | 0.541205238 |
\n",
"\tincome | 0.53809505 | 0.570891186 | -0.62267021 | -0.389151337 | 0.44841072 | 0.63584339 | 0.86707123 | 0.68303775 | 0.77851407 | -0.71256967 | ⋯ | -0.680471207 | 0.1555872409 | 0.65093009 | 0.41823692 | 0.49628699 | 0.012749347 | -0.54883841 | 0.22454098 | 0.51715347 | 0.484368003 |
\n",
"\tinfo_access_use | -0.36085632 | -0.396101779 | 0.43854968 | 0.188998102 | -0.35998489 | -0.20215971 | -0.66446988 | -0.41956319 | -0.80231522 | 1.00000000 | ⋯ | 0.359087857 | 0.1816427966 | -0.46586422 | -0.34713213 | 0.08891632 | 0.439654954 | 0.80803001 | 0.26081266 | -0.19176042 | -0.069422773 |
\n",
"\tlocal_knowledge | 0.42604982 | 0.453075887 | -0.33707442 | -0.086558180 | 0.47484750 | 0.13940285 | 0.55855872 | 0.70132633 | 0.16908401 | -0.17722844 | ⋯ | -0.344220134 | 0.3930076266 | 0.47504867 | 0.52088805 | 0.76986598 | 0.706907540 | -0.06089854 | 0.67454294 | 0.54754029 | 0.761204213 |
\n",
"\ttenure | 0.19893150 | 0.200527443 | -0.26872461 | -0.138932327 | 0.01728583 | 0.58359421 | 0.19886232 | 0.19663693 | 0.25030330 | -0.15646775 | ⋯ | -0.249652474 | 0.2445553823 | 0.54975446 | 0.01348079 | 0.68961198 | 0.128269631 | -0.06156210 | 0.63113802 | 0.50565219 | 0.549539325 |
\n",
"\tsocial_network | -0.54832658 | -0.596400846 | 0.56092053 | 0.579507014 | -0.10434554 | -0.63359601 | -0.75663382 | -0.20158389 | -0.44454259 | 0.35908786 | ⋯ | 1.000000000 | -0.0494088961 | -0.40120270 | -0.09327390 | -0.38253686 | 0.226944393 | 0.68461214 | 0.04498125 | -0.29044958 | -0.137323581 |
\n",
"\thousing_characteristics | 0.10505797 | 0.091155756 | -0.09769664 | 0.046467739 | 0.11406251 | 0.23694249 | 0.08292949 | 0.25432918 | -0.09983298 | 0.18164280 | ⋯ | -0.049408896 | 1.0000000000 | 0.26356151 | 0.13299007 | 0.49313913 | 0.486775885 | 0.27094304 | 0.51053624 | 0.77979729 | 0.650035629 |
\n",
"\tphysical_environment | 0.35289264 | 0.388099588 | -0.36515398 | -0.014933172 | 0.31311428 | 0.42875198 | 0.51345917 | 0.52983989 | 0.45902384 | -0.46586422 | ⋯ | -0.401202696 | 0.2635615089 | 1.00000000 | 0.35686743 | 0.53128199 | 0.126104958 | -0.32487143 | 0.39044819 | 0.80942177 | 0.677580930 |
\n",
"\tsensitivity | 0.41094687 | 0.438297216 | -0.11579601 | 0.124476818 | 0.91574394 | -0.09694488 | 0.45794746 | 0.66236418 | 0.18194667 | -0.34713213 | ⋯ | -0.093273903 | 0.1329900657 | 0.35686743 | 1.00000000 | 0.26563892 | 0.303382929 | -0.12321838 | 0.24444113 | 0.31255713 | 0.599884974 |
\n",
"\tprepare | 0.34499285 | 0.354235222 | -0.32214094 | -0.165913736 | 0.24743845 | 0.50291888 | 0.38170650 | 0.51846520 | 0.08596680 | 0.08891632 | ⋯ | -0.382536861 | 0.4931391345 | 0.53128199 | 0.26563892 | 1.00000000 | 0.690091341 | 0.15896290 | 0.90579806 | 0.64498971 | 0.835927532 |
\n",
"\trespond | 0.02040882 | 0.003914884 | 0.06593306 | 0.204713854 | 0.26914837 | -0.07233069 | -0.05092846 | 0.46508270 | -0.31168393 | 0.43965495 | ⋯ | 0.226944393 | 0.4867758850 | 0.12610496 | 0.30338293 | 0.69009134 | 1.000000000 | 0.66294354 | 0.85021883 | 0.37816498 | 0.702116874 |
\n",
"\trecover | -0.42216457 | -0.474047225 | 0.44983077 | 0.380510515 | -0.12279689 | -0.24962760 | -0.66309316 | -0.08601945 | -0.61881770 | 0.80803001 | ⋯ | 0.684612142 | 0.2709430415 | -0.32487143 | -0.12321838 | 0.15896290 | 0.662943544 | 1.00000000 | 0.48583097 | -0.04589749 | 0.185101540 |
\n",
"\tadaptive_capacity | 0.12155807 | 0.109504790 | -0.09107455 | 0.086365882 | 0.21968497 | 0.25320804 | 0.06572621 | 0.46813351 | -0.11091324 | 0.26081266 | ⋯ | 0.044981247 | 0.5105362367 | 0.39044819 | 0.24444113 | 0.90579806 | 0.850218830 | 0.48583097 | 1.00000000 | 0.56418215 | 0.840851042 |
\n",
"\tenhanced_exposure | 0.29297386 | 0.307359416 | -0.29644999 | 0.018596006 | 0.27264011 | 0.42248985 | 0.38370731 | 0.49867787 | 0.23712302 | -0.19176042 | ⋯ | -0.290449581 | 0.7797972928 | 0.80942177 | 0.31255713 | 0.64498971 | 0.378164977 | -0.04589749 | 0.56418215 | 1.00000000 | 0.835445536 |
\n",
"\tsocial_vulnerability | 0.33018312 | 0.339651432 | -0.21674113 | 0.094105996 | 0.54120524 | 0.28332714 | 0.35786294 | 0.68230000 | 0.11005613 | -0.06942277 | ⋯ | -0.137323581 | 0.6500356288 | 0.67758093 | 0.59988497 | 0.83592753 | 0.702116874 | 0.18510154 | 0.84085104 | 0.83544554 | 1.000000000 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A matrix: 33 × 33 of type dbl\n",
"\\begin{tabular}{r|lllllllllllllllllllll}\n",
" & early\\_childhood\\_boy & early\\_childhood\\_girl & age\\_middle\\_to\\_oldest\\_old\\_male & age\\_middle\\_to\\_oldest\\_old\\_female & disability & one\\_parent\\_households & dependants & unemployment & attending\\_university & no\\_higher\\_education & ⋯ & social\\_network & housing\\_characteristics & physical\\_environment & sensitivity & prepare & respond & recover & adaptive\\_capacity & enhanced\\_exposure & social\\_vulnerability\\\\\n",
"\\hline\n",
"\tearly\\_childhood\\_boy & 1.00000000 & 0.759540053 & -0.44979947 & -0.372631631 & 0.23018526 & 0.33038590 & 0.67057589 & 0.35614054 & 0.23694332 & -0.36085632 & ⋯ & -0.548326585 & 0.1050579664 & 0.35289264 & 0.41094687 & 0.34499285 & 0.020408818 & -0.42216457 & 0.12155807 & 0.29297386 & 0.330183124\\\\\n",
"\tearly\\_childhood\\_girl & 0.75954005 & 1.000000000 & -0.46707295 & -0.365530974 & 0.26364051 & 0.33986362 & 0.69435577 & 0.36004951 & 0.29591717 & -0.39610178 & ⋯ & -0.596400846 & 0.0911557556 & 0.38809959 & 0.43829722 & 0.35423522 & 0.003914884 & -0.47404722 & 0.10950479 & 0.30735942 & 0.339651432\\\\\n",
"\tage\\_middle\\_to\\_oldest\\_old\\_male & -0.44979947 & -0.467072951 & 1.00000000 & 0.554816775 & -0.29036166 & -0.45598571 & -0.62497380 & -0.34357715 & -0.42706479 & 0.43854968 & ⋯ & 0.560920526 & -0.0976966424 & -0.36515398 & -0.11579601 & -0.32214094 & 0.065933061 & 0.44983077 & -0.09107455 & -0.29644999 & -0.216741127\\\\\n",
"\tage\\_middle\\_to\\_oldest\\_old\\_female & -0.37263163 & -0.365530974 & 0.55481678 & 1.000000000 & -0.06347671 & -0.45546676 & -0.45061486 & -0.01977655 & -0.24756632 & 0.18899810 & ⋯ & 0.579507014 & 0.0464677389 & -0.01493317 & 0.12447682 & -0.16591374 & 0.204713854 & 0.38051051 & 0.08636588 & 0.01859601 & 0.094105996\\\\\n",
"\tdisability & 0.23018526 & 0.263640512 & -0.29036166 & -0.063476710 & 1.00000000 & -0.04926880 & 0.44524799 & 0.66041158 & 0.24108336 & -0.35998489 & ⋯ & -0.104345540 & 0.1140625145 & 0.31311428 & 0.91574394 & 0.24743845 & 0.269148367 & -0.12279689 & 0.21968497 & 0.27264011 & 0.541205238\\\\\n",
"\tone\\_parent\\_households & 0.33038590 & 0.339863620 & -0.45598571 & -0.455466763 & -0.04926880 & 1.00000000 & 0.44098288 & 0.08855721 & 0.41209063 & -0.20215971 & ⋯ & -0.633596005 & 0.2369424946 & 0.42875198 & -0.09694488 & 0.50291888 & -0.072330693 & -0.24962760 & 0.25320804 & 0.42248985 & 0.283327135\\\\\n",
"\tdependants & 0.67057589 & 0.694355771 & -0.62497380 & -0.450614861 & 0.44524799 & 0.44098288 & 1.00000000 & 0.56720146 & 0.55171806 & -0.66446988 & ⋯ & -0.756633822 & 0.0829294936 & 0.51345917 & 0.45794746 & 0.38170650 & -0.050928458 & -0.66309316 & 0.06572621 & 0.38370731 & 0.357862941\\\\\n",
"\tunemployment & 0.35614054 & 0.360049506 & -0.34357715 & -0.019776546 & 0.66041158 & 0.08855721 & 0.56720146 & 1.00000000 & 0.33617823 & -0.41956319 & ⋯ & -0.201583893 & 0.2543291753 & 0.52983989 & 0.66236418 & 0.51846520 & 0.465082702 & -0.08601945 & 0.46813351 & 0.49867787 & 0.682300003\\\\\n",
"\tattending\\_university & 0.23694332 & 0.295917170 & -0.42706479 & -0.247566321 & 0.24108336 & 0.41209063 & 0.55171806 & 0.33617823 & 1.00000000 & -0.80231522 & ⋯ & -0.444542590 & -0.0998329821 & 0.45902384 & 0.18194667 & 0.08596680 & -0.311683928 & -0.61881770 & -0.11091324 & 0.23712302 & 0.110056131\\\\\n",
"\tno\\_higher\\_education & -0.36085632 & -0.396101779 & 0.43854968 & 0.188998102 & -0.35998489 & -0.20215971 & -0.66446988 & -0.41956319 & -0.80231522 & 1.00000000 & ⋯ & 0.359087857 & 0.1816427966 & -0.46586422 & -0.34713213 & 0.08891632 & 0.439654954 & 0.80803001 & 0.26081266 & -0.19176042 & -0.069422773\\\\\n",
"\tforeign\\_nationals & 0.42604982 & 0.453075887 & -0.33707442 & -0.086558180 & 0.47484750 & 0.13940285 & 0.55855872 & 0.70132633 & 0.16908401 & -0.17722844 & ⋯ & -0.344220134 & 0.3930076266 & 0.47504867 & 0.52088805 & 0.76986598 & 0.706907540 & -0.06089854 & 0.67454294 & 0.54754029 & 0.761204213\\\\\n",
"\trented & 0.19893150 & 0.200527443 & -0.26872461 & -0.138932327 & 0.01728583 & 0.58359421 & 0.19886232 & 0.19663693 & 0.25030330 & -0.15646775 & ⋯ & -0.249652474 & 0.2445553823 & 0.54975446 & 0.01348079 & 0.68961198 & 0.128269631 & -0.06156210 & 0.63113802 & 0.50565219 & 0.549539325\\\\\n",
"\tprimary\\_school\\_age & -0.65679028 & -0.690484814 & 0.55898237 & 0.504557789 & -0.28672716 & -0.40852694 & -0.84126926 & -0.35945994 & -0.38544019 & 0.50117885 & ⋯ & 0.839691152 & -0.0764614131 & -0.39566986 & -0.31645101 & -0.31384459 & 0.191164019 & 0.70772433 & 0.04573707 & -0.30332716 & -0.217873743\\\\\n",
"\tone\\_person\\_households & -0.22156559 & -0.267393210 & 0.35142193 & 0.443686124 & 0.13659002 & -0.64327666 & -0.37761112 & 0.04895747 & -0.34213141 & 0.06656413 & ⋯ & 0.799861106 & -0.0008684821 & -0.25593992 & 0.18857068 & -0.31411959 & 0.180859976 & 0.40075833 & 0.02717408 & -0.16662814 & 0.003512541\\\\\n",
"\tyear\\_built & 0.10505797 & 0.091155756 & -0.09769664 & 0.046467739 & 0.11406251 & 0.23694249 & 0.08292949 & 0.25432918 & -0.09983298 & 0.18164280 & ⋯ & -0.049408896 & 1.0000000000 & 0.26356151 & 0.13299007 & 0.49313913 & 0.486775885 & 0.27094304 & 0.51053624 & 0.77979729 & 0.650035629\\\\\n",
"\ttree\\_cover\\_density & 0.38502113 & 0.414558106 & -0.31956017 & -0.025669031 & 0.29130747 & 0.29541420 & 0.53298471 & 0.42060960 & 0.34500674 & -0.38288149 & ⋯ & -0.428694837 & 0.1803864548 & 0.87274526 & 0.35824276 & 0.36450898 & 0.087039689 & -0.34561834 & 0.19752132 & 0.67620326 & 0.520913738\\\\\n",
"\timpervious & 0.20875349 & 0.239541111 & -0.30448896 & 0.001689509 & 0.24169082 & 0.44708573 & 0.33428776 & 0.49015701 & 0.44640218 & -0.41631699 & ⋯ & -0.247471063 & 0.2761895237 & 0.83655012 & 0.24602585 & 0.55573889 & 0.131326510 & -0.20208813 & 0.48739139 & 0.71103367 & 0.645888772\\\\\n",
"\tage & 0.51441045 & 0.508826242 & 0.35018899 & 0.448288787 & 0.07684377 & -0.13240437 & 0.15883005 & 0.19368368 & -0.07782264 & -0.07103765 & ⋯ & -0.002360354 & 0.0795870159 & 0.19811287 & 0.47094367 & 0.11592014 & 0.161919237 & -0.03615852 & 0.12425339 & 0.17701967 & 0.300376066\\\\\n",
"\thealth & 0.23018526 & 0.263640512 & -0.29036166 & -0.063476710 & 1.00000000 & -0.04926880 & 0.44524799 & 0.66041158 & 0.24108336 & -0.35998489 & ⋯ & -0.104345540 & 0.1140625145 & 0.31311428 & 0.91574394 & 0.24743845 & 0.269148367 & -0.12279689 & 0.21968497 & 0.27264011 & 0.541205238\\\\\n",
"\tincome & 0.53809505 & 0.570891186 & -0.62267021 & -0.389151337 & 0.44841072 & 0.63584339 & 0.86707123 & 0.68303775 & 0.77851407 & -0.71256967 & ⋯ & -0.680471207 & 0.1555872409 & 0.65093009 & 0.41823692 & 0.49628699 & 0.012749347 & -0.54883841 & 0.22454098 & 0.51715347 & 0.484368003\\\\\n",
"\tinfo\\_access\\_use & -0.36085632 & -0.396101779 & 0.43854968 & 0.188998102 & -0.35998489 & -0.20215971 & -0.66446988 & -0.41956319 & -0.80231522 & 1.00000000 & ⋯ & 0.359087857 & 0.1816427966 & -0.46586422 & -0.34713213 & 0.08891632 & 0.439654954 & 0.80803001 & 0.26081266 & -0.19176042 & -0.069422773\\\\\n",
"\tlocal\\_knowledge & 0.42604982 & 0.453075887 & -0.33707442 & -0.086558180 & 0.47484750 & 0.13940285 & 0.55855872 & 0.70132633 & 0.16908401 & -0.17722844 & ⋯ & -0.344220134 & 0.3930076266 & 0.47504867 & 0.52088805 & 0.76986598 & 0.706907540 & -0.06089854 & 0.67454294 & 0.54754029 & 0.761204213\\\\\n",
"\ttenure & 0.19893150 & 0.200527443 & -0.26872461 & -0.138932327 & 0.01728583 & 0.58359421 & 0.19886232 & 0.19663693 & 0.25030330 & -0.15646775 & ⋯ & -0.249652474 & 0.2445553823 & 0.54975446 & 0.01348079 & 0.68961198 & 0.128269631 & -0.06156210 & 0.63113802 & 0.50565219 & 0.549539325\\\\\n",
"\tsocial\\_network & -0.54832658 & -0.596400846 & 0.56092053 & 0.579507014 & -0.10434554 & -0.63359601 & -0.75663382 & -0.20158389 & -0.44454259 & 0.35908786 & ⋯ & 1.000000000 & -0.0494088961 & -0.40120270 & -0.09327390 & -0.38253686 & 0.226944393 & 0.68461214 & 0.04498125 & -0.29044958 & -0.137323581\\\\\n",
"\thousing\\_characteristics & 0.10505797 & 0.091155756 & -0.09769664 & 0.046467739 & 0.11406251 & 0.23694249 & 0.08292949 & 0.25432918 & -0.09983298 & 0.18164280 & ⋯ & -0.049408896 & 1.0000000000 & 0.26356151 & 0.13299007 & 0.49313913 & 0.486775885 & 0.27094304 & 0.51053624 & 0.77979729 & 0.650035629\\\\\n",
"\tphysical\\_environment & 0.35289264 & 0.388099588 & -0.36515398 & -0.014933172 & 0.31311428 & 0.42875198 & 0.51345917 & 0.52983989 & 0.45902384 & -0.46586422 & ⋯ & -0.401202696 & 0.2635615089 & 1.00000000 & 0.35686743 & 0.53128199 & 0.126104958 & -0.32487143 & 0.39044819 & 0.80942177 & 0.677580930\\\\\n",
"\tsensitivity & 0.41094687 & 0.438297216 & -0.11579601 & 0.124476818 & 0.91574394 & -0.09694488 & 0.45794746 & 0.66236418 & 0.18194667 & -0.34713213 & ⋯ & -0.093273903 & 0.1329900657 & 0.35686743 & 1.00000000 & 0.26563892 & 0.303382929 & -0.12321838 & 0.24444113 & 0.31255713 & 0.599884974\\\\\n",
"\tprepare & 0.34499285 & 0.354235222 & -0.32214094 & -0.165913736 & 0.24743845 & 0.50291888 & 0.38170650 & 0.51846520 & 0.08596680 & 0.08891632 & ⋯ & -0.382536861 & 0.4931391345 & 0.53128199 & 0.26563892 & 1.00000000 & 0.690091341 & 0.15896290 & 0.90579806 & 0.64498971 & 0.835927532\\\\\n",
"\trespond & 0.02040882 & 0.003914884 & 0.06593306 & 0.204713854 & 0.26914837 & -0.07233069 & -0.05092846 & 0.46508270 & -0.31168393 & 0.43965495 & ⋯ & 0.226944393 & 0.4867758850 & 0.12610496 & 0.30338293 & 0.69009134 & 1.000000000 & 0.66294354 & 0.85021883 & 0.37816498 & 0.702116874\\\\\n",
"\trecover & -0.42216457 & -0.474047225 & 0.44983077 & 0.380510515 & -0.12279689 & -0.24962760 & -0.66309316 & -0.08601945 & -0.61881770 & 0.80803001 & ⋯ & 0.684612142 & 0.2709430415 & -0.32487143 & -0.12321838 & 0.15896290 & 0.662943544 & 1.00000000 & 0.48583097 & -0.04589749 & 0.185101540\\\\\n",
"\tadaptive\\_capacity & 0.12155807 & 0.109504790 & -0.09107455 & 0.086365882 & 0.21968497 & 0.25320804 & 0.06572621 & 0.46813351 & -0.11091324 & 0.26081266 & ⋯ & 0.044981247 & 0.5105362367 & 0.39044819 & 0.24444113 & 0.90579806 & 0.850218830 & 0.48583097 & 1.00000000 & 0.56418215 & 0.840851042\\\\\n",
"\tenhanced\\_exposure & 0.29297386 & 0.307359416 & -0.29644999 & 0.018596006 & 0.27264011 & 0.42248985 & 0.38370731 & 0.49867787 & 0.23712302 & -0.19176042 & ⋯ & -0.290449581 & 0.7797972928 & 0.80942177 & 0.31255713 & 0.64498971 & 0.378164977 & -0.04589749 & 0.56418215 & 1.00000000 & 0.835445536\\\\\n",
"\tsocial\\_vulnerability & 0.33018312 & 0.339651432 & -0.21674113 & 0.094105996 & 0.54120524 & 0.28332714 & 0.35786294 & 0.68230000 & 0.11005613 & -0.06942277 & ⋯ & -0.137323581 & 0.6500356288 & 0.67758093 & 0.59988497 & 0.83592753 & 0.702116874 & 0.18510154 & 0.84085104 & 0.83544554 & 1.000000000\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A matrix: 33 × 33 of type dbl\n",
"\n",
"| | early_childhood_boy | early_childhood_girl | age_middle_to_oldest_old_male | age_middle_to_oldest_old_female | disability | one_parent_households | dependants | unemployment | attending_university | no_higher_education | ⋯ | social_network | housing_characteristics | physical_environment | sensitivity | prepare | respond | recover | adaptive_capacity | enhanced_exposure | social_vulnerability |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| early_childhood_boy | 1.00000000 | 0.759540053 | -0.44979947 | -0.372631631 | 0.23018526 | 0.33038590 | 0.67057589 | 0.35614054 | 0.23694332 | -0.36085632 | ⋯ | -0.548326585 | 0.1050579664 | 0.35289264 | 0.41094687 | 0.34499285 | 0.020408818 | -0.42216457 | 0.12155807 | 0.29297386 | 0.330183124 |\n",
"| early_childhood_girl | 0.75954005 | 1.000000000 | -0.46707295 | -0.365530974 | 0.26364051 | 0.33986362 | 0.69435577 | 0.36004951 | 0.29591717 | -0.39610178 | ⋯ | -0.596400846 | 0.0911557556 | 0.38809959 | 0.43829722 | 0.35423522 | 0.003914884 | -0.47404722 | 0.10950479 | 0.30735942 | 0.339651432 |\n",
"| age_middle_to_oldest_old_male | -0.44979947 | -0.467072951 | 1.00000000 | 0.554816775 | -0.29036166 | -0.45598571 | -0.62497380 | -0.34357715 | -0.42706479 | 0.43854968 | ⋯ | 0.560920526 | -0.0976966424 | -0.36515398 | -0.11579601 | -0.32214094 | 0.065933061 | 0.44983077 | -0.09107455 | -0.29644999 | -0.216741127 |\n",
"| age_middle_to_oldest_old_female | -0.37263163 | -0.365530974 | 0.55481678 | 1.000000000 | -0.06347671 | -0.45546676 | -0.45061486 | -0.01977655 | -0.24756632 | 0.18899810 | ⋯ | 0.579507014 | 0.0464677389 | -0.01493317 | 0.12447682 | -0.16591374 | 0.204713854 | 0.38051051 | 0.08636588 | 0.01859601 | 0.094105996 |\n",
"| disability | 0.23018526 | 0.263640512 | -0.29036166 | -0.063476710 | 1.00000000 | -0.04926880 | 0.44524799 | 0.66041158 | 0.24108336 | -0.35998489 | ⋯ | -0.104345540 | 0.1140625145 | 0.31311428 | 0.91574394 | 0.24743845 | 0.269148367 | -0.12279689 | 0.21968497 | 0.27264011 | 0.541205238 |\n",
"| one_parent_households | 0.33038590 | 0.339863620 | -0.45598571 | -0.455466763 | -0.04926880 | 1.00000000 | 0.44098288 | 0.08855721 | 0.41209063 | -0.20215971 | ⋯ | -0.633596005 | 0.2369424946 | 0.42875198 | -0.09694488 | 0.50291888 | -0.072330693 | -0.24962760 | 0.25320804 | 0.42248985 | 0.283327135 |\n",
"| dependants | 0.67057589 | 0.694355771 | -0.62497380 | -0.450614861 | 0.44524799 | 0.44098288 | 1.00000000 | 0.56720146 | 0.55171806 | -0.66446988 | ⋯ | -0.756633822 | 0.0829294936 | 0.51345917 | 0.45794746 | 0.38170650 | -0.050928458 | -0.66309316 | 0.06572621 | 0.38370731 | 0.357862941 |\n",
"| unemployment | 0.35614054 | 0.360049506 | -0.34357715 | -0.019776546 | 0.66041158 | 0.08855721 | 0.56720146 | 1.00000000 | 0.33617823 | -0.41956319 | ⋯ | -0.201583893 | 0.2543291753 | 0.52983989 | 0.66236418 | 0.51846520 | 0.465082702 | -0.08601945 | 0.46813351 | 0.49867787 | 0.682300003 |\n",
"| attending_university | 0.23694332 | 0.295917170 | -0.42706479 | -0.247566321 | 0.24108336 | 0.41209063 | 0.55171806 | 0.33617823 | 1.00000000 | -0.80231522 | ⋯ | -0.444542590 | -0.0998329821 | 0.45902384 | 0.18194667 | 0.08596680 | -0.311683928 | -0.61881770 | -0.11091324 | 0.23712302 | 0.110056131 |\n",
"| no_higher_education | -0.36085632 | -0.396101779 | 0.43854968 | 0.188998102 | -0.35998489 | -0.20215971 | -0.66446988 | -0.41956319 | -0.80231522 | 1.00000000 | ⋯ | 0.359087857 | 0.1816427966 | -0.46586422 | -0.34713213 | 0.08891632 | 0.439654954 | 0.80803001 | 0.26081266 | -0.19176042 | -0.069422773 |\n",
"| foreign_nationals | 0.42604982 | 0.453075887 | -0.33707442 | -0.086558180 | 0.47484750 | 0.13940285 | 0.55855872 | 0.70132633 | 0.16908401 | -0.17722844 | ⋯ | -0.344220134 | 0.3930076266 | 0.47504867 | 0.52088805 | 0.76986598 | 0.706907540 | -0.06089854 | 0.67454294 | 0.54754029 | 0.761204213 |\n",
"| rented | 0.19893150 | 0.200527443 | -0.26872461 | -0.138932327 | 0.01728583 | 0.58359421 | 0.19886232 | 0.19663693 | 0.25030330 | -0.15646775 | ⋯ | -0.249652474 | 0.2445553823 | 0.54975446 | 0.01348079 | 0.68961198 | 0.128269631 | -0.06156210 | 0.63113802 | 0.50565219 | 0.549539325 |\n",
"| primary_school_age | -0.65679028 | -0.690484814 | 0.55898237 | 0.504557789 | -0.28672716 | -0.40852694 | -0.84126926 | -0.35945994 | -0.38544019 | 0.50117885 | ⋯ | 0.839691152 | -0.0764614131 | -0.39566986 | -0.31645101 | -0.31384459 | 0.191164019 | 0.70772433 | 0.04573707 | -0.30332716 | -0.217873743 |\n",
"| one_person_households | -0.22156559 | -0.267393210 | 0.35142193 | 0.443686124 | 0.13659002 | -0.64327666 | -0.37761112 | 0.04895747 | -0.34213141 | 0.06656413 | ⋯ | 0.799861106 | -0.0008684821 | -0.25593992 | 0.18857068 | -0.31411959 | 0.180859976 | 0.40075833 | 0.02717408 | -0.16662814 | 0.003512541 |\n",
"| year_built | 0.10505797 | 0.091155756 | -0.09769664 | 0.046467739 | 0.11406251 | 0.23694249 | 0.08292949 | 0.25432918 | -0.09983298 | 0.18164280 | ⋯ | -0.049408896 | 1.0000000000 | 0.26356151 | 0.13299007 | 0.49313913 | 0.486775885 | 0.27094304 | 0.51053624 | 0.77979729 | 0.650035629 |\n",
"| tree_cover_density | 0.38502113 | 0.414558106 | -0.31956017 | -0.025669031 | 0.29130747 | 0.29541420 | 0.53298471 | 0.42060960 | 0.34500674 | -0.38288149 | ⋯ | -0.428694837 | 0.1803864548 | 0.87274526 | 0.35824276 | 0.36450898 | 0.087039689 | -0.34561834 | 0.19752132 | 0.67620326 | 0.520913738 |\n",
"| impervious | 0.20875349 | 0.239541111 | -0.30448896 | 0.001689509 | 0.24169082 | 0.44708573 | 0.33428776 | 0.49015701 | 0.44640218 | -0.41631699 | ⋯ | -0.247471063 | 0.2761895237 | 0.83655012 | 0.24602585 | 0.55573889 | 0.131326510 | -0.20208813 | 0.48739139 | 0.71103367 | 0.645888772 |\n",
"| age | 0.51441045 | 0.508826242 | 0.35018899 | 0.448288787 | 0.07684377 | -0.13240437 | 0.15883005 | 0.19368368 | -0.07782264 | -0.07103765 | ⋯ | -0.002360354 | 0.0795870159 | 0.19811287 | 0.47094367 | 0.11592014 | 0.161919237 | -0.03615852 | 0.12425339 | 0.17701967 | 0.300376066 |\n",
"| health | 0.23018526 | 0.263640512 | -0.29036166 | -0.063476710 | 1.00000000 | -0.04926880 | 0.44524799 | 0.66041158 | 0.24108336 | -0.35998489 | ⋯ | -0.104345540 | 0.1140625145 | 0.31311428 | 0.91574394 | 0.24743845 | 0.269148367 | -0.12279689 | 0.21968497 | 0.27264011 | 0.541205238 |\n",
"| income | 0.53809505 | 0.570891186 | -0.62267021 | -0.389151337 | 0.44841072 | 0.63584339 | 0.86707123 | 0.68303775 | 0.77851407 | -0.71256967 | ⋯ | -0.680471207 | 0.1555872409 | 0.65093009 | 0.41823692 | 0.49628699 | 0.012749347 | -0.54883841 | 0.22454098 | 0.51715347 | 0.484368003 |\n",
"| info_access_use | -0.36085632 | -0.396101779 | 0.43854968 | 0.188998102 | -0.35998489 | -0.20215971 | -0.66446988 | -0.41956319 | -0.80231522 | 1.00000000 | ⋯ | 0.359087857 | 0.1816427966 | -0.46586422 | -0.34713213 | 0.08891632 | 0.439654954 | 0.80803001 | 0.26081266 | -0.19176042 | -0.069422773 |\n",
"| local_knowledge | 0.42604982 | 0.453075887 | -0.33707442 | -0.086558180 | 0.47484750 | 0.13940285 | 0.55855872 | 0.70132633 | 0.16908401 | -0.17722844 | ⋯ | -0.344220134 | 0.3930076266 | 0.47504867 | 0.52088805 | 0.76986598 | 0.706907540 | -0.06089854 | 0.67454294 | 0.54754029 | 0.761204213 |\n",
"| tenure | 0.19893150 | 0.200527443 | -0.26872461 | -0.138932327 | 0.01728583 | 0.58359421 | 0.19886232 | 0.19663693 | 0.25030330 | -0.15646775 | ⋯ | -0.249652474 | 0.2445553823 | 0.54975446 | 0.01348079 | 0.68961198 | 0.128269631 | -0.06156210 | 0.63113802 | 0.50565219 | 0.549539325 |\n",
"| social_network | -0.54832658 | -0.596400846 | 0.56092053 | 0.579507014 | -0.10434554 | -0.63359601 | -0.75663382 | -0.20158389 | -0.44454259 | 0.35908786 | ⋯ | 1.000000000 | -0.0494088961 | -0.40120270 | -0.09327390 | -0.38253686 | 0.226944393 | 0.68461214 | 0.04498125 | -0.29044958 | -0.137323581 |\n",
"| housing_characteristics | 0.10505797 | 0.091155756 | -0.09769664 | 0.046467739 | 0.11406251 | 0.23694249 | 0.08292949 | 0.25432918 | -0.09983298 | 0.18164280 | ⋯ | -0.049408896 | 1.0000000000 | 0.26356151 | 0.13299007 | 0.49313913 | 0.486775885 | 0.27094304 | 0.51053624 | 0.77979729 | 0.650035629 |\n",
"| physical_environment | 0.35289264 | 0.388099588 | -0.36515398 | -0.014933172 | 0.31311428 | 0.42875198 | 0.51345917 | 0.52983989 | 0.45902384 | -0.46586422 | ⋯ | -0.401202696 | 0.2635615089 | 1.00000000 | 0.35686743 | 0.53128199 | 0.126104958 | -0.32487143 | 0.39044819 | 0.80942177 | 0.677580930 |\n",
"| sensitivity | 0.41094687 | 0.438297216 | -0.11579601 | 0.124476818 | 0.91574394 | -0.09694488 | 0.45794746 | 0.66236418 | 0.18194667 | -0.34713213 | ⋯ | -0.093273903 | 0.1329900657 | 0.35686743 | 1.00000000 | 0.26563892 | 0.303382929 | -0.12321838 | 0.24444113 | 0.31255713 | 0.599884974 |\n",
"| prepare | 0.34499285 | 0.354235222 | -0.32214094 | -0.165913736 | 0.24743845 | 0.50291888 | 0.38170650 | 0.51846520 | 0.08596680 | 0.08891632 | ⋯ | -0.382536861 | 0.4931391345 | 0.53128199 | 0.26563892 | 1.00000000 | 0.690091341 | 0.15896290 | 0.90579806 | 0.64498971 | 0.835927532 |\n",
"| respond | 0.02040882 | 0.003914884 | 0.06593306 | 0.204713854 | 0.26914837 | -0.07233069 | -0.05092846 | 0.46508270 | -0.31168393 | 0.43965495 | ⋯ | 0.226944393 | 0.4867758850 | 0.12610496 | 0.30338293 | 0.69009134 | 1.000000000 | 0.66294354 | 0.85021883 | 0.37816498 | 0.702116874 |\n",
"| recover | -0.42216457 | -0.474047225 | 0.44983077 | 0.380510515 | -0.12279689 | -0.24962760 | -0.66309316 | -0.08601945 | -0.61881770 | 0.80803001 | ⋯ | 0.684612142 | 0.2709430415 | -0.32487143 | -0.12321838 | 0.15896290 | 0.662943544 | 1.00000000 | 0.48583097 | -0.04589749 | 0.185101540 |\n",
"| adaptive_capacity | 0.12155807 | 0.109504790 | -0.09107455 | 0.086365882 | 0.21968497 | 0.25320804 | 0.06572621 | 0.46813351 | -0.11091324 | 0.26081266 | ⋯ | 0.044981247 | 0.5105362367 | 0.39044819 | 0.24444113 | 0.90579806 | 0.850218830 | 0.48583097 | 1.00000000 | 0.56418215 | 0.840851042 |\n",
"| enhanced_exposure | 0.29297386 | 0.307359416 | -0.29644999 | 0.018596006 | 0.27264011 | 0.42248985 | 0.38370731 | 0.49867787 | 0.23712302 | -0.19176042 | ⋯ | -0.290449581 | 0.7797972928 | 0.80942177 | 0.31255713 | 0.64498971 | 0.378164977 | -0.04589749 | 0.56418215 | 1.00000000 | 0.835445536 |\n",
"| social_vulnerability | 0.33018312 | 0.339651432 | -0.21674113 | 0.094105996 | 0.54120524 | 0.28332714 | 0.35786294 | 0.68230000 | 0.11005613 | -0.06942277 | ⋯ | -0.137323581 | 0.6500356288 | 0.67758093 | 0.59988497 | 0.83592753 | 0.702116874 | 0.18510154 | 0.84085104 | 0.83544554 | 1.000000000 |\n",
"\n"
],
"text/plain": [
" early_childhood_boy early_childhood_girl\n",
"early_childhood_boy 1.00000000 0.759540053 \n",
"early_childhood_girl 0.75954005 1.000000000 \n",
"age_middle_to_oldest_old_male -0.44979947 -0.467072951 \n",
"age_middle_to_oldest_old_female -0.37263163 -0.365530974 \n",
"disability 0.23018526 0.263640512 \n",
"one_parent_households 0.33038590 0.339863620 \n",
"dependants 0.67057589 0.694355771 \n",
"unemployment 0.35614054 0.360049506 \n",
"attending_university 0.23694332 0.295917170 \n",
"no_higher_education -0.36085632 -0.396101779 \n",
"foreign_nationals 0.42604982 0.453075887 \n",
"rented 0.19893150 0.200527443 \n",
"primary_school_age -0.65679028 -0.690484814 \n",
"one_person_households -0.22156559 -0.267393210 \n",
"year_built 0.10505797 0.091155756 \n",
"tree_cover_density 0.38502113 0.414558106 \n",
"impervious 0.20875349 0.239541111 \n",
"age 0.51441045 0.508826242 \n",
"health 0.23018526 0.263640512 \n",
"income 0.53809505 0.570891186 \n",
"info_access_use -0.36085632 -0.396101779 \n",
"local_knowledge 0.42604982 0.453075887 \n",
"tenure 0.19893150 0.200527443 \n",
"social_network -0.54832658 -0.596400846 \n",
"housing_characteristics 0.10505797 0.091155756 \n",
"physical_environment 0.35289264 0.388099588 \n",
"sensitivity 0.41094687 0.438297216 \n",
"prepare 0.34499285 0.354235222 \n",
"respond 0.02040882 0.003914884 \n",
"recover -0.42216457 -0.474047225 \n",
"adaptive_capacity 0.12155807 0.109504790 \n",
"enhanced_exposure 0.29297386 0.307359416 \n",
"social_vulnerability 0.33018312 0.339651432 \n",
" age_middle_to_oldest_old_male\n",
"early_childhood_boy -0.44979947 \n",
"early_childhood_girl -0.46707295 \n",
"age_middle_to_oldest_old_male 1.00000000 \n",
"age_middle_to_oldest_old_female 0.55481678 \n",
"disability -0.29036166 \n",
"one_parent_households -0.45598571 \n",
"dependants -0.62497380 \n",
"unemployment -0.34357715 \n",
"attending_university -0.42706479 \n",
"no_higher_education 0.43854968 \n",
"foreign_nationals -0.33707442 \n",
"rented -0.26872461 \n",
"primary_school_age 0.55898237 \n",
"one_person_households 0.35142193 \n",
"year_built -0.09769664 \n",
"tree_cover_density -0.31956017 \n",
"impervious -0.30448896 \n",
"age 0.35018899 \n",
"health -0.29036166 \n",
"income -0.62267021 \n",
"info_access_use 0.43854968 \n",
"local_knowledge -0.33707442 \n",
"tenure -0.26872461 \n",
"social_network 0.56092053 \n",
"housing_characteristics -0.09769664 \n",
"physical_environment -0.36515398 \n",
"sensitivity -0.11579601 \n",
"prepare -0.32214094 \n",
"respond 0.06593306 \n",
"recover 0.44983077 \n",
"adaptive_capacity -0.09107455 \n",
"enhanced_exposure -0.29644999 \n",
"social_vulnerability -0.21674113 \n",
" age_middle_to_oldest_old_female disability \n",
"early_childhood_boy -0.372631631 0.23018526\n",
"early_childhood_girl -0.365530974 0.26364051\n",
"age_middle_to_oldest_old_male 0.554816775 -0.29036166\n",
"age_middle_to_oldest_old_female 1.000000000 -0.06347671\n",
"disability -0.063476710 1.00000000\n",
"one_parent_households -0.455466763 -0.04926880\n",
"dependants -0.450614861 0.44524799\n",
"unemployment -0.019776546 0.66041158\n",
"attending_university -0.247566321 0.24108336\n",
"no_higher_education 0.188998102 -0.35998489\n",
"foreign_nationals -0.086558180 0.47484750\n",
"rented -0.138932327 0.01728583\n",
"primary_school_age 0.504557789 -0.28672716\n",
"one_person_households 0.443686124 0.13659002\n",
"year_built 0.046467739 0.11406251\n",
"tree_cover_density -0.025669031 0.29130747\n",
"impervious 0.001689509 0.24169082\n",
"age 0.448288787 0.07684377\n",
"health -0.063476710 1.00000000\n",
"income -0.389151337 0.44841072\n",
"info_access_use 0.188998102 -0.35998489\n",
"local_knowledge -0.086558180 0.47484750\n",
"tenure -0.138932327 0.01728583\n",
"social_network 0.579507014 -0.10434554\n",
"housing_characteristics 0.046467739 0.11406251\n",
"physical_environment -0.014933172 0.31311428\n",
"sensitivity 0.124476818 0.91574394\n",
"prepare -0.165913736 0.24743845\n",
"respond 0.204713854 0.26914837\n",
"recover 0.380510515 -0.12279689\n",
"adaptive_capacity 0.086365882 0.21968497\n",
"enhanced_exposure 0.018596006 0.27264011\n",
"social_vulnerability 0.094105996 0.54120524\n",
" one_parent_households dependants unemployment\n",
"early_childhood_boy 0.33038590 0.67057589 0.35614054 \n",
"early_childhood_girl 0.33986362 0.69435577 0.36004951 \n",
"age_middle_to_oldest_old_male -0.45598571 -0.62497380 -0.34357715 \n",
"age_middle_to_oldest_old_female -0.45546676 -0.45061486 -0.01977655 \n",
"disability -0.04926880 0.44524799 0.66041158 \n",
"one_parent_households 1.00000000 0.44098288 0.08855721 \n",
"dependants 0.44098288 1.00000000 0.56720146 \n",
"unemployment 0.08855721 0.56720146 1.00000000 \n",
"attending_university 0.41209063 0.55171806 0.33617823 \n",
"no_higher_education -0.20215971 -0.66446988 -0.41956319 \n",
"foreign_nationals 0.13940285 0.55855872 0.70132633 \n",
"rented 0.58359421 0.19886232 0.19663693 \n",
"primary_school_age -0.40852694 -0.84126926 -0.35945994 \n",
"one_person_households -0.64327666 -0.37761112 0.04895747 \n",
"year_built 0.23694249 0.08292949 0.25432918 \n",
"tree_cover_density 0.29541420 0.53298471 0.42060960 \n",
"impervious 0.44708573 0.33428776 0.49015701 \n",
"age -0.13240437 0.15883005 0.19368368 \n",
"health -0.04926880 0.44524799 0.66041158 \n",
"income 0.63584339 0.86707123 0.68303775 \n",
"info_access_use -0.20215971 -0.66446988 -0.41956319 \n",
"local_knowledge 0.13940285 0.55855872 0.70132633 \n",
"tenure 0.58359421 0.19886232 0.19663693 \n",
"social_network -0.63359601 -0.75663382 -0.20158389 \n",
"housing_characteristics 0.23694249 0.08292949 0.25432918 \n",
"physical_environment 0.42875198 0.51345917 0.52983989 \n",
"sensitivity -0.09694488 0.45794746 0.66236418 \n",
"prepare 0.50291888 0.38170650 0.51846520 \n",
"respond -0.07233069 -0.05092846 0.46508270 \n",
"recover -0.24962760 -0.66309316 -0.08601945 \n",
"adaptive_capacity 0.25320804 0.06572621 0.46813351 \n",
"enhanced_exposure 0.42248985 0.38370731 0.49867787 \n",
"social_vulnerability 0.28332714 0.35786294 0.68230000 \n",
" attending_university no_higher_education ⋯\n",
"early_childhood_boy 0.23694332 -0.36085632 ⋯\n",
"early_childhood_girl 0.29591717 -0.39610178 ⋯\n",
"age_middle_to_oldest_old_male -0.42706479 0.43854968 ⋯\n",
"age_middle_to_oldest_old_female -0.24756632 0.18899810 ⋯\n",
"disability 0.24108336 -0.35998489 ⋯\n",
"one_parent_households 0.41209063 -0.20215971 ⋯\n",
"dependants 0.55171806 -0.66446988 ⋯\n",
"unemployment 0.33617823 -0.41956319 ⋯\n",
"attending_university 1.00000000 -0.80231522 ⋯\n",
"no_higher_education -0.80231522 1.00000000 ⋯\n",
"foreign_nationals 0.16908401 -0.17722844 ⋯\n",
"rented 0.25030330 -0.15646775 ⋯\n",
"primary_school_age -0.38544019 0.50117885 ⋯\n",
"one_person_households -0.34213141 0.06656413 ⋯\n",
"year_built -0.09983298 0.18164280 ⋯\n",
"tree_cover_density 0.34500674 -0.38288149 ⋯\n",
"impervious 0.44640218 -0.41631699 ⋯\n",
"age -0.07782264 -0.07103765 ⋯\n",
"health 0.24108336 -0.35998489 ⋯\n",
"income 0.77851407 -0.71256967 ⋯\n",
"info_access_use -0.80231522 1.00000000 ⋯\n",
"local_knowledge 0.16908401 -0.17722844 ⋯\n",
"tenure 0.25030330 -0.15646775 ⋯\n",
"social_network -0.44454259 0.35908786 ⋯\n",
"housing_characteristics -0.09983298 0.18164280 ⋯\n",
"physical_environment 0.45902384 -0.46586422 ⋯\n",
"sensitivity 0.18194667 -0.34713213 ⋯\n",
"prepare 0.08596680 0.08891632 ⋯\n",
"respond -0.31168393 0.43965495 ⋯\n",
"recover -0.61881770 0.80803001 ⋯\n",
"adaptive_capacity -0.11091324 0.26081266 ⋯\n",
"enhanced_exposure 0.23712302 -0.19176042 ⋯\n",
"social_vulnerability 0.11005613 -0.06942277 ⋯\n",
" social_network housing_characteristics\n",
"early_childhood_boy -0.548326585 0.1050579664 \n",
"early_childhood_girl -0.596400846 0.0911557556 \n",
"age_middle_to_oldest_old_male 0.560920526 -0.0976966424 \n",
"age_middle_to_oldest_old_female 0.579507014 0.0464677389 \n",
"disability -0.104345540 0.1140625145 \n",
"one_parent_households -0.633596005 0.2369424946 \n",
"dependants -0.756633822 0.0829294936 \n",
"unemployment -0.201583893 0.2543291753 \n",
"attending_university -0.444542590 -0.0998329821 \n",
"no_higher_education 0.359087857 0.1816427966 \n",
"foreign_nationals -0.344220134 0.3930076266 \n",
"rented -0.249652474 0.2445553823 \n",
"primary_school_age 0.839691152 -0.0764614131 \n",
"one_person_households 0.799861106 -0.0008684821 \n",
"year_built -0.049408896 1.0000000000 \n",
"tree_cover_density -0.428694837 0.1803864548 \n",
"impervious -0.247471063 0.2761895237 \n",
"age -0.002360354 0.0795870159 \n",
"health -0.104345540 0.1140625145 \n",
"income -0.680471207 0.1555872409 \n",
"info_access_use 0.359087857 0.1816427966 \n",
"local_knowledge -0.344220134 0.3930076266 \n",
"tenure -0.249652474 0.2445553823 \n",
"social_network 1.000000000 -0.0494088961 \n",
"housing_characteristics -0.049408896 1.0000000000 \n",
"physical_environment -0.401202696 0.2635615089 \n",
"sensitivity -0.093273903 0.1329900657 \n",
"prepare -0.382536861 0.4931391345 \n",
"respond 0.226944393 0.4867758850 \n",
"recover 0.684612142 0.2709430415 \n",
"adaptive_capacity 0.044981247 0.5105362367 \n",
"enhanced_exposure -0.290449581 0.7797972928 \n",
"social_vulnerability -0.137323581 0.6500356288 \n",
" physical_environment sensitivity prepare \n",
"early_childhood_boy 0.35289264 0.41094687 0.34499285\n",
"early_childhood_girl 0.38809959 0.43829722 0.35423522\n",
"age_middle_to_oldest_old_male -0.36515398 -0.11579601 -0.32214094\n",
"age_middle_to_oldest_old_female -0.01493317 0.12447682 -0.16591374\n",
"disability 0.31311428 0.91574394 0.24743845\n",
"one_parent_households 0.42875198 -0.09694488 0.50291888\n",
"dependants 0.51345917 0.45794746 0.38170650\n",
"unemployment 0.52983989 0.66236418 0.51846520\n",
"attending_university 0.45902384 0.18194667 0.08596680\n",
"no_higher_education -0.46586422 -0.34713213 0.08891632\n",
"foreign_nationals 0.47504867 0.52088805 0.76986598\n",
"rented 0.54975446 0.01348079 0.68961198\n",
"primary_school_age -0.39566986 -0.31645101 -0.31384459\n",
"one_person_households -0.25593992 0.18857068 -0.31411959\n",
"year_built 0.26356151 0.13299007 0.49313913\n",
"tree_cover_density 0.87274526 0.35824276 0.36450898\n",
"impervious 0.83655012 0.24602585 0.55573889\n",
"age 0.19811287 0.47094367 0.11592014\n",
"health 0.31311428 0.91574394 0.24743845\n",
"income 0.65093009 0.41823692 0.49628699\n",
"info_access_use -0.46586422 -0.34713213 0.08891632\n",
"local_knowledge 0.47504867 0.52088805 0.76986598\n",
"tenure 0.54975446 0.01348079 0.68961198\n",
"social_network -0.40120270 -0.09327390 -0.38253686\n",
"housing_characteristics 0.26356151 0.13299007 0.49313913\n",
"physical_environment 1.00000000 0.35686743 0.53128199\n",
"sensitivity 0.35686743 1.00000000 0.26563892\n",
"prepare 0.53128199 0.26563892 1.00000000\n",
"respond 0.12610496 0.30338293 0.69009134\n",
"recover -0.32487143 -0.12321838 0.15896290\n",
"adaptive_capacity 0.39044819 0.24444113 0.90579806\n",
"enhanced_exposure 0.80942177 0.31255713 0.64498971\n",
"social_vulnerability 0.67758093 0.59988497 0.83592753\n",
" respond recover adaptive_capacity\n",
"early_childhood_boy 0.020408818 -0.42216457 0.12155807 \n",
"early_childhood_girl 0.003914884 -0.47404722 0.10950479 \n",
"age_middle_to_oldest_old_male 0.065933061 0.44983077 -0.09107455 \n",
"age_middle_to_oldest_old_female 0.204713854 0.38051051 0.08636588 \n",
"disability 0.269148367 -0.12279689 0.21968497 \n",
"one_parent_households -0.072330693 -0.24962760 0.25320804 \n",
"dependants -0.050928458 -0.66309316 0.06572621 \n",
"unemployment 0.465082702 -0.08601945 0.46813351 \n",
"attending_university -0.311683928 -0.61881770 -0.11091324 \n",
"no_higher_education 0.439654954 0.80803001 0.26081266 \n",
"foreign_nationals 0.706907540 -0.06089854 0.67454294 \n",
"rented 0.128269631 -0.06156210 0.63113802 \n",
"primary_school_age 0.191164019 0.70772433 0.04573707 \n",
"one_person_households 0.180859976 0.40075833 0.02717408 \n",
"year_built 0.486775885 0.27094304 0.51053624 \n",
"tree_cover_density 0.087039689 -0.34561834 0.19752132 \n",
"impervious 0.131326510 -0.20208813 0.48739139 \n",
"age 0.161919237 -0.03615852 0.12425339 \n",
"health 0.269148367 -0.12279689 0.21968497 \n",
"income 0.012749347 -0.54883841 0.22454098 \n",
"info_access_use 0.439654954 0.80803001 0.26081266 \n",
"local_knowledge 0.706907540 -0.06089854 0.67454294 \n",
"tenure 0.128269631 -0.06156210 0.63113802 \n",
"social_network 0.226944393 0.68461214 0.04498125 \n",
"housing_characteristics 0.486775885 0.27094304 0.51053624 \n",
"physical_environment 0.126104958 -0.32487143 0.39044819 \n",
"sensitivity 0.303382929 -0.12321838 0.24444113 \n",
"prepare 0.690091341 0.15896290 0.90579806 \n",
"respond 1.000000000 0.66294354 0.85021883 \n",
"recover 0.662943544 1.00000000 0.48583097 \n",
"adaptive_capacity 0.850218830 0.48583097 1.00000000 \n",
"enhanced_exposure 0.378164977 -0.04589749 0.56418215 \n",
"social_vulnerability 0.702116874 0.18510154 0.84085104 \n",
" enhanced_exposure social_vulnerability\n",
"early_childhood_boy 0.29297386 0.330183124 \n",
"early_childhood_girl 0.30735942 0.339651432 \n",
"age_middle_to_oldest_old_male -0.29644999 -0.216741127 \n",
"age_middle_to_oldest_old_female 0.01859601 0.094105996 \n",
"disability 0.27264011 0.541205238 \n",
"one_parent_households 0.42248985 0.283327135 \n",
"dependants 0.38370731 0.357862941 \n",
"unemployment 0.49867787 0.682300003 \n",
"attending_university 0.23712302 0.110056131 \n",
"no_higher_education -0.19176042 -0.069422773 \n",
"foreign_nationals 0.54754029 0.761204213 \n",
"rented 0.50565219 0.549539325 \n",
"primary_school_age -0.30332716 -0.217873743 \n",
"one_person_households -0.16662814 0.003512541 \n",
"year_built 0.77979729 0.650035629 \n",
"tree_cover_density 0.67620326 0.520913738 \n",
"impervious 0.71103367 0.645888772 \n",
"age 0.17701967 0.300376066 \n",
"health 0.27264011 0.541205238 \n",
"income 0.51715347 0.484368003 \n",
"info_access_use -0.19176042 -0.069422773 \n",
"local_knowledge 0.54754029 0.761204213 \n",
"tenure 0.50565219 0.549539325 \n",
"social_network -0.29044958 -0.137323581 \n",
"housing_characteristics 0.77979729 0.650035629 \n",
"physical_environment 0.80942177 0.677580930 \n",
"sensitivity 0.31255713 0.599884974 \n",
"prepare 0.64498971 0.835927532 \n",
"respond 0.37816498 0.702116874 \n",
"recover -0.04589749 0.185101540 \n",
"adaptive_capacity 0.56418215 0.840851042 \n",
"enhanced_exposure 1.00000000 0.835445536 \n",
"social_vulnerability 0.83544554 1.000000000 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# check the correlations\n",
"correlation <- cor(output_dataset %>% select(-c(all_of(GUID))), use=\"pairwise.complete.obs\")\n",
"correlation"
]
},
{
"cell_type": "markdown",
"id": "34ed4484-ecc8-4aa2-8f92-cec176dc6ed5",
"metadata": {},
"source": [
"## Add geometry"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "d2dc8bd1-e2b3-4c92-94d4-37a61766265a",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 39\n",
"\n",
"\t | CCA | CPRO | CMUN | CDIS | CSEC | early_childhood_boy | early_childhood_girl | age_middle_to_oldest_old_male | age_middle_to_oldest_old_female | disability | ⋯ | housing_characteristics | physical_environment | sensitivity | prepare | respond | recover | adaptive_capacity | enhanced_exposure | social_vulnerability | geometry |
\n",
"\t | <int> | <int> | <int> | <int> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <dbl[,1]> | <MULTIPOLYGON [m]> |
\n",
"\n",
"\n",
"\t1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.48180824 | -0.10021618 | 1.2753218 | ⋯ | -0.9481277 | -0.8560700 | 1.1377171 | -0.3378133 | 0.18457796 | 0.1073270 | -0.15329655 | -1.00827077 | -0.1413894 | MULTIPOLYGON (((526123.5 47... |
\n",
"\t2 | 17 | 26 | 10 | 1 | 1 | -0.36188692 | -0.3284478 | 1.32081073 | 0.44848018 | -1.3865567 | ⋯ | 0.0000000 | -0.2328068 | -0.9881374 | -0.4065854 | -0.33477437 | 0.8522391 | -0.26183757 | 0.04893220 | -0.4444888 | MULTIPOLYGON (((528744.7 46... |
\n",
"\t3 | 17 | 26 | 100 | 1 | 1 | 0.01083739 | -1.4002199 | 0.23798535 | -0.52201032 | -1.3865567 | ⋯ | 0.0000000 | -0.3822322 | -1.5969460 | -0.4065854 | -0.22140412 | 1.0122262 | -0.17316713 | -0.05159845 | -0.6491854 | MULTIPOLYGON (((575382.6 46... |
\n",
"\t4 | 17 | 26 | 101 | 1 | 1 | -1.36078806 | -1.4002199 | -0.22155305 | 0.07955613 | -1.3865567 | ⋯ | 0.0000000 | -1.5116073 | -1.8689267 | -0.4065854 | 0.02693072 | 1.3626742 | 0.02106336 | -0.81142134 | -0.9789365 | MULTIPOLYGON (((540334.4 46... |
\n",
"\t5 | 17 | 26 | 102 | 1 | 1 | 0.10257030 | -0.4581527 | 0.05129390 | 0.59299501 | 0.3880289 | ⋯ | 1.2637707 | -0.3792937 | 0.4071804 | -0.3116725 | 0.44354790 | 0.7414772 | -0.09187444 | 0.80062025 | 0.4454417 | MULTIPOLYGON (((521986.4 46... |
\n",
"\t6 | 17 | 26 | 102 | 1 | 2 | 0.64987009 | 0.6302157 | -0.04065368 | 0.64469364 | 0.3880289 | ⋯ | 0.7211874 | -0.3696338 | 0.7600790 | -0.3203095 | 0.33117214 | 0.3141994 | -0.30936550 | 0.44207919 | 0.2948932 | MULTIPOLYGON (((519949.8 47... |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 39\n",
"\\begin{tabular}{r|lllllllllllllllllllll}\n",
" & CCA & CPRO & CMUN & CDIS & CSEC & early\\_childhood\\_boy & early\\_childhood\\_girl & age\\_middle\\_to\\_oldest\\_old\\_male & age\\_middle\\_to\\_oldest\\_old\\_female & disability & ⋯ & housing\\_characteristics & physical\\_environment & sensitivity & prepare & respond & recover & adaptive\\_capacity & enhanced\\_exposure & social\\_vulnerability & geometry\\\\\n",
" & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & 17 & 26 & 1 & 1 & 1 & -0.19258164 & -0.1467916 & 0.48180824 & -0.10021618 & 1.2753218 & ⋯ & -0.9481277 & -0.8560700 & 1.1377171 & -0.3378133 & 0.18457796 & 0.1073270 & -0.15329655 & -1.00827077 & -0.1413894 & MULTIPOLYGON (((526123.5 47...\\\\\n",
"\t2 & 17 & 26 & 10 & 1 & 1 & -0.36188692 & -0.3284478 & 1.32081073 & 0.44848018 & -1.3865567 & ⋯ & 0.0000000 & -0.2328068 & -0.9881374 & -0.4065854 & -0.33477437 & 0.8522391 & -0.26183757 & 0.04893220 & -0.4444888 & MULTIPOLYGON (((528744.7 46...\\\\\n",
"\t3 & 17 & 26 & 100 & 1 & 1 & 0.01083739 & -1.4002199 & 0.23798535 & -0.52201032 & -1.3865567 & ⋯ & 0.0000000 & -0.3822322 & -1.5969460 & -0.4065854 & -0.22140412 & 1.0122262 & -0.17316713 & -0.05159845 & -0.6491854 & MULTIPOLYGON (((575382.6 46...\\\\\n",
"\t4 & 17 & 26 & 101 & 1 & 1 & -1.36078806 & -1.4002199 & -0.22155305 & 0.07955613 & -1.3865567 & ⋯ & 0.0000000 & -1.5116073 & -1.8689267 & -0.4065854 & 0.02693072 & 1.3626742 & 0.02106336 & -0.81142134 & -0.9789365 & MULTIPOLYGON (((540334.4 46...\\\\\n",
"\t5 & 17 & 26 & 102 & 1 & 1 & 0.10257030 & -0.4581527 & 0.05129390 & 0.59299501 & 0.3880289 & ⋯ & 1.2637707 & -0.3792937 & 0.4071804 & -0.3116725 & 0.44354790 & 0.7414772 & -0.09187444 & 0.80062025 & 0.4454417 & MULTIPOLYGON (((521986.4 46...\\\\\n",
"\t6 & 17 & 26 & 102 & 1 & 2 & 0.64987009 & 0.6302157 & -0.04065368 & 0.64469364 & 0.3880289 & ⋯ & 0.7211874 & -0.3696338 & 0.7600790 & -0.3203095 & 0.33117214 & 0.3141994 & -0.30936550 & 0.44207919 & 0.2948932 & MULTIPOLYGON (((519949.8 47...\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 39\n",
"\n",
"| | CCA <int> | CPRO <int> | CMUN <int> | CDIS <int> | CSEC <int> | early_childhood_boy <dbl> | early_childhood_girl <dbl> | age_middle_to_oldest_old_male <dbl> | age_middle_to_oldest_old_female <dbl> | disability <dbl> | ⋯ ⋯ | housing_characteristics <dbl> | physical_environment <dbl> | sensitivity <dbl[,1]> | prepare <dbl[,1]> | respond <dbl[,1]> | recover <dbl[,1]> | adaptive_capacity <dbl[,1]> | enhanced_exposure <dbl[,1]> | social_vulnerability <dbl[,1]> | geometry <MULTIPOLYGON [m]> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 1 | 17 | 26 | 1 | 1 | 1 | -0.19258164 | -0.1467916 | 0.48180824 | -0.10021618 | 1.2753218 | ⋯ | -0.9481277 | -0.8560700 | 1.1377171 | -0.3378133 | 0.18457796 | 0.1073270 | -0.15329655 | -1.00827077 | -0.1413894 | MULTIPOLYGON (((526123.5 47... |\n",
"| 2 | 17 | 26 | 10 | 1 | 1 | -0.36188692 | -0.3284478 | 1.32081073 | 0.44848018 | -1.3865567 | ⋯ | 0.0000000 | -0.2328068 | -0.9881374 | -0.4065854 | -0.33477437 | 0.8522391 | -0.26183757 | 0.04893220 | -0.4444888 | MULTIPOLYGON (((528744.7 46... |\n",
"| 3 | 17 | 26 | 100 | 1 | 1 | 0.01083739 | -1.4002199 | 0.23798535 | -0.52201032 | -1.3865567 | ⋯ | 0.0000000 | -0.3822322 | -1.5969460 | -0.4065854 | -0.22140412 | 1.0122262 | -0.17316713 | -0.05159845 | -0.6491854 | MULTIPOLYGON (((575382.6 46... |\n",
"| 4 | 17 | 26 | 101 | 1 | 1 | -1.36078806 | -1.4002199 | -0.22155305 | 0.07955613 | -1.3865567 | ⋯ | 0.0000000 | -1.5116073 | -1.8689267 | -0.4065854 | 0.02693072 | 1.3626742 | 0.02106336 | -0.81142134 | -0.9789365 | MULTIPOLYGON (((540334.4 46... |\n",
"| 5 | 17 | 26 | 102 | 1 | 1 | 0.10257030 | -0.4581527 | 0.05129390 | 0.59299501 | 0.3880289 | ⋯ | 1.2637707 | -0.3792937 | 0.4071804 | -0.3116725 | 0.44354790 | 0.7414772 | -0.09187444 | 0.80062025 | 0.4454417 | MULTIPOLYGON (((521986.4 46... |\n",
"| 6 | 17 | 26 | 102 | 1 | 2 | 0.64987009 | 0.6302157 | -0.04065368 | 0.64469364 | 0.3880289 | ⋯ | 0.7211874 | -0.3696338 | 0.7600790 | -0.3203095 | 0.33117214 | 0.3141994 | -0.30936550 | 0.44207919 | 0.2948932 | MULTIPOLYGON (((519949.8 47... |\n",
"\n"
],
"text/plain": [
" CCA CPRO CMUN CDIS CSEC early_childhood_boy early_childhood_girl\n",
"1 17 26 1 1 1 -0.19258164 -0.1467916 \n",
"2 17 26 10 1 1 -0.36188692 -0.3284478 \n",
"3 17 26 100 1 1 0.01083739 -1.4002199 \n",
"4 17 26 101 1 1 -1.36078806 -1.4002199 \n",
"5 17 26 102 1 1 0.10257030 -0.4581527 \n",
"6 17 26 102 1 2 0.64987009 0.6302157 \n",
" age_middle_to_oldest_old_male age_middle_to_oldest_old_female disability ⋯\n",
"1 0.48180824 -0.10021618 1.2753218 ⋯\n",
"2 1.32081073 0.44848018 -1.3865567 ⋯\n",
"3 0.23798535 -0.52201032 -1.3865567 ⋯\n",
"4 -0.22155305 0.07955613 -1.3865567 ⋯\n",
"5 0.05129390 0.59299501 0.3880289 ⋯\n",
"6 -0.04065368 0.64469364 0.3880289 ⋯\n",
" housing_characteristics physical_environment sensitivity prepare \n",
"1 -0.9481277 -0.8560700 1.1377171 -0.3378133\n",
"2 0.0000000 -0.2328068 -0.9881374 -0.4065854\n",
"3 0.0000000 -0.3822322 -1.5969460 -0.4065854\n",
"4 0.0000000 -1.5116073 -1.8689267 -0.4065854\n",
"5 1.2637707 -0.3792937 0.4071804 -0.3116725\n",
"6 0.7211874 -0.3696338 0.7600790 -0.3203095\n",
" respond recover adaptive_capacity enhanced_exposure\n",
"1 0.18457796 0.1073270 -0.15329655 -1.00827077 \n",
"2 -0.33477437 0.8522391 -0.26183757 0.04893220 \n",
"3 -0.22140412 1.0122262 -0.17316713 -0.05159845 \n",
"4 0.02693072 1.3626742 0.02106336 -0.81142134 \n",
"5 0.44354790 0.7414772 -0.09187444 0.80062025 \n",
"6 0.33117214 0.3141994 -0.30936550 0.44207919 \n",
" social_vulnerability geometry \n",
"1 -0.1413894 MULTIPOLYGON (((526123.5 47...\n",
"2 -0.4444888 MULTIPOLYGON (((528744.7 46...\n",
"3 -0.6491854 MULTIPOLYGON (((575382.6 46...\n",
"4 -0.9789365 MULTIPOLYGON (((540334.4 46...\n",
"5 0.4454417 MULTIPOLYGON (((521986.4 46...\n",
"6 0.2948932 MULTIPOLYGON (((519949.8 47..."
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# add st_drop_geometry\n",
"output_dataset_geom <- merge(output_dataset, oa, by.x=GUID, by.y=GUID, all.x = TRUE)\n",
"head(output_dataset_geom)"
]
},
{
"cell_type": "markdown",
"id": "64e09111",
"metadata": {},
"source": [
"# Export"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "bfa864c6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Deleting source `../../3_outputs/Spain/Logrono/2021/social_vulnerability_index_logrono_2021.geojson' using driver `GeoJSON'\n",
"Writing layer `social_vulnerability_index_logrono_2021' to data source \n",
" `../../3_outputs/Spain/Logrono/2021/social_vulnerability_index_logrono_2021.geojson' using driver `GeoJSON'\n",
"Writing 343 features with 38 fields and geometry type Multi Polygon.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning message in abbreviate_shapefile_names(obj):\n",
"“Field names abbreviated for ESRI Shapefile driver”\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Deleting layer `social_vulnerability_index_logrono_2021' using driver `ESRI Shapefile'\n",
"Writing layer `social_vulnerability_index_logrono_2021' to data source \n",
" `../../3_outputs/Spain/Logrono/2021/social_vulnerability_index_logrono_2021.shp' using driver `ESRI Shapefile'\n",
"Writing 343 features with 38 fields and geometry type Multi Polygon.\n"
]
}
],
"source": [
"# CSV\n",
"write.csv(output_dataset, file.path(output_dir, \"social_vulnerability_index_logrono_2021.csv\"), row.names = FALSE)\n",
"\n",
"# GeoJSON\n",
"st_write(output_dataset_geom, file.path(output_dir, \"social_vulnerability_index_logrono_2021.geojson\"), delete_dsn=TRUE)\n",
"\n",
"# Shapefile\n",
"# Need to manually rename these fields, otherwise we get a shapefile creation error\n",
"names(output_dataset_geom)[names(output_dataset_geom) == 'early_childhood_boy'] <- 'erly_cld_b'\n",
"names(output_dataset_geom)[names(output_dataset_geom) == 'early_childhood_girl'] <- 'erly_cld_g'\n",
"names(output_dataset_geom)[names(output_dataset_geom) == 'age_middle_to_oldest_old_male'] <- 'age_old_m'\n",
"names(output_dataset_geom)[names(output_dataset_geom) == 'age_middle_to_oldest_old_female'] <- 'age_old_f'\n",
"st_write(output_dataset_geom, file.path(output_dir, \"social_vulnerability_index_logrono_2021.shp\"), append = FALSE)"
]
},
{
"cell_type": "markdown",
"id": "b0ad01c2-b342-4f7f-b9d9-c03ccb0ed11b",
"metadata": {},
"source": [
"**END**"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "4.3.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}